
sensors

Article

Ambient Sound-Based Collaborative Localization of
Indeterministic Devices
Jacob Kamminga 1,2,*, Duc Le 1 and Paul Havinga 1

1 Pervasive Systems Group, University of Twente, Enschede 7522 NB, The Netherlands;
v.d.le@utwente.nl (D.L.); p.j.m.havinga@utwente.nl (P.H.)

2 ASTRON, Dwingeloo 7991 PD, The Netherlands
* Correspondence: j.w.kamminga@utwente.nl; Tel.: +31-534-894-735

Academic Editors: Lyudmila Mihaylova, Byung-Gyu Kim and Debi Prosad Dogra
Received: 24 June 2016; Accepted: 7 September 2016; Published: 14 September 2016

Abstract: Localization is essential in wireless sensor networks. To our knowledge, no prior work
has utilized low-cost devices for collaborative localization based on only ambient sound, without
the support of local infrastructure. The reason may be the fact that most low-cost devices are
indeterministic and suffer from uncertain input latencies. This uncertainty makes accurate localization
challenging. Therefore, we present a collaborative localization algorithm (Cooperative Localization
on Android with ambient Sound Sources (CLASS)) that simultaneously localizes the position of
indeterministic devices and ambient sound sources without local infrastructure. The CLASS algorithm
deals with the uncertainty by splitting the devices into subsets so that outliers can be removed from the
time difference of arrival values and localization results. Since Android is indeterministic, we select
Android devices to evaluate our approach. The algorithm is evaluated with an outdoor experiment
and achieves a mean Root Mean Square Error (RMSE) of 2.18 m with a standard deviation of 0.22 m.
Estimated directions towards the sound sources have a mean RMSE of 17.5° and a standard deviation
of 2.3°. These results show that it is feasible to simultaneously achieve a relative positioning of both
devices and sound sources with sufficient accuracy, even when using non-deterministic devices and
platforms, such as Android.

Keywords: sound localization; collaborative localization; opportunistic localization; wireless sensor
networks; smartphones; Android; input latency

1. Introduction

Wireless Sensor Networks (WSNs) and opportunistic sensing are significant technologies that
have been researched intensively over recent years [1,2]. Simple low-cost sensors, networked through
wireless links and deployed in large numbers, enable a large amount of applications for monitoring and
controlling homes, cities and the environment. Networked sensors are used in numerous applications,
such as military target tracking and surveillance, natural disaster relief, health monitoring, hazardous
environment exploration and seismic sensing [1]. Opportunistic sensing exploits the opportunistic
communication between groups of mobile devices, such as smartphones, to share each other’s content,
resources and services [3].

The capability of self-localization is highly desired in WSNs and opportunistic sensing
applications [4]. Acquired measurement data are often meaningless when the location where they
were measured is unknown. Location information can be used for coverage guaranties, deployment
optimization, data routing, location services and target tracking. Typically, each device would know
its own position, for example from the Global Positioning System (GPS). However, GPS devices
require much energy, are relatively expensive, add size to a sensor node and might suffer from limited
connectivity, such as in an indoor environment, in rugged terrains or dense cities and forests. These

Sensors 2016, 16, 1478; doi:10.3390/s16091478 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1478 2 of 23

constraints require the investigation of techniques other than GPS [5]. Many localization techniques
require the use of existing local infrastructure, such as anchor nodes with known positions. Remote
WSNs and disaster scenarios, where infrastructure might not be present or malfunctioning, require
localization techniques that do not rely on local infrastructure. In these cases, communication between
wireless nodes can be used to improve the accuracy of location information in WSNs [6]. Techniques
that accomplish this are known as collaborative localization, cooperative localization and network
localization [7]. Numerous methods have been researched to preform cooperative localization [5].
One of these methods is based on Time Of Arrival (TOA) measurements. A signal is transmitted by an
anchor node, and each device records the time when it receives the respective signal. Knowing the
speed of the signal, this difference in time relates directly to the distance between the two devices and
the anchor node. This method requires highly accurate clock synchronization between the devices
and the anchor node. A variation of this method is based on Time Difference Of Arrival (TDOA)
measurements. TDOA estimation requires the measurements of the difference in time between the
signals arriving at two devices. The advantage that TDOA has over TOA is that the devices performing
the measurements do no not have to synchronize their clocks with the device that produces the signal.
This opens up the opportunity to exploit signals that are already present in the environment. Ambient
sound signals are ubiquitous and can be exploited to preform TDOA-based cooperative localization.
Additionally, it is possible to simultaneously localize the events that produced these sound signals
while self-localization is preformed, without the use of existing infrastructure [8–11]. In disastrous
scenarios, such as an explosion or gun shots in a crowd, these sound events can be simultaneously
localized. Figure 1 denotes a group of devices that can communicate with each other and concurrently
process sounds from the environment.

Figure 1. A group of devices that are able to communicate with each other can exploit ambient sounds
to localize themselves and the origins of the sounds.

To the best of our knowledge, no prior work has exploited indeterministic devices for collaborative
localization based on only ambient sound, without the support of local infrastructure. The uncertainty
introduced by indeterminism and uncertain input latencies makes accurate localization challenging.
Since the Android Operating System (OS) runs on numerous low-cost devices in the worldwide
market and is an indeterministic OS, we select Android devices to evaluate our approach to
collaborative localization with only ambient sound. In this paper, we present the Cooperative
Localization on Android with ambient Sound Sources (CLASS) algorithm. The CLASS algorithm

Sensors 2016, 16, 1478 3 of 23

simultaneously localizes the position of indeterministic devices and ambient sound without requiring
local infrastructure. The CLASS algorithm deals with the uncertainty by splitting the devices into
subsets so that outliers can be removed from the time difference of arrival values and localization
results. Besides the use on smartphones, our approach can also be used on simple sensor nodes in a
Wireless Sensor Network (WSN).

Accurate timing properties are desirable for collaborative localization because a small error
in time quickly relates to a large error in space (10 ms in TDOA relates to 3.4 m). One of the key
characteristics of a real-time OS is the consistency in the amount of time the OS requires to complete
a task. The variability in the completion times is denoted as jitter. Android is not a real-time OS,
which makes the task completion times vary greatly and cannot be guaranteed. Therefore, it is a
daunting challenge to perform collaborative localization with Android devices. In this paper, we
investigate the limitations of implementing the Android OS for collaborative localization. We found
that many parts of the current Android architecture contribute to inaccurate measurements; thus,
improving the localization accuracy would require a completely new architecture and more accurate
hardware. Previous work researched the ability to change the Android architecture in order to add
real-time features [12,13]. This approach is hard to apply on different types of hardware and, therefore,
not universal. Our approach allows applications to run on inexpensive hardware that is available
in abundance, as opposed to complex, expensive high-end systems. When Android improves in all
aspects needed, our approach is still beneficial, as even then, the accuracy will be improved.

1.1. Challenges

Localization by sound on low-cost devices introduces multiple challenges, such as:

• Setting up an ad hoc network for sound localization
• Time synchronization amongst devices in the network
• Detecting and identifying sound events that can be used for localization
• Audio latency and jitter in the hardware platform and operating system
• Dealing with inaccurate measurements
• Localizing devices and sound event origins

These challenges and related issues will be discussed in the respective sections of this paper.

1.2. Paper Contributions and Organization

The contributions of this paper are as follows:

• To the best of our knowledge, this work is the first to exploit indeterministic devices for
collaborative localization based on only ambient sound, without the support of local infrastructure

• We investigate Android’s indeterministic behavior and applicability for collaborative localization.
This provides an insight into the requirements of collaborative localization and the limitations of
indeterministic devices.

