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Abstract: We propose a novel cluster based cooperative spectrum sensing algorithm to save the
wastage of energy, in which clusters are formed using fuzzy c-means (FCM) clustering and a
cluster head (CH) is selected based on a sensor’s location within each cluster, its location with
respect to fusion center (FC), its signal-to-noise ratio (SNR) and its residual energy. The sensing
information of a single sensor is not reliable enough due to shadowing and fading. To overcome these
issues, cooperative spectrum sensing schemes were proposed to take advantage of spatial diversity.
For cooperative spectrum sensing, all sensors sense the spectrum and report the sensed energy to
FC for the final decision. However, it increases the energy consumption of the network when a
large number of sensors need to cooperate; in addition to that, the efficiency of the network is also
reduced. The proposed algorithm makes the cluster and selects the CHs such that very little amount
of network energy is consumed and the highest efficiency of the network is achieved. Using the
proposed algorithm maximum probability of detection under an imperfect channel is accomplished
with minimum energy consumption as compared to conventional clustering schemes.

Keywords: sensor networks; energy efficiency; clustering

1. Introduction

Due to explosive demand for wireless communication during the last decade, broader spectrum
resources are needed. However, spectrum resources are limited and are allocated according to a fixed
spectrum assignment policy. The concept of sensing the spectrum was first presented by Mitola [1] to
solve the problem of spectrum scarcity pointed by the Federal Communication Commission report [2].
The goal is to sense frequency band and utilize that band, if the licensed user called a primary user (PU)
is not using it. Thus, the detection performance in the spectrum sensing is crucial to the performance
of both PUs and the sensor network. The detection performance can be primarily determined on the
basis of two metrics: probability of false alarm, which denotes the probability of a sensor declaring that
a PU is present when the spectrum is actually free, and the probability of detection, which denotes the
probability of a sensor declaring that a PU is present, given that the spectrum is indeed occupied by
the PU. Since the detection avoids the interference with the PU and a false alarm reduces the spectral
efficiency, it is usually required for optimal detection performance that the probability of detection is
maximized subject to the constraint of the probability of false alarm.
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There are several spectrum sensing techniques available in literature, some of which are
matched filter detection [3], energy detection [4], cyclostationary detection [5], wavelet detection [6],
and covariance detection [7]. Among them, energy detection is widely applied for sensing the spectrum
as it does not require any prior knowledge of primary signals and has much lower complexity than
the others [8–13]. Therefore, this paper also considers energy based detection.

The sensing decision of a single sensor may not be reliable enough due to shadowing, multipath
fading and the time varying nature of wireless channels between sensors and PUs. To overcome these
effects, the literature is brimming with cooperative spectrum sensing schemes to take advantage of
spatial diversity [14–17]. In cooperative spectrum sensing, sensors of whole network share sensing
information to the Fusion center (FC) which is combined to make the final decision. This can result
in an excessive consumption of the network energy when large number of sensors are cooperating,
therefore sensors are sometimes divided into clusters, which is called a cluster based cooperative
spectrum sensing.

Each sensor delivers sensing information to the FC in one of the two ways: hard information,
and soft information. In [15,16], hard information is considered, where each sensor sends only one bit
of information regarding the detection of PUs. In soft information, accurate average energy values
observed by all sensors are reported to FC, which are combined to make a final decision. It is shown
in [18] that soft information combining outperforms hard combining. Hence, a soft combination is
considered in this paper. Note that each sensor performs the spectrum sensing via sensing channel
and forwards the sensing information to the FC via reporting channel.

Since each sensor consumes energy in sensing PU signals and reports that sensed energy to
FC; consequently, cooperative spectrum sensing can cause high overall energy consumption in the
whole network when a large number of sensors are involved in cooperation. To combat this problem,
grouping the cooperative sensors into clusters [19–21] for cooperative sensing is an effective method
to reduce the energy consumption.