• We present the CLASS algorithm that takes indeterministic behavior into account and preforms
collaborative localization on smartphones.

• Our approach can be applied when errors are introduced by utilizing different types of phones or
inexpensive, simpler hardware platforms.

• We assess the performance of the CLASS algorithm on an outdoor testbed of Android devices.

The remainder of this paper is organized as follows: Section 2 discusses prior work on the subject.
In Section 3, we formulate the problem of localizing a set of devices with a set of directions toward
sound events while not knowing any information regarding their locations. The CLASS algorithm that
can apply this technique on Android devices is introduced in Section 4. Our Android application and
an outdoor experiment are discussed and evaluated in Section 5. Finally, the paper is concluded in
Section 6.

Sensors 2016, 16, 1478 4 of 23

2. Related Work

Localizing an emitter or receiver in a WSN has been studied extensively over recent years [4,5].
In the field of localization, using only acoustic signals, two approaches can be distinguished;
localization with and without anchor devices.

2.1. Target Localization Utilizing Anchor Devices with Known Positions

Localizing a node when the base stations are known has been studied by many. Harter et al.
introduce a platform that enables applications to follow mobile users and/or objects inside a building
with so-called “bat” nodes [14]. After overhearing its unique identifier, which is emitted by a base
node, a bat node emits an ultrasound signal that is picked up by an array of receivers mounted in
the ceiling. The location of the bat node is obtained through multilateration with a few centimeters
of accuracy. Although the system is accurate, it requires much infrastructure and is an obtrusive
technology to the user.

Simon et al. introduce PinPtr, an ad hoc wireless sensor network system that detects and accurately
locates shooters [15]. PinPtr detects and measures the TOA of muzzle blasts and shock waves from
a gunshot. Measurements are routed to a base station that computes the location of the gunshot.
The hardware was synchronized with an error that stayed below 17.2 µs during a four-hour experiment.
The error in time synchronization between Android devices will be much higher than this [16]. PinPtr
requires a ranging phase in order to determine the relative positions of the motes. Ranging is a
phase in the localization algorithm where devices estimate the respective distances between them and
others. This is a drawback because the motes require a sounding device that has a limited range of
approximately 10 m.

Shang et al. use Android devices as anchors at known locations to estimate the sound source
location [16]. The devices themselves are not located and are assumed to accurately know their
location. The authors find the TDOA by means of cross correlation between sound recordings that
were recorded at different known locations. The recorded sound events and corresponding time stamps
are centrally processed. The TDOA value contains the synchronization offset and start time error.
These two errors are estimated and subtracted from the time delay to obtain the calibrated TDOA for
the positioning of the source. The target localization errors of their acoustics-based method are within
±15 cm in the x-direction and ±80 cm in the y-direction. The authors found that multiple independent
location estimates can be averaged to yield much better localization accuracy. The measurements were
preformed in a quiet environment with low noise levels; outdoors, this method has not been tested and
could possibly fail. The authors do not mention the inevitable offset in the anchor devices’ location,
which will probably increase the error in the estimation of the target’s location.

2.2. Collaborative Localization Utilizing Only Sound Signals

The complexity of the localization problem increases when base stations with known positions
are not present. Most research for this approach also localizes the location and time of emission of the
sound event since this information is inherent in the measurement data.

Hennecke et al. [17] focus on the calibration of low-quality unsynchronized mobile phones.
The authors rely on acoustic calibration signals and show that ranging can be used to compensate for
poor time synchronization between devices. However, approaches that require ranging are not well
suited for outdoor applications, simply because a smart phone will not be able to emit a distinguishable
sound event over larger distances. Therefore, it is better to look at approaches that require no ranging.

Thrun et al. are some of the first authors to introduce a solution towards localization without any
other information than TDOA measurements of sound events between multiple devices [8,9]. In their
approach, the authors rely on the Far Field Approximation (FFA). In order to simplify the localization
problem, most prior works assume that sound events originate (infinitely) far away. The FFA is refined

Sensors 2016, 16, 1478 5 of 23

by Kuang et al. [18], and their experimental validation gives a strong indication that a FFA is a feasible
approach for getting direct estimates, as well as initial estimates for other solvers.

Wendeberg et al. [10,11] have successfully localized a group of mobile devices without the need
for any further infrastructure besides ambient sound and a Wi-Fi network. They devised a TDOA
method to localize a network of eight Apple laptops and iPhones with a positioning accuracy of
approximately 1 m. The Apple products they used contain a High Precision Event Timer (HPET); thus,
it becomes possible to synchronize the devices quite accurately. iPhones are known to have a much
better audio pipeline and do not suffer from input latencies that much. Wendeberg et al. were able
to synchronize the devices within an accuracy of 0.1 ms through the Network Time Protocol (NTP).
We found that in Android, this accuracy in time synchronization, even utilizing the NTP, is currently
not possible, and the measurements are very noisy. When another WSN synchronization protocol is
used on a non-dedicated hardware platform, such as Android devices, the inaccuracies introduced
by time synchronization are expected to be magnitudes larger. Therefore, it is important to research
mechanisms that can utilize TDOA measurements with large errors. In order to deal with noisy data,
Burgess et al. present an algorithm that uses the Random Sample Consensus (RANSAC) paradigm [19].
Their method simultaneously solves the calibration problem and removes severe outliers, which is a
common problem in TOA applications. With two indoor environment experiments, using dedicated
hardware with real-time features that was highly synchronized in time, their work achieved a Root
Mean Square Error (RMSE) of 2.35 cm and 3.95 cm on microphones and speakers for their respective
positions. Our approach presented in this paper focuses on implementing a similar technique that is
evaluated on Android devices, with real measurements. We investigate where inaccuracies originate
in Android and assess the performance of a RANSAC-inspired mechanism with noisy measurement
data that was acquired on an outdoor testbed.

3. Problem Formulation

In this paper, we address the problem of localizing a set X of M mobile devices by utilizing a
set A of N sound events. All devices in the set do not have any information regarding their location,
but are able to communicate with each other and are poorly synchronized in time. For the ease of
representation, the sensors and sound sources are located in a 2D plane, but the technique can easily
be generalized to use 3D positions. We assume that the detected sound waves travel from the source
to the devices in a straight line. In order to simplify the localization problem, we rely on the Far Field
Approximation (FFA) [18]. The FFA assumes that sound events originate from (infinitely) far away.
Under this assumption, a sound wave from sound event j arrives at each device at the same incident
angle αj. In other words, the sound waves connecting the location of a sound event (aj, bj) with each
of the devices (xi, yi) are approximately parallel for all i (but not for all j) [9,20]. Now, we do not
need to find the relation between all devices and a sound event, but merely one direction towards
it. Therefore, we assume that all sound events in A originate from an unknown location outside and
around the constellation of devices (Figure 1). When the FFA does not hold, for example when a sound
originates from near the device constellation, this could result in a large localization error. Burgess et al.
found that the FFA gives good results as long as the distances between a sound event and device
are four-times larger than inter-device distances [20]. Sound sources that originate from near the
constellation of devices will increase the inaccuracy of the location results. However, the approach that
we describe in this paper filters out inaccurate measurements, including sound sources that do not
adhere to the FFA assumption. This filtering is discussed in Section 4.

Sensors 2016, 16, 1478 6 of 23

The Time Of Arrival (TOA) of each sound event, at each device, is represented by a M× N TOA
matrix T. In this matrix, the arrival time of sound event j at device i is denoted as ti,j.

T =


t1,1 t1,2 · · · t1,M
t2,1 t2,2 · · · t2,M

...
...

. . .
...

tN,1 tN,2 · · · tN,M

 (1)

It is assumed that each sound event is well distinguished, e.g., in time or frequency, so that there
is no data association problem. Sound event detection is discussed in Section 5.1.2. Each sound event
represents one column in T. When no absolute positions are known, we can only look at the relative
positions of the nodes. Therefore, we utilize the inter-device Time Difference Of Arrival (TDOA).
The TDOA between Device 1 and all other devices can be denoted as:

∆ =


t2,1 − t1,1 t2,2 − t1,2 · · · t2,M − t1,M
t3,1 − t1,1 t3,2 − t1,2 · · · t3,M − t1,M

...
...

. . .
...

tN,1 − t1,1 tN,2 − t1,2 · · · tN,M − t1,M

 (2)

When we define the TDOA values not only relative to Node 1, but between all pair of nodes,
we obtain the matrix ∆ with dimensions M− 1× N ×M. In this matrix, the TDOA between node i
and k for sound event j is denoted as ∆ijk. As discussed later in this paper, each TDOA measurement
will contain a significant amount of noise due to inaccurate measurements. ∆ijk therefore consists of
the ground truth TDOA between device i and k, ∆ijk, and the measurement noise σ:

∆ijk = ∆ijk + σ (3)

Because we know the speed of sound, we can relate the distance between two devices as follows:

∆ijk · c =
∥∥Xi − Aj

∥∥
2 −

∥∥Xk − Aj
∥∥

2 (4)

where c is the speed of sound and
∥∥Xi − Aj

∥∥
2 the Euclidean distance between device i and sound event

j. Because we rely on the FFA, the relation between the inter-device distance, sound event location and
the respective TDOA value can be described as a function of the incident angle αj:

(
cos(αj) sin(αj)

)
·
(

xi − xk
yi − yk

)
= ∆ijk · c (5)

The relation in Equation (5) can be used to form a least squares definition:

J(X,~α) = ∑
i=1...N−1

j=1...M
k=i+1...N

((
cos(αj) sin(αj)

)
·
(

xi − xk
yi − yk

)
− ∆ijk · c

)2
(6)

The device locations X and and angular directions ~α can now be recovered by minimizing
Equation (6) as follows:

< X,~α >= argmin
X,~α

J(X,~α) (7)

Sensors 2016, 16, 1478 7 of 23

4. A Collaborative Localization Algorithm: CLASS

In this section, we describe the Cooperative Localization on Android with ambient Sound Sources
(CLASS) algorithm. This algorithm localizes mobile devices based on ambient sound events at
unknown locations. The algorithm outputs the relative position of the devices and the angular direction
towards the origin of the sound events. In order to explain the intuition of our approach, we will first
look at the quality of TDOA measurements on Android devices. We collected TOA measurements by
generating sounds directly above 16 devices placed at an identical location. We recorded TOA values
with the application described in Section 5.1. From these data, we can calculate the TDOA values
through Equation (2) for all pairs of devices. All TDOA values should be close to zero, since all of the
devices were positioned at an identical location. Figure 2a denotes the TDOA measurement error and
indicates that it is normally distributed. This implies that averaging multiple TDOA measurements
for sound events at an identical location can improve the accuracy of the result. Figure 2b denotes
TDOA measurement error distributions for ten random subsets of devices. The figure shows that the
mean, denoted by ×, for each subset varies significantly. This implies that the localization result will
vary significantly each time a subset of different combinations of devices is used. Localizing a random
subset of devices over multiple iterations will generate various location results for each device. We can
weed out the outliers in the resulting set and yield a more accurate result.

TDOA errors (ms)
-50 0 50

N
u
m

b
e
r

o
f
s
a
m

p
le

s

0

20

40

60

80

100

120

140

160

180

200

(a)

-50 0 50

TDOA errors (ms)

0

20

40

60

80

100

120

N
u
m

b
e
r

o
f
s
a
m

p
le

s

(b)

Figure 2. (a) Normal distribution of TDOA measurement errors; (b) Distributions of the subset TDOA
measurement errors. The mean value of each sub-distribution is denoted by ×.

Figure 3. The Cooperative Localization on Android with ambient Sound Sources (CLASS) algorithm.

Sensors 2016, 16, 1478 8 of 23

Figure 3 denotes the outline of the CLASS algorithm. The algorithm first averages TDOA values
from an identical location that are inliers. The filtered TDOA data are then used to obtain an initial
value for all device locations X and directions α through a minimal solver. The main loop of the
algorithm then draws a random subset of devices X′ and optimizes Equation (6) for l iterations.
The location and direction solutions for each iteration are stored, and finally, we weed out outliers by
means of a Histogram-Based Outlier Score (HBOS) algorithm. We will now discuss each part of the
algorithm in the following sections.

4.1. Averaging TDOA Values for Events at Identical Locations

When it is possible to obtain multiple samples from one location by, e.g., splitting longer sounds
over multiple events, a higher accuracy can be achieved [16]. The errors in TDOA measurements for
an identical sound location are normally distributed (Figure 2a). Therefore, we can use the mean of
TDOA values to determine which measurements are inliers. Algorithm 1 denotes how erroneous
TDOA measurements are filtered out. We describe each subsequent step of the algorithm below.

Algorithm 1: TDOA filtering and averaging.
Data: TOA matrix T, maximum inlier distance ε, nrevents per location~e
Result: TDOA matrix ∆
/* Calculate all TDOA values for all measurements */
for every device i do

for every measurement g do
for every device k = i + 1 do

δigk = Tig − Tkg

/* Determine average TDOA value between all pairs of devices i and k per
location j */

for all nodes i - 1 do
for all sound-locations j do

δ′ = all TDOA measurements δ, between all nodes, that were recorded at location j
for all devices k= i+1 do

divide all TDOA values between device i and k into 3 bins
ω = mean of the bin center values that have the maximum number of counts
∆ijk =

1
n ·∑

n
m=1 δ′m

∣∣∣abs(δ′m−ω)·c<ε

if no inliers found in δ′ then
Set i, j, k of (6) to zero, ∑ijk := 0

In the experimental dataset, four sound events have been recorded at each sound event location.
We can use the averaged value of inliers for the respective value of ∆ijk. Outliers are extracted by
means of a Histogram-Based Outlier Score (HBOS) algorithm that is described in Section 4.2. A value
∆ijk is perceived as an inlier when the following condition holds:

Tik · c < ε (8)

where Tik is the time difference of arrival between device i and k, c is the speed of sound and ε the
maximum distance from the mean TDOA value ω, which is determined by the HBOS algorithm.
The resulting set with inliers is averaged to form a more accurate value ∆ijk. When no inliers are found
for a particular value ∆ijk, the information between device i and k for sound event j will not be taken
into account when optimizing Equation (6). In other words, an erroneous measurement will not take
part in the localization algorithm by setting the term for this combination of i, j, k of Equation (6) to

Sensors 2016, 16, 1478 9 of 23

zero, ∑ijk := 0. Both devices still have relations with other devices that are more stable, and these can
be used to determine their respective locations. Thus, not taking into account a TDOA value between
a pair of nodes for one sound event location is not a problem. The method that filters and averages the
TDOA values is presented as Algorithm 1. The first step of Algorithm 1 calculates the TDOA values
between all pairs of devices for all sound events. We then use a HBOS (Algorithm 2) to select TDOA
measurements that are inliers for each sound event between all pairs of devices. The TDOA values that
are inliers are averaged and form a new TDOA value between each pair of devices for each location.