The clustering techniques with respect to sensing efficiency have widely been shown in
literature [19,20], but very few energy efficient schemes have been proposed [22–26], although the
energy efficiency is one of the most important factors for the designing of sensor networks. To the
best of the author’s knowledge, clustering schemes have mostly used perfect channels and have
considered hard decisions. Thus, using imperfect channels, we have proposed a novel cluster based
soft combining scheme for energy efficient spectrum sensing in sensor networks, in which maximum
sensing efficiency is achieved with less consumption of energy. In [19], the authors have proposed
a clustering method for spectrum sensing, in which sensors with largest reporting channel gain are
selected as cluster heads (CHs) to reduce the reporting error. In [20], four clustering methods are shown
to reduce the overhead depending on the location information of sensors. In [21], a cluster-based
cooperative spectrum sensing scheme is proposed to address the control channel and sensing delay
problems. However, these cluster-based spectrum sensing approaches do not focus on the energy
consumption. In [22], authors have focused on energy consumption in cooperative spectrum sensing
and have proposed a multi-hop cluster based cooperative spectrum sensing for reducing wastage
of energy, in which CHs are selected based on distance between FC and sensors, reporting channel
gain and energy level. However, based on these parameters, FC most likely select the nearest sensors
to it. In [23], authors have proposed the method that uses the fuzzy c-means (FCM) technique for
the cluster formation. However, there are few drawbacks, i.e., (i) each sensor forwards its sensing
measurement to FC even though authors have divided the network into clusters; (ii) only making
clusters does not always lead us to save energy, CH selection after making clusters plays a big role in
the saving of energy; (iii) after cluster formation, each sensor forwards its sensing information to the
FC for cluster decision, due to which a large amount of energy is consumed, and (iv) authors have
considered the perfect channel that does not give assurance of the sensing efficiency. In [26], authors
have also used FCM for the cluster formation and have selected the CH based on residual energy of
the sensor. However, there are few flaws, such as: (i) authors have not shown energy efficiency of
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the network; (ii) the selection of CH based on only single parameter does not give certainty of energy
efficiency; and (iii) the CH selection based on individual residual energy does not lead us to save
energy, it only selects the CH based on amount of energy left in the sensor.

The above clustering schemes have not considered imperfect channels and have either focused
on sensing efficiency or energy efficiency. By considering imperfect channels, we have proposed an
algorithm that achieves maximum sensing efficiency and obtains the highest energy efficiency.

The main goal of this paper is to get the maximum probability of detection under an imperfect
reporting channel, minimize the energy consumption by efficiently making the clusters and select CHs
to improve the energy efficiency for the sensor networks. More specifically, a clustering based sensing
scheme is proposed, in which clusters are made using the FCM technique to save energy consumption,
and, furthermore, to save energy, CHs are selected based on four parameters: the location of sensors
within cluster, location with respect to FC, sensor’s residual energy, and signal-to-noise ratio (SNR) of
the reporting channel of the sensors. The main contributions of this paper are: firstly, the overall energy
consumption of the whole networks is reduced using the proposed algorithm; secondly, maximum
probability of detection is achieved under an imperfect reporting channel with smaller consumption of
energy; and, finally, maximum efficiency of the network is achieved.

The rest of this paper is organized as follows. Section 2 describes the problem statement. Section 3
describes the system model. The proposed scheme is shown in Section 4. Simulation results are shown
in Section 5. Finally, conclusions are summarized in Section 6.

2. Problem Statement

The detection performance of the network is determined on the basis of probability of false
alarm (Pf ) and probability of detection (Pd). The false alarm reduces the spectral efficiency of a sensor
network and maximum probability of detection avoids the interference with PU. There are three phases
in cooperative spectrum sensing; the first one is the sensing phase, in which all cooperative sensors
perform local spectrum sensing; the second one is the reporting phase, in which local sensing data
is reported to the FC in order to make the final decision by combining sensing measurement of all
sensors, and the last one is the data transmission phase, in which data of sensors is transmitted if the
PU is not active. Each sensor consumes energy on sensing the PU and reporting the sensed information
to the FC due to the distance between them. Thus, as the number of sensors in the cooperative sensor
network is increased, more energy is consumed.