4.2. Histogram-Based Outlier Detection

An HBOS [21] algorithm is implemented to detect outliers in the TDOA measurements and
device locations (x, y). Outliers in the localization results are caused by technological limitations of the
hardware platform, synchronization errors and violation of the Far Field Approximation (FFA) due to
sound sources that originate from near the device constellation. We chose a HBOS algorithm because
it allows us to find outliers in a large dataset without prior training. The algorithm is presented in
pseudocode as Algorithm 2, and we will discuss each step below.

Algorithm 2: HBOS filter.
Data: input matrix X (M× N), maximum inlier distance ε, number of solutions k
Result: inliers X̄
/* Calculate a mean value with only inliers for all columns N */
for each column i do

extract all values from Xi into g

~g = ∀m ∈ {g1, g2, ..., gk}
∣∣∣−1500<gm<0

0>gm>1500

calculate the bin width h = 2 IQR(~g)

k
1
3

calculate the number of bins bi =

⌊
MAX(~g)−MIN(~g)

h

⌉
if b < 15 then

b = 15
categorize ~g into b bins
get the bin center value of the bins with maximum number count (β1) and second
maximum number of counts (β2)
if β1

β2
> 0.9 then

ω = the mean center value of the bins with the top 2 maximum number of counts

else
ω = the mean of the bin center values that have the maximum number of counts

X̄i =
1
n ·∑

n
m=1 gm

∣∣∣abs(gm−ω)<ε

In order to determine which values in the set are inliers, a mean, upper and lower bound are first
determined. The HBOS algorithm categorizes all values within a certain range into bins. This is done
by creating a histogram of the vector ~g. This vector represents either TDOA measurements for a single
sound event origin or multiple location values for device i, (xi, yi). ~g has size 1× k. The bin-width h of
the histogram is determined with the Freedman–Diaconis rule [22] as follows:

h = 2
IQR(~g)

k
1
3

(9)

where IQR(~g) is the interquartile range of the location data and k equals the number of observations
in the set ~g. The number of bins b is based on the size of the bins and the minimum and maximum
value in ~g:

Sensors 2016, 16, 1478 10 of 23

b =

⌊
MAX(~g)−MIN(~g)

h

⌉
(10)

where be is the nearest integer. The minimum number of bins b is set to 15; fewer bins will not provide
enough resolution for outlier detection. ~g can contain extremely severe outliers, which influence the
determination of b negatively; ~g is therefore limited to:

~g = ∀m ∈ {g1, g2, ..., gk}
∣∣∣−1500<gm<0

0>gm>1500 (11)

Figure 4 displays an example bar plot from a histogram of~g where the amount of iterations k = 35.
In this example, most of the values in ~g are categorized in Bin 3, the center value that belongs to this
bin is used as the mean value ω for inlier determination.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

bin number

c
o
u
n
ts

Figure 4. Bin classification and bin counts.

The bounds that distinguish outliers from inliers are determined by adding, or subtracting,
a threshold value ε. The value of ε should not be too small, otherwise there will be too few inliers to
determine an accurate mean value. The value for ε has been determined experimentally; see Figure 5.

0 10 20 30 40 50 60 70 80 90 100
2

2.5

3

3.5

4

4.5

5

Max distance outlier (m)

R
M

S
E

 N
o

d
e

s
 (

m
)

RMSE nodes

4th degree polynomial

Figure 5. Varying the size of maximum distance ε for inliers, with 16 devices and a subset size of
10 nodes.

An example of the set ~g is shown in Figure 6 as a scatter plot. The mean value ω and the inlier
bounds ε are graphed in blue and red, respectively. All values in the area between the red lines are
perceived as inliers.

Sensors 2016, 16, 1478 11 of 23

0 5 10 15 20 25 30 35
−400

−200

0

200

400

600

800

1000

Iteration

lo
c
a
ti
o
n
 (

m
)

l
g

m

m + ε

m − ε

Figure 6. x-coordinates ~xi for device i, with mean ω and bounds ε. ε = 20.

It is possible that two bins receive a similar amount of counts; this means that ~g contains arbitrary
data. The algorithm therefore uses the mean value of the centers that have either the maximum number
of counts or are within 10 % of the maximum count. By doing so, the most optimal value for ω is found.

4.3. Starting Point Levenberg–Marquardt Solver

The Levenberg–Marquardt (LM) solver requires an initial guess or “starting point” to start
searching for an optimal solution. The solver updates each parameter so that the residual of the
cost function in the next iteration is less than in the current iteration. The solver will always find a
local optimum as it only converges in a “downward” direction from its starting point. The initial
starting point is therefore important in order to find a local minimum that is close to the global
minimum. The parameters that need to be initialized are the angles α towards each sound event
from the center of the device constellation and the location of the devices X. The minimum solver
proposed by Burgess et al. [20] uses linear techniques to solve the localization problem described
in Section 3. The minimum solver solves the system of equations by applying matrix factorization.
The matrix factorization algorithm calculates the Single Value Decomposition (SVD) of the TDOA
matrix ∆. The result is used to form a symmetric matrix C and preforms a Cholesky decomposition [23]
when C is positive definite. When C is not positive definite, the minimum solver uses a complex
factorization method instead and yields a complex solution, which can still be used as an initial starting
point by using the real part of the solution. While it is fast, it does not return the most optimal solution
for our case; however, the result is good enough to use as an initial guess. Therefore, the minimal
solver is implemented in our algorithm to obtain the initial parameter estimation.

4.4. Main Loop

The CLASS algorithm draws a random subset X′ ⊂ X of m devices over multiple iterations.
We implemented a Levenberg–Marquardt (LM) solver to minimize Equation (6) for X′ and ~α as
denoted in Equation (7). We store the solutions for all devices X′i and αi for each main loop iteration i.
A small subset will have a higher variation in the resulting locations and thus needs more iterations
to determine the inliers. A larger subset will vary less and needs fewer iterations. The number of
iterations l to run the LM solver is computed based on the subset size m and the total amount of
devices M:

l =
⌊

β
M
m

⌉
(12)

Sensors 2016, 16, 1478 12 of 23

where be is the nearest integer and β the loop factor. β is the minimum number of iterations to enable
robust inlier detection when m = M. The optimal subset size was determined experimentally by trying
different sizes and comparing the results; these are presented in Section 5.3.

4.5. Outlier Detection in the Results

Because we run the main loop for l iterations, we acquire a set of location data for each device.
This set of location data contains outliers. Outliers in the localization results are caused by the
technological limitations of the hardware platform, synchronization errors and violation of the Far
Field Approximation (FFA) due to sound sources that originate from near the device constellation.
Sound events that originate from near or inside the constellation of devices will be invalidated by this
part of the CLASS algorithm. The outliers are detected and removed by the HBOS algorithm described
in Section 4.2. The remaining inliers are averaged to acquire the respective positions of all devices in X.

4.6. Complexity

In order to determine the complexity of the CLASS algorithm, we look at the individual
components of the algorithm. M denotes the total number of devices in the constellation, m the
number of devices in a subset and N the number of sound events in the dataset.

The complexity of TDOA filtering and averaging (Algorithm 1) is:

O(2M2N) = O(M2N) (13)

The complexity to find the initial guess is:

O(mN) (14)

The cost function J(X, α) described in Equation (6) has complexity:

O((m− 1)Nm/2) = O(m2N) (15)

The complexity of the main loop is determined by the number of iterations for the main loop l,
the number of iterations of the LM solver and the complexity of the cost function. In the best case
scenario, the solver requires a single step to reach a local minimum. In this case, we assume the worst
case scenario and use the maximum iterations of the LM solver, denoted as g. The solver updates the
solution based on the derivative of the cost function. When we plug in the cost function in the solver,
the main loop has complexity:

O(lm2Ng) (16)

The HBOS stage of the algorithm has complexity:

O(blM) (17)

where b is the number of bins used by the algorithm. Combining the sub-complexities yields the
overall CLASS Algorithm complexity:

O((M2N) + (mN) + (lm2Ng) + (blM)) (18)

Because (mN) < (blM) << (M2N) << (lm2Ng), the complexity becomes:

O(lm2Ng) (19)

In order for an algorithm to be usable on a smart phone, its complexity should not be too large.
Modern smart phones utilize a multi-core processor with a clock frequency in the range of 2–2.5 GHz.

Sensors 2016, 16, 1478 13 of 23

When we fill in Equation (19), we can estimate the runtime of the CLASS algorithm. In this example,
we assume the4 worst case scenario where the LM solver requires a maximum number of iterations
g = 6000. The number of main loop iterations l = 56; the subset size m = 10; and number of sound
events N = 20. Assuming that a CPU architecture includes a single operation floating point unit and
has a processor speed of 2.5 GHz, localizing 16 devices with 20 sound events requires approximately
(56× 6000× 102 × 20)/(2.5× 109) = 269 ms. Hence, taking into account any additional algorithm
overhead, it is safe to say that the CLASS algorithm is able to localize a set of devices within a second.
This is fast enough for most localization applications on smart phones. We also want to point out that
the algorithm can easily be distributed by distributing subsets over multiple devices and aggregating
the localization results in a central location. Distributing the subsets in the CLASS algorithm will
reduce its complexity to:

O(m2Ng) (20)

5. Experimental Validation

To validate the CLASS algorithm we developed an Android application that was used on multiple
devices in an outdoor experiment. The application connects a group of devices and allows them to
respond to sound events. In this section, we discuss the key elements of the application and present
the experimental results.

5.1. Android Application

The following components are required for collaborative localization on mobile devices:

• Time synchronization amongst devices in the network
• Detecting sound events and recording their Time Of Arrival (TOA)
• Sharing and aggregation of time stamps
• Executing the localization algorithm with TOA data

5.1.1. Time Synchronization

In order to obtain the location of devices and sound events, each participating device must record
a time stamp as soon as it detects a distinct sound event in the environment. It is mandatory that the
system clocks between the devices are synchronized. An error of 10 ms in the time stamp relates to
a spatial error of 3.40 m; an accurate time synchronization smaller than 1 ms is therefore desirable.
Even when Android devices are synchronized through the NTP, the error in time synchronization is
significantly larger than 1 ms due to OS overhead. We used the inaccurate NTP for synchronization
between the devices. The offset θ between the system clock and the network clock varies over multiple
samples and contain outliers; see Figure 7.

Therefore, it is required to apply a moving mean on NTP values. As denoted in Figure 8, applying
a moving mean with a window of 200 samples results in a standard deviation of 2 ms in the system
clock offset. During our experiment, we utilized a laptop as the NTP server. In a practical scenario,
one device in the collaborative network can act as a Wi-Fi hotspot and NTP server.

For comparison, we also investigated GPS time synchronization on Android devices. Accurate
time information is communicated by the GPS chip through NMEA messages and has a resolution
of nanoseconds. NMEA messages are communicated to the Android framework through the GPS
driver and geolocation engine. This communication overhead introduces an offset between the time
inside the NMEA message and the time the NMEA message is received in the Android framework.
This offset also varies and introduces jitter in the offset. The user application that handles the received
NMEA message in a callback also suffers from latency. The user application handles the callback after
a small delay, as Android is not a real-time OS. The Android framework provides a time stamp λ

along with the received NMEA message. This time stamp is the device’s system time at the moment

Sensors 2016, 16, 1478 14 of 23

the Android framework received the NMEA message from the GLengine. We calculated the offset
between the provided time stamp λ in the callback and the GPS time. This offset is not stable and
also varies over time. Figure 8 denotes the standard deviation in system clock offset versus GPS and
NTP time with an increasing moving filter window size. The difference in accuracy between utilizing
GPS and NTP time synchronization is not very big. Improving the time synchronization method will
reduce the number of outliers in TDOA measurements.

160 170 180 190 200
−450

−350

−250

−150

−50

50

sample number

c
lo

c
k
 o

ff
s
e
t

θ
 (

m
s
)

clock offset

moving average

moving median

Figure 7. NTP clock offset, moving mean and median filtered signals. Window-size = 5 samples.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

window size

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

m
s
)

GPS moving mean

GPS moving median

NTP moving median

Figure 8. Standard deviation of the clock offset, varying the window size for GPS and NTP.

5.1.2. Sound Event Detection

In our experimental setup, we used the sound of an air horn as a distinguished sound event.
For simplicity, we used a Signal to Noise Ratio (SNR) threshold value as the sound event. The Android
application records a sound event when the energy signal in the frequency band of the air horn exceeds
the threshold value λ. In general, any sound event that has a sufficient differentiating characteristic
can be used. In order to make sound-localization more practical, arbitrary sound events from the
environment should be identified by their characteristics. Sound classification is an active field of
study [24–26] and outside the scope of this work.

Most Android devices contain at least one microphone, which can be used to record audio.
Android suffers from input latency, which introduces large errors in the TOA measurements [27,28].
Android needs to be universal, and therefore, high level APIs are used to support hundreds of
thousands of different applications. Each manufacturer implements its individual audio hardware

Sensors 2016, 16, 1478 15 of 23

components. Due to the overhead that occurs between the user application and the audio hardware,
significant audio latencies are introduced. This latency is not constant and varies over time. The jitter
of input latency causes unpredictable and unacceptable errors in ubiquitous applications that require
accurate temporal information in relation to audio information. Through measurements on multiple
types of devices, we found that Android devices suffer from input latency, which can vary from
approximately 50 ms–150 ms, with a worst case jitter of 300 ms.

The input latency varies with different types of hardware, but there is always jitter. We could not
find a strong correlation between resource usage and input latency. Thus, the impact of user behavior
on accuracy is minimal and can be excluded by implementing high priority threads for the cooperative
localization application.

The first cause of latency is the analog circuitry of the device. In general, it is not possible for
an end user to optimize the analog circuitry of Android devices. According to Google engineers,
the analog circuitry does however not always contribute to audio latency significantly [29]. The major
surface-level contributors to audio latency in Android are the following [29]:

• Application
• Total number of buffers in the pipeline
• Size of each buffer, in frames
• Additional latency after the app processor, such as from a digital signal processor

Audio buffers are usually increased or decreased to overcome buffer under and over-runs.
In Google’s experience, the most common causes of under and over-runs include:

• The Linux Completely Fair Scheduler
• High-priority threads with FIFO scheduling
• Priority inversion
• Long scheduling latency
• Long-running interrupt handlers
• Long interrupt disable time
• Power management
• Security kernels

It is hard to overcome the input latency of Android without adapting its architecture. The resulting
error in TDOA values will have to be dealt with in the localization algorithm.