To overcome the problem of energy consumption, many clustering methods are proposed,
in which the whole network is divided into a small number of groups called clusters. Dividing
the network into a small number of clusters saves energy, as FC has to receive the sensing information
from CHs only, which is combined information of all cluster members. Every sensor forwards the
sensing data to its CH and each CH combines the sensing information of its cluster member, which
is forwarded to FC for the final decision. An energy efficient clustering method is dependent of two
entities, one is the cluster formation and the other is the CH selection. Many of the authors have
proposed cluster formation and CH selection methods, in which CHs are selected randomly or based
on received signal strength indicator (RSSI) at FC from CHs, and, furthermore, CHs select their cluster
members randomly or based on RSSI at CHs from sensors [24,25]. In [24], authors have proposed
CH selection based on RSSI, energy level, reporting channel gain and distance between FC and CHs.
In [22], authors have proposed a modified version of a well-known cluster making method low energy
adaptive clustering hierarchy (LEACH), in which CHs are selected based on energy levels. However,
all of these cluster formation methods have uneven distribution of clusters and most likely the nearest
sensors to the FC are selected as CHs, which results in large distances between the CHs and their
cluster members as shown in Figure 1 since all sensors forward their sensing measurement to their
CHs . Hence, the large distance between the CHs and their cluster members causes huge energy
consumption. In our proposed algorithm, the intention is to select the CH near its cluster members, but
we also do not want it to be very far from FC. Thus, we have used FCM for the making of clusters and
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considered both distances, i.e., distance between CHs and their cluster members and distance between
CHs and FC, for the selection of CH. The FCM is the technique that assigns degree of membership to a
cluster for each sensor, which leads us to overcome the issue of uneven distribution. The FCM has
been proved to enhance the network performance in terms of energy consumption [26].
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Figure 1. Conventional scheme.

The goal is to get the maximum probability of detection under an imperfect reporting channel with
minimum energy consumption of the network by making energy efficient clusters and by selecting
the best CH among each cluster. Our proposed algorithm makes the clusters using FCM and selects
CHs based on sensor’s location, distance, residual energy and SNR. To be more specific, the idea is
to divide the whole network into some number of clusters using FCM, and select the CHs based on
the four parameters, location of sensors within cluster, location of sensors with respect to FC, SNR
of the sensor’s reporting channel and sensor’s residual energy. Our proposed algorithm achieves its
highest efficiency as the use of FCM reduces the energy consumption of the network, and selection of
CHs based on our algorithm not only saves more energy but also achieves the highest performance of
the network.

3. System Model

Consider a network of N cooperative sensors with one FC, which is divided into M number of
clusters each with one CH and a PU. The sensors are randomly distributed as shown in Figure 2.

The topological structure of the sensor network is represented by a network graph G, with each
vertex representing the position of sensor in two-dimensional space, i.e., θi = [xi, yi]

T for the ith
sensor. We put an edge for the link between the ith and jth sensor if they are located within a certain
communication range r; otherwise, there is no edge if they are out of communication. An edge is also
defined for the link from a PU to each sensor if the PU is detected by the sensor through spectrum
sensing. The objective of the sensor is to sense the spectrum and opportunistically utilize it if not
used by a PU. Each cluster consists of a CH, which combines the sensing measurements from all
sensors of that cluster and forwards that combined sensing measurement to the FC. Thus, the process
of cooperative sensing starts with spectrum sensing performed individually at each sensor called local
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spectrum sensing. The time frame of cooperative spectrum sensing is divided into four sub frames,
the sensing time (Ts) of sensors, reporting time (Tc) of cluster members to their CHs, reporting time
(Tr) of CHs to the FC and data transmission time (Tt). Therefore, the total frame duration can be
written as

T = Ts + NmTc + MTr + Tt, (1)

where Nm is the number of sensors in the mth cluster, which is the largest cluster of the network in
terms of sensors and M is the total number of clusters in the network. The performance of cooperative
spectrum sensing can be analyzed by Pd, Pf , throughput, energy consumption and energy efficiency.
The goal is to get the maximum detection performance under imperfect reporting channels with
minimum energy consumption of the network while not allowing the probability of a false alarm to
exceed a certain value. In other words, Pf should be kept below a maximum tolerable probability of
false alarm (ς), which is defined in next section.