In order to distinguish sound events from environmental noise, such as wind blowing in
the microphone, the audio input is filtered. Since sound events can be distinguished by their
frequency in a certain region, the input is filtered with a band-pass filter. Noise in other frequency
ranges is filtered out, and the number of false triggers in sound event detection is decreased.
A Fast Fourier Transformation (FFT) filter requires more calculation steps than a Finite Impulse
Response (FIR) filter but is more flexible in its configuration. Because transforming the input signal
to the frequency domain opens up the ability to detect audio-events by their frequency signature
and its flexibility, we implemented an FFT filter in the experimental application. Implementing
Digital Signal Processing (DSP), such as an FFT, filter adds a little offset in the time stamp. This can
be accounted for by buffering time stamps and should not contribute significantly to the error in
TDOA measurements.

After filtering out all unwanted frequencies, the energy signal in the leftover frequency band is
checked against a threshold λ. When the signal exceeds the threshold, a time stamp (TOA) is recorded.
In order to acquire a time stamp, the system clock, which is located in the Linux kernel, must be
accessed from the Android Application layer. This can add additional offset in the time stamp due
to OS overhead. In order to process the input data without overhead found in the Java environment,
such as the memory garbage collector [30], the overhead-critical parts of our application have been

Sensors 2016, 16, 1478 16 of 23

developed in the native layers of Android using the Native Development Kit (NDK). The NDK is a
tool set that allows developers to implement parts of an app using native-code languages, such as C
and C++, in the native layer. The Open Sound library (Open-SL) [31] functions directly on top of the
Android Hardware Abstraction Layer (HAL) and was implemented to achieve lower latency audio.

A difference in microphone gain can cause one device to detect a sound event earlier or later than
other devices, which will cause an offset in the respective TDOA measurement for those devices. In the
experimental application, this is accounted for by using a variable threshold that is depended on the
microphone gain of each respective device and utilizing sound events with short onset times. Other
techniques, such as the cross correlation of sound events in the frequency spectrum, will probably not
suffer from this problem and can be investigated in future work.

5.1.3. Sharing and Aggregation of Time Stamps

In order to aggregate the time stamps and disperse other information between devices, a network
of some sort is required. In the experimental setup, we utilized a Wi-Fi-router. When a group of devices
is used and no Wi-Fi network is available, it is possible to enable a mobile hotspot on one device in
the network. Another possibility is to implement an ad hoc network model, such as BLESSED [32].
BLESSED is a data dissemination model for smart phones that requires no existing infrastructure.
An approach such as BLESSED can be integrated with the work in this paper.

5.2. Outdoor Experiment

In order to obtain a realistic dataset, the main experiments took place in an outdoor
environment, where the setup was exposed to wind and environmental noise. We utilized sixteen
Nexus-7 (2012 edition) tablets to obtain the data that were used in this research. Figure 9 displays
a top-down 2D overview of the ground truth for device locations S and sound event origins E.
The devices were placed on top of tripods, at a height of approximately one meter, in a 12 m × 12 m
grid with a perpendicular inter-device distance of four meters. The phones do not have to be arranged
in a regular grid; the pattern used was chosen for ease of positioning and validation. The only
requirement that our approach has is that the inter-device distance should not become too large
when sound events originate from near the device constellation. The average inter-device distance
should be around a fourth of the distance to the sound event’s origin [9,20]. Because the Android
architecture already introduces very large errors in the TDOA measurements, we decided to not
include samples that violate the Far Field Approximation (FFA). Different source-to-device distances
have been evaluated in [9,20]. The sound events were generated forty meters away from the edge of
the device constellation. Sound-events were generated from twenty different locations distributed
along a circle around the device constellation. At each location, four sound events were generated.
All devices were executing the application described in Section 5.1. Sound events were generated by
means of an air horn, which generated a loud, distinctive sound with a certain frequency. In general,
any type of sound can be used when it is loud enough and can be distinguished by all devices.

The following steps were taken during the experimental measurements. For simplicity reasons,
the network was configured as a star-network. A laptop acted as the server node in the local network,
and all other devices acted as a “client”. Note that sound event detection has been widely studied in
the research community, and this work focuses on localization accuracy. Without loss of generality, in
our experiment, we used an air horn to generate sound events. The Android application on each device
was configured with a band-pass filter that filtered out environmental sounds and let the frequency
band of the air horn pass through. The devices triggered when the SNR of the air horn exceeded a
dynamic threshold value, as discussed in Section 5.1.2. The SNR threshold together with the location
of the sound event were configured on the server device before each measurement. When a new
measurement was initiated, the server device broadcast a start message, along with a measurement
identification number (ID), the SNR threshold and sound event location. All devices started with a
“calibration” phase. During this phase, all devices determine the noise level of the environment for

Sensors 2016, 16, 1478 17 of 23

three seconds. After this phase, the devices started to listen for the air horn’s signal by filtering out
other sounds in the frequency domain. As soon as the energy level in the air horn’s signal reached
the threshold, a time stamp was recorded on each device. A sound event was generated by sounding
the horn towards the device constellation. The devices then recorded and sent a time stamp along
with the measurement ID to the server. The server stored all of the values in a Structured Query
Language (SQL) database. All devices connected to the server through Wi-Fi and transmitted data
by the Hypertext Transfer Protocol (HTTP) POST request method. The CLASS algorithm was later
executed offline with MATLAB.

-32 -20 -8 4 16 28 40 52

X Position (m)

-54

-42

-30

-18

-6

6

18

30

42

Y
 P

o
s
it
io

n
 (

m
)

 S1 S2 S3 S4

 S5 S6 S7 S8

 S9 S10 S11 S12

 S13 S14 S15 S16

 E1 E2 E3 E4

 E5

 E6

 E7

 E8

 E9

 E10

 E11 E12 E13 E14

 E15

 E16

 E17

 E18

 E19

 E20

device constellation

sound locations

Figure 9. Experimental outdoor setup.

5.3. Results

The CLASS algorithm returns a solution set for the location of all devices X and a set of directions
α towards all sound event origins. Each direction αj is denoted as a vector that originates at the center
of the device constellation and is oriented towards sound event Ej. Localization without an anchor
device results in a solution set that is rotated and translated. The obtained solution for the position of
all devices is always a relative position to other nodes. In order to determine absolute locations and
directions, at least two devices must know their geographic location. We consider the case where no
devices know their geographic location. In order to evaluate the quality of the solution, it is matched to
the ground truth by rotation and translation. The rotation and translation that have the best fit with the
ground truth are found by using [33]. The relative error of the solution is then calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
‖Xi − X̄i‖2

)2
(21)

where N denotes the number of devices, ‖·‖2 the L2 norm (Euclidean distance), Xi the ground truth
location of device i and X̄i the estimated location.

Sensors 2016, 16, 1478 18 of 23

In order to evaluate the quality of the estimated set of directions, ᾱ is rotated to best fit the ground
truth. The relative error for the estimation of the directions is then calculated as follows:

RMSE =

√√√√ 1
M

M

∑
j=1

(
αj − ᾱj

)2 (22)

where M denotes the number of sound events, αj the ground truth and ᾱj the estimated direction
towards sound event j.

As discussed in Section 4.4, the accuracy of the result depends on the size of the subset X′.
Figure 10 denotes the RMSE of the localization result for different sizes of X′. The results indicate that
between six and twelve devices, the number of devices does not influence the accuracy significantly.
The minimum required number of devices in a subset is three; however, this will yield poor localization
results. The accuracy also decreases as the number of devices in a subset approaches the same size
of the total set of devices. The accuracy decreases because the LM solver will end up in similar local
minima for each loop iteration i, and no outliers can be found in the location results. The size of
subset X′ during the experiments was ten.

2 4 6 8 10 12 14 16

Number of Nodes

0

5

10

15

20

25

30

R
M

S
E

 N
o

d
e

s
 (

m
)

RMSE nodes

5th degree polynomial

RMSE angles

5th degree polynomial

2 4 6 8 10 12 14 16

Number of Nodes

10

15

20

25

30

35

40

R
M

S
E

 A
n

g
le

s
 (

d
e

g
)

Figure 10. Varying the size of the subset of a constellation with a total of 16 devices.

The CLASS algorithm was executed ten times. A mean RMSE of 2.18 m with a standard deviation
of 0.22 m is achieved. The mean RMSE of the estimated directions is 17.5° with a standard deviation
of 2.3°. Figure 11 displays a top-down 2D overview of the ground truth for device locations S.
The estimated locations X for each device are represented as blue dots. The RMSE for this particular
solution set is 1.97 m. The localization errors are indicated by red lines, which represent the
Euclidean distance.

Some devices are located further away from their ground truth than others. The errors in TDOA,
for all sound events, are represented in the relative positions shown in Figure 11. An error introduced
by one device will always influence the others, as TDOA values are always relative.

A solution set of the estimated directions towards the sound event origins is shown in Figure 12.
The device constellation is not shown in this figure for the sake of clarity. Each direction αj is plotted as
a vector that originates at the center of the device constellation and is oriented towards sound event Ej.
The angular RMSE for this particular solution set is 14.64°. The results indicate that the directions are
accurate enough to use as indicators of sound event origins. An absolute position or direction must
be known in order to find the true direction towards the origin of a sound event or device. This can
be done by knowing the location of at least two devices and/or sound event locations. The exact

Sensors 2016, 16, 1478 19 of 23

location of the sound event can be triangulated with the TDOA data after the device locations have
been estimated. This requires an additional step in the CLASS algorithm.

-10 -5 0 5 10 15 20

X Position (m)

-20

-15

-10

-5

0

5

10
Y

 P
os

iti
on

 (
m

)

S1 S2 S3 S4

S5 S6 S7 S8

S9
S10

S11 S12

S13 S14 S15 S16

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10 X

11 X
12

X
13

X
14

X
15

X
16

ground truth
estimated location
error

Figure 11. Localization results. The RMSE is 1.97 m.

-32 -20 -8 4 16 28 40 52

X Position (m)

-54

-42

-30

-18

-6

6

18

30

42

Y
 P

o
s
it
io

n
 (

m
)

E1 E2 E3 E4

E5

E6
E7
E8
E9

E10

E11E12E13E14

E15

E16
E17
E18
E19

E20 α
1

α
2

α
3

α
4

α
5

α
6

α
7

α
8
α

9

α
10

α
11

α
12

α
13

α
14

α
15

α
16

α
17

α
18

α
19

α
20

Figure 12. Estimation of directions towards sound event origins. The angular RMSE is 14.64°.

Sensors 2016, 16, 1478 20 of 23

-40 -20 0 20 40
∆t

1
 (ms)

-60

-40

-20

0

20

40

60
∆

t 2 (
m

s)

(a)

-40 -20 0 20 40
∆t

1
 (ms)

-60

-40

-20

0

20

40

60

∆
t 2 (

m
s)

(b)

Figure 13. Comparison of the ellipsoids between simulated TDOA measurements and TDOA
measurements obtained with our Android application. (a) Ellipsoid between S1, S2 and S6 with
simulated TDOA measurements where σ = 0.1 ms; (b) ellipsoid between S1, S2 and S6 with our real
measurement data.

5.4. Comparison with Ellipsoid Method

Compared to other works that utilize sound for localization, our results might not look impressive
to some, since we use Android measurements, which contain much larger errors. Related work that
utilized iPhones and laptops [10], which are significantly more deterministic, achieved an average
accuracy of 38 cm, while we achieve an RMSE of 2.18 m. Accurate results can be achieved when
deterministic hardware or existing infrastructure, such as anchor nodes, are used. We however do not
use any anchor devices and focus on an approach that works with poor TDOA measurements obtained
with indeterministic devices. In order to show how measurements are less accurate, we implemented
the ellipsoid method described in [10] for comparison. TDOA measurements between three devices
characterize an ellipsoid in 2D space (Figure 13). The ellipsoid equation can be used to derive the
distances and angles between three devices. In Figure 13a, we plot simulated TDOA values between
the positions of nodes S1, S2 and S6. The devices were positioned as in our real-world experiment
setup (Figure 9). A Gaussian noise with σ = 0.1 ms was added to the ground truth TDOA values to
represent the measurement error described by Wendeberg et al. in [10]. The simulated TDOA values
are positioned on the ellipsoid (Figure 13a). The TDOA measurements derived with our Android
application are plotted in Figure 13b and are not at all positioned on the ellipsoid. This is a direct result
of the high variance in the TDOA measurements derived from indeterministic devices.

We used our real measurement data to localize the set of devices with the ellipsoid method; the
results are plotted in Figure 14a. A resulting solution set that was obtained with the CLASS algorithm
is shown in Figure 14b. Over 10 experiments the ellipsoid method achieves a RMSE of 6.09 m with
a standard deviation of 0.33 mm. The CLASS algorithm achieves a RMSE of 2.18 m with a standard
deviation of 0.22 m. The deviation for the CLASS algorithm is higher because we utilize a different
set of random subsets for each experiment, while the ellipsoid method always uses the entire set
of TDOA data. The results show that the ellipsoid method is not robust enough to handle large
variation in TDOA measurements. Otherwise, the CLASS algorithm shows a significant increase of
localization accuracy.

Sensors 2016, 16, 1478 21 of 23

-10 -5 0 5 10 15 20

X Position (m)

-20

-15

-10

-5

0

5

10
Y

 P
os

iti
on

 (
m

) S1 S2 S3 S4

S5 S6 S7 S8

S9 S10
S11 S12

S13 S14 S15 S16

X1 X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14 X15 X16

(a)

-10 -5 0 5 10 15 20

X Position (m)

-20

-15

-10

-5

0

5

10

Y
 P

os
iti

on
 (

m
)

S1 S2 S3 S4

S5 S6 S7 S8

S9
S10

S11 S12

S13 S14 S15 S16

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10 X

11 X
12

X
13

X
14

X
15

X
16

ground truth
estimated location
error

(b)

Figure 14. Comparison of ellipsoid [10] and CLASS localization results utilizing our real measurement
data. (a) Ellipsoid localization results. The RMSE is 6.09 m. (b) CLASS localization results. The RMSE
is 1.97 m.

6. Conclusions

In this paper, we have presented the CLASS algorithm. Collaborative localization on Android
devices is challenging because of the technical limitations of Android. Android is not a real-time
operating system and introduces large errors in Time Of Arrival (TOA) measurements. The
main contributors to these inaccuracies are audio input latency and poor time synchronization
capabilities. The CLASS algorithm deals with inaccurate measurements by exploiting multiple TDOA
measurements from a single sound event and splitting the measurements into subsets. By doing so, the
algorithm can weed out the outliers from the TDOA values and localization results. The complexity of
the algorithm is small enough to execute on a modern smart phone. Our results show that it is feasible
to simultaneously achieve a relative positioning of both devices and sound sources with sufficient
accuracy, even when using non-deterministic devices and platforms, such as Android.

Acknowledgments: This work was partly funded by the SenSafety project under Grant No. 50921319 in the
Dutch Commit program.