Figure 2. System model.

4. Proposed Algorithm

Our proposed algorithm makes use of four major parameters of the system for the efficient
performance, such as distance between CHs and their cluster members, distance between CHs and FC,
SNR of the CH and residual energy of the CH. Based on those parameters, the CH with highest SNR and
immense residual energy near its cluster members is selected as shown in Figure 3. More specifically,
the process of our algorithm is conducted through three steps: the first one is a formation of clusters
by FCM, the second one is selection of CH based on location of sensors with respect to FC, location
of sensors within the cluster, residual energy of the sensors and SNR of the reporting channel of the
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sensors, and the third one is local spectrum sensing in each sensor. Once the neighborhood information
for all the sensors in the network is defined, the network is split into M clusters.
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Figure 3. Proposed algorithm.

4.1. Cluster Formation

All the users in the network are prorated based on a clustering algorithm, such as FCM [27,28].
This method is frequently used in pattern recognition by assigning membership to each data point
corresponding to each cluster center, where the summation of membership for all data points should
be equal to one. FCM is based on minimization of the following objective function:

min
µij ,mj

(υq), (2)

where

υq =
N

∑
i=1

M

∑
j=1

µ
q
ij ‖ θi −mj ‖2, (3)

where M is the number of clusters, q is the fuzziness exponent greater than 1, µij is the degree of
membership of ith sensor in cluster j, and mj is the center of cluster j. The value of µij lies between
0 and 1 for every sensor in the network to each cluster center. This fuzzy partitioning is carried out
through iterative optimization of the objective function membership µij and the updated cluster center
mj as

µij =
1

∑M
h=1

( ‖θi−mj‖
‖θi−mk‖

) 2
q−1

, (4)

and

mj =
∑N

i=1 µ
q
ij · θi

∑N
i=1 µ

q
ij

. (5)

The iterative optimization stops when the termination criteria σ is met, i.e., {µk+1
ij − µk

ij} < σ,
whereas k is the iteration step. Moreover, the description of cluster formation is shown in Algorithm 1.



Sensors 2016, 16, 1459 7 of 17

After cluster formation, the network is split into clusters and the CH selection process is started locally
within each cluster.

Algorithm 1 Cluster Formation

1: Intitialization : membership values µi,j ∀ h = 1, 2, ..M ∀ i = 1, 2, ...N
2: Cluster Centers Initialized
3: while {µk+1

ij − µk
ij} < σ do

4: for j = 1, 2, ...M do

5: mj =
∑N

i=1 µ
q
ij ·θi

∑N
i=1 µ

q
ij

6: end for

7: for i = 1, 2, ..N do

8: for j = 1, 2, ..M do

9: which is µk
ij

10: if ‖ θi −mj ‖> 0 then

11: Calculate µij as

12: µij =
1

∑M
h=1

(
‖θi−mj‖
‖θi−mk‖

) 2
q−1

13: which is µk+1
ij

14: end if

15: end for

16: end for

17: end while

4.2. Cluster Head Selection

The competition between the candidate sensors to be the CH in a given cluster is based on four
parameters given below:

• Location of each candidate sensor within the cluster
• Distance of each candidate sensor with respect to the FC
• SNR of the reporting channel of the CH and FC
• Residual energy of each candidate sensor.