Author Contributions: J.K. and D.L. conceived of, designed and performed the experiments. J.K. and D.L.
analyzed the data. J.K. wrote the paper. P.H. supervised the project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330.
2. Yang, S.-H. Wireless Sensor Networks; Spring: London, UK, 2014.
3. Campbell, A.T.; Eisenman, S.B.; Lane, N.D.; Miluzzo, E.; Peterson, R.A.; Lu, H.; Zheng, X.; Musolesi, M.;

Fodor, K.; Ahn, G.S. The Rise of People-Centric Sensing. IEEE Int. Comput. 2008, 12, 12–21.
4. Mao, G.; Fidan, B.; Anderson, B.D. Wireless sensor network localization techniques. Comput. Netw. 2007,

51, 2529–2553.
5. Pal, A. Localization Algorithms in Wireless Sensor Networks: Current Approaches and Future Challenges.

Netw. Protoc. Algorithms 2010, 2, 45–73.
6. Wymeersch, H.; Lien, J.; Win, M.Z. Cooperative localization in wireless networks. Proc. IEEE 2009,

97, 427–450.
7. Zekavat, R.; Buehrer, R.M. Handbook of Position Location: Theory, Practice and Advances; John Wiley & Sons:

New York, NY, USA, 2011.

Sensors 2016, 16, 1478 22 of 23

8. Biswas, R.; Thrun, S. A passive approach to sensor network localization. In Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004;
pp. 1544–1549.

9. Thrun, S. Affine Structure From Sound. In Advances in Neural Information Processing Systems 18; MIT Press:
Cambridge, MA, USA, 2006; pp. 1353–1360.

10. Wendeberg, J.; Janson, T.; Schindelhauer, C. Self-Localization based on ambient signals. Theor. Comput. Sci.
2012, 453, 98–109.

11. Wendeberg, J.; Höflinger, F.; Schindelhauer, C.; Reindl, L. Calibration-free TDOA self-localisation. J. Locat.
Based Serv. 2013, 7, 121–144.

12. Corporation, O. RTEMS Real Time Operating System (RTOS). Available online: http://www.rtems.org/
(accessed on 1 March 2015).

13. Yan, Y.; Cosgrove, S.; Anand, V.; Kulkarni, A.; Konduri, S.H.; Ko, S.Y.; Ziarek, L. Real-time android with
RTDroid. In Proceedings of the 12th annual international conference on Mobile systems, applications, and
services, Bretton Woods, NH, USA, 16–19 June 2014; pp. 273–286.

14. Harter, A.; Hopper, A.; Steggles, P.; Ward, A.; Webster, P. The Anatomy of a Context-Aware Application.
Wirel. Netw. 2001, 8, 187–197.

15. Simon, G.; Maróti, M.; Lédeczi, A.; Balogh, G.; Kusy, B.; Nádas, A.; Pap, G.; Sallai, J.; Frampton, K. Sensor
network-based countersniper system. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, Baltimore, MD, USA, 3–5 November 2004; pp. 1–12.

16. Shang, Y.; Zeng, W.; Ho, D.K.; Wang, D.; Wang, Q.; Wang, Y.; Zhuang, T.; Lobzhanidze, A.; Rui, L. Nest:
Networked smartphones for target localization. In Proceedings of the 2012 IEEE Consumer Communications
and Networking Conference, Las Vegas, NV, USA, 14–17 January 2012; pp. 732–736.

17. Hennecke, M.H.; Fink, G.A. Towards acoustic self-localization of ad hoc smartphone arrays. In Proceedings
of the 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, Edinburgh, UK,
30 May–1 June 2011; pp. 127–132.

18. Kuang, Y.; Ask, E.; Burgess, S.; Astrom, K. Understanding toa and tdoa network calibration using far field
approximation as initial estimate. In Proceedings of the 1st International Conference on Pattern Recognition
Applications and Methods, Algarve, Portugal, 6–8 February 2012; pp. 590–596.

19. Burgess, S.; Kuang, Y.; Å ström, K. TOA sensor network self-calibration for receiver and transmitter spaces
with difference in dimension. Signal Process. 2014, 107, 33–42.

20. Burgess, S.; Kuang, Y.; Wendeberg, J.; Å ström, K.; Schindelhauer, C. Minimal solvers for unsynchronized
TDOA sensor network calibration. In Lecture Notes in Computer Science; Springer: Berlin, Germany;
Heidelberg, Germany, 2013; pp. 95–110.

21. Goldstein, M.; Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection
algorithm. In KI-2012: Poster and Demo Track, Proceedings of 35th German Conference on Artificial
Intelligence, Saarbrucken, Germany, 24–27 September 2012; pp. 59–63.

22. Freedman, D.; Diaconis, P. On the histogram as a density estimator:L 2 theory. Probab. Theor. Relat. Fields
1981, 57, 453–476.

23. Chen, Y.; Davis, T.A.; Hager, W.W.; Rajamanickam, S. Algorithm 887: CHOLMOD, Supernodal Sparse
Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 2008, 35, 22.

24. Sabaridevi, M.; Umanayaki, S. Sound Event Detection Using Wireless Sensor Networks. Int. J. Adv. Res.
Sci. Eng. 2015, 4, 273–279.

25. Rougui, J.E.; Istrate, D.; Souidene, W. Audio sound event identification for distress situations and context
awareness. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3501–3504.

26. Dennis, J.; Tran, H.D.; Li, H. Spectrogram image feature for sound event classification in mismatched
conditions. IEEE Signal Process Lett. 2011, 18, 130–133.

27. Le, D.V.; Kamminga, J.W.; Scholten, H.; Havinga, P.J.M. Nondeterministic sound source localization with
smartphones in crowdsensing. In Proceedings of the 2016 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), Sydney, Australia, 14–18 March 2016;
pp. 1–7.

http://www.rtems.org/

Sensors 2016, 16, 1478 23 of 23

28. Le, D.V.; Kamminga, J.W.; Scholten, H.; Havinga, P.J.M. Error Bounds for Localization with Noise Diversity.
In Proceedings of 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS),
Piscataway, NJ, USA, 26–28 May 2016.

29. Contributors to Audio Latency. Available online: https://source.android.com/devices/audio/latency_
contrib.html (accessed on 1 March 2015).

30. Performance Tips. Available online: http://developer.android.com/training/articles/perf-tips.html
(accessed on 1 March 2015).

31. Group, K. The Standard for Embedded Audio Acceleration, Available online: https://www.khronos.org/
opensles/ (accessed on 1 March 2015).

32. Turkes, O.; Scholten, H.; Havinga, P.J. BLESSED with Opportunistic Beacons: A Lightweight Data
Dissemination Model for Smart Mobile Ad-Hoc Networks. In Proceedings of the 10th ACM MobiCom
Workshop on Challenged Networks, Paris, France, 11 September 2015; pp. 25–30.

33. Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal.
Mach. Intell. 1987, 9, 698–700.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

https://source.android.com/devices/audio/latency_contrib.html
https://source.android.com/devices/audio/latency_contrib.html
http://developer.android.com/training/articles/perf-tips.html
https://www.khronos.org/opensles/
https://www.khronos.org/opensles/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Challenges
	Paper Contributions and Organization

	Related Work
	Target Localization Utilizing Anchor Devices with Known Positions
	Collaborative Localization Utilizing Only Sound Signals

	Problem Formulation
	A Collaborative Localization Algorithm: CLASS
	Averaging TDOA Values for Events at Identical Locations
	Histogram-Based Outlier Detection
	Starting Point Levenberg–Marquardt Solver
	Main Loop
	Outlier Detection in the Results
	Complexity

	Experimental Validation
	Android Application
	Time Synchronization
	Sound Event Detection
	Sharing and Aggregation of Time Stamps

	Outdoor Experiment
	Results
	Comparison with Ellipsoid Method

	Conclusions