The first parameter led us to select the CH near its clusters members, so that each cluster consumes
a less amount of overall energy. The second parameter also plays an important role for selection of
CH, in which the intention is that the selected CH should not be very far from FC. We have given
priority for the selected CH to be near its cluster members, due to which the distance between CH
and FC is increased. Therefore, the third parameter SNR of the reporting channel from CH to FC is
considered. Besides distance, location and SNR, the fourth parameter residual energy of the sensor
also has a significant role. The residual energy is defined as the sensor’s amount of energy left for the
sensing and transmission. Thus, the proposed objective function for the CH selection of the mth cluster
is given by

Ψ(m)
j = max

CH

( f(m)
j γ

(m)
j

αPL(m)
j + (1− α)PL(m)

FC

)
, (6)
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where f(m)
j is the residual energy of the jth candidate sensor, γ

(m)
j is the SNR of reporting channel

of jth sensor to the FC, PL(m)
j is the average path loss of the channels between the jth sensor and its

cluster members, PL(m)
FC is the path loss of jth sensor and FC, and α is a weight given to path losses

PL(m)
j and PL(m)

FC , i.e., sensor to CH and CH to FC. The PL(m)
j is defined as

PL(m)
j =

∑Nm
i=1 PL(m)

j,i

Nm
, (7)

where Nm is the number of sensors in the mth cluster. The PL(m)
j,i is the path loss between jth sensor

and its cluster member ith sensor, which is given by

PL(m)
j,i = 10 n log10(R(m)

j,i ), (8)

where R(m)
j,i =‖ θi

(m)− θ
(m)
j ‖ is the distance between the jth and ith sensors with θ

(m)
i =

{
x(m)

i , y(m)
i

}
,

the position of ith sensor, θ
(m)
j =

{
x(m)

j , y(m)
j

}
the position of jth sensor, and n is the path loss exponent.

The path loss between CH of mth cluster and FC is given as

PL(m)
FC = 10 n log10(R(m)

FC ), (9)

where R(m)
FC =‖ θ

(m)
j − θFC ‖, with θFC =

{
x f c, y f c

}
the position of FC. The detailed algorithm for CH

selection is given in Algorithm 2. Once the CH is selected based on the maximum objective function,
the spectrum sensing is carried out.

Algorithm 2 Cluster Head Selection

1: Initialization : CH selection f or cluster
2: while m = 1, 2, .., M do

3: Selecting CH f or mth Cluster
4: for j = 1, 2, ...Nm,j do

5: Calculate f(m)
j , γ

(m)
j , PL(m)

j andPL(m)
FC

6: if Ψ(m)
j = maxCH

(
f(m)

j γ
(m)
j

αPL(m)
j +(1−α)PL(m)

FC

)
then

7: mth CH ← jth sensor
8: else

9: Cluster member ← jth sensor
10: end if

11: end for

12: end while

4.3. Spectrum Sensing

The eventual goal of the proposed algorithm is to maximize the probability of detection under
an imperfect reporting channel with less consumption of energy. Let us denote the received signal
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by the ith sensor of the mth cluster for PU’s transmitted signal at zth time instant by y(m)
i (z), which is

defined as

y(m)
i (z) ∼

{
n(m)

i (z) H0,

s(z) + n(m)
i (z) H1,

(10)

where s(z) is the signal transmitted by PU, and n(m)
i (z) denotes zero-mean additive white Gaussian

noise (AWGN) with variance of σ2(m)

i . The test statistics of the ith sensor of mth cluster is given by

v
(m)
i =

Z−1

∑
z=0
|y(m)

i (z)|
2
, i = 1, 2, ....Z, (11)

where Z is the total number of samples and v
(m)
i is the sum of the squares of Z Gaussian independent

random variables. It is shown that v
(m)
i follows a central chi square χ2

cZ distribution with Z degrees of
freedom if H0 is true; otherwise, it follows non-central χ2

ncZ distribution with Z degrees of freedom
and non-centrality parameter of λ. Thus, we can write it as

v
(m)
i ∼

{
χ2

cZ H0,

χ2
ncZ(λ) H1.

(12)

The PDF of v
(m)
i can be written as [29]

f (v(m)
i ) =


v
(m)
i

( Z
2 −1)

e

−
v
(m)
i

2σ2(m)
i

2Z/2Γ(Z/2)σZ(m)
i

H0,

1
2σ2(m)

i

(
v
(m)
i

λ
(m)
i

) Z
4 −

1
2

e
−

(v
(m)
i +λ

(m)
i )

2σ2(m)
i IZ/2−1(

√
v
(m)
i λ

(m)
i /σ2(m)

i ) H1,

(13)

where Γ(.) is the gamma function and Iv(.) is the vth order modified Bessel function.
Thus, both hypotheses can be written as

v
(m)
i ∼

{
N (Zσ2(m)

i , 2Zσ4(m)

i ) H0,

N ((Z + λ
(m)
i )σ2(m)

i , 2(Z + 2λ
(m)
i )σ4(m)

i ) H1.
(14)

When ith sensor of mth cluster forwards the sensing measurement to the mth CH under an
imperfect reporting channel, the received signal at CH is given by

v
(m)
Ri

= v
(m)
i h(m)

Ri
+ ω

(m)
Ri

, (15)

where h(m)
Ri

is the channel gain between ith sensor of the mth cluster, and its CH and ω
(m)
Ri

is the AWGN

of reporting channel with variance σ2(m)

Ri
. The mean and variance after normalizing the hypothesis by

noise power (σ2(m)

Ri
) is given as

v
(m)
Ri
∼
{
N (Zσ2(m)

i /σ2(m)

Ri
, 2Zσ4(m)

i /σ2(m)

Ri
) H0,

N ((Z + λ
(m)
i )σ2(m)

i γ
(m)
i , 2(Z + 2λ

(m)
i )σ4(m)

i γ
(m)
i ) H1,

(16)

where γ
(m)
i =

|h(m)
Ri
|
2

σ2(m)
Ri

was defined earlier as the SNR of the reporting channel of ith sensor of the mth

cluster. Sensing measurements of sensors in the cluster are combined at the CH as v(m) = ∑Nm
i=1 v

(m)
Ri

,
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where v(m) is the summation of the sensing measurements of all sensors of the mth cluster. The mean
of all sensors of a cluster is summed up and so is the variance. Assuming each sensor receives the same
number of samples, the mean for H0 and H1 for mth cluster is σ

(m)
µ Z and (σ

(m)
µγ Z + σ

(m)
µλ ), respectively,

where σ
(m)
µ = ∑Nm

i=1 σ2(m)

i /σ2(m)

Ri
, σ

(m)
µγ = ∑Nm

i=1 σ2(m)

i γ
(m)
i and σ

(m)
µλ = ∑Nm

i=1 σ2(m)

i λ
(m)
i γ

(m)
i . In addition,

the summation of the variance of all sensors for H0 and H1 is written as 2Zσ
(m)
V and 2(Zσ

(m)
Vγ + 2σ

(m)
Vλ ),

where σ
(m)
V = ∑Nm

i=1 σ4(m)

i /σ2(m)

Ri
, σ

(m)
Vγ = ∑Nm

i=1 σ4(m)

i γ
(m)
i and σ

(m)
Vλ = ∑Nm

i=1 σ4(m)

i λ
(m)
i γ

(m)
i . Consequently,

the hypothesis at the CH of mth cluster is written as

v(m) ∼

N (σ
(m)
µ Z, 2Zσ

(m)
V ) H0,

N (σ
(m)
µγ Z + σ

(m)
µλ , 2(Zσ

(m)
Vγ + 2σ

(m)
Vλ )) H1.

(17)

Eventually, FC combines sensing measurement received from all CHs, v = ∑M
m=1 v(m),

where M is the total number of clusters. Therefore, the mean and the variance of v after combining
the sensing measurements received from all CHs become

v(m) ∼
{
N (Zσµ, 2ZσV) H0,

N (Zσµγ + σµλ, 2(ZσV + 2σVλ)) H1,
(18)

where σµ = ∑M
m=1 σ

(m)
µ , σµγ = ∑M

m=1 σ
(m)
µγ , σµλ = ∑M

m=1 σ
(m)
µλ , σV = ∑M

m=1 σ
(m)
V , σVγ = ∑M

m=1 σ
(m)
Vγ and

σVλ = ∑M
m=1 σ

(m)
Vλ . Using the Neyman–Pearson Lemma, the optimum soft information-combining

strategy for the proposed algorithm with threshold ϕ is given by

P(v|H1)

P(v|H0)
≷ϕ. (19)

For determining the maximum tolerable false alarm probability (ς), which is defined as
∫ ∞

ϕ P(H0),

ς =
∫ ∞

ϕ

1√
8πZσ(V)

e
−1

2Zσ(V)
(v−Zσ(µ))

2

dv, (20)

which can be written as
ϕ = Q−1(Pf )

√
2Zσ(V) + Zσ(µ). (21)

The probability of detection which is
∫ ∞

ϕ P(H1) is computed as

Pd =
∫ ∞

ϕ

1√
4π(2(Zσ(Vγ) + 2σ(Vλ)))

e
−(v−σ(µγ)Z−σ(µλ))2

2(Zσ(Vγ)+2σ(Vλ)) dv. (22)

The above equation after substituting (21) becomes

Pd = Q

Q−1(Pf )
√

2Zσ(V) + Zσ(µ) − (Zσ(µγ) + σ(µλ))√
2(Zσ(Vγ) + 2σ(Vλ))

 . (23)

The above equation is probability of detection computed from the sensing measurements
transmitted by CHs to FC.

4.4. Energy Efficiency Analysis

The goal of this subsection is to show that the proposed algorithm achieves the highest
performance of the network with a small consumption of energy. The performance of the network can
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be found by the energy efficiency metric, which is defined as the ratio of average throughput of the
network and energy consumed by the network. Typically, the energy consumed by a single sensor is
due to sensing power and transmission power for reporting the sensed data. The amounts of energy
required to sense and transmit the sensed data to CH over a transmission distance of R is given by [30].

Em,i = TsPs + R(m)
j,i P(m)

t,i , (24)

where R(m)
j,i was defined earlier, Ts, Ps and P(m)

t,i denote sensing time, power consumption due to
sensing and power consumption of the ith sensor of the mth cluster due to transmission. Each sensor
forwards sensing measurement to its CH. Hence, the energy consumed by a mth cluster is given by

Em = NmTsPs +
Nm

∑
i=1

R(m)
j,i P(m)

t,i , (25)

where Nm is the number of sensors in the mth cluster. The CHs after combining the sensing
measurements of all of their sensors forward the combined sensing measurement to FC. Thus, the total
energy consumed by a network is given by

E = NTsPs +
M

∑
m=1

Nm

∑
i=1

(R(m)
j,i + R(m)

FC )P(m)
t,i + (1− P0Pf − P1Pd)P(m)

t,i Tt, (26)

where R(m)
FC was defined earlier, M is the total number of clusters, P0 is the probability that the spectrum

is unused, P1 is the probability that the spectrum is used and Tt = (T− Ts − (N/M)Tr −MTr) with
N the total number of sensors in the network. The throughput is defined as the amount of successful
delivery of data of all sensors, which is given by

β = P0(1− Pf )B(T − Ts − NmTr −MTr) + P1(1− Pd)BTt, (27)

where B is the data rate. The energy efficiency, which is average throughput of the network over
energy consumed by the network is given by [30]

ε =
β

E
. (28)

The above equation is used to find the efficiency of the proposed algorithm.

5. Simulation Results

The target of the proposed algorithm is to acquire the highest sensing performance under
an imperfect reporting channel with maximum energy efficiency. The sensing performance
is dependent on Pd and Pf , while energy efficiency is defined by energy consumption and
throughput. The performance of the proposed algorithm is verified by comparing the performance
with non-clustering and conventional clustering schemes. The network consists of a maximum
of 100 numbers of sensors, which are divided into five numbers of clusters with each cluster
having random numbers of sensors assigned based on FCM. We have compared our algorithm
with [11,22,23,26]. In [11], sensors of the whole network forward their sensing information to the FC,
due to which the highest amount of energy is consumed. In [22], a modified version of cluster making
method LEACH is proposed, in which sensors share their information with neighbor nodes. In [23], the
network is divided into clusters using FCM and every sensor forwards its sensing energy to FC. In [26],
authors make the cluster using FCM and select the CH based only on residual energy. Due to the small
distance between CHs and their cluster members in the proposed algorithm, a very small amount
of energy is consumed and highest throughput is achieved as compared to conventional clustering
schemes. The energy consumption of the proposed algorithm is compared with non-clustering and
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conventional clustering schemes with an increasing number of sensors in Figure 4. It is clear from the
figure that the proposed algorithm consumes a less amount of energy as compared to conventional
clustering schemes. It is shown that the non-clustering cooperative spectrum sensing consumes the
highest energy as compared to clustering schemes. Furthermore, we can see from the figure that
50 numbers of sensors in the whole network [22,23,26] consume more than 300 J of energy, while
with the same number of sensors, the proposed algorithm consumes energy of approximately 260 J.
The throughput of the proposed algorithm and conventional schemes is shown in Figure 5, which
clearly illustrates that, using the proposed algorithm, the highest throughput of the network is achieved
as compared to conventional schemes. The energy efficiency of the network is increased with increasing
frame time, as the network has a huge amount of time for transmission of data. Due to small energy
consumption and large throughput, the proposed algorithm has the highest efficiency as compared
to conventional clustering schemes with increasing time frame. Figure 6 has compared the energy
efficiency of the proposed algorithm and conventional clustering schemes with increasing time frame.
It is worth noting that maximum energy efficiency is achieved by using the proposed algorithm as
compared to conventional schemes. With total time frame of 2 ms, conventional schemes achieve
energy efficiency of nearly 80 bit/J, while with same period of time, the proposed algorithm obtains
the energy efficiency of approximately 90 bit/J. We have compared the efficiency of the network
with increasing average SNR of the reporting channel. The SNR of channels play an important role;
therefore, we used this parameter for the selection of CH. We have achieved highest energy efficiency
using the proposed algorithm with increasing SNR of the reporting channel, as shown in Figure 7. It is
clear from the figure that, with −5 dB of SNR, conventional schemes acquire energy efficiency of less
than 80 bit/J, while with the same average SNR of the reporting channels, the proposed algorithm
achieves energy efficiency of more than 80 bit/J. Each sensor consumes tremendous energy if it has a
large distance from its CH.
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Figure 7. Energy efficiency with an increasing signal-to-noise ratio (SNR) of the reporting channel.

In our proposed algorithm, this distance is short, which led us to achieve the highest energy
efficiency. The energy efficiency of the proposed algorithm with an increasing number of sensors
is compared with conventional schemes in Figure 8. It is clear from the Figure that, using the
proposed algorithm with 50 numbers of sensors, we still have energy efficiency of 80 bit/J, while using
conventional schemes with the same number of sensors, the achieved energy efficiency is equal to or
below 70 bit/J.
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Figure 8. Energy efficiency of the whole network with an increasing number of sensors.
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6. Conclusions

In this paper, a clustering technique is proposed that uses the fuzzy c-means clustering method
for the formation of clusters and cluster head is selected based on four parameters: sensor’s location
within cluster, location with respect to FC, its SNR, and its residual energy. The goal of our algorithm
is to get the highest performance of the network under imperfect channels with a smaller consumption
of energy. The proposed algorithm selects the CH near its cluster members with high SNR and residual
energy, which saves a large amount of energy. We have shown that our proposed algorithm performs
better than conventional clustering techniques in terms of detection performance and consumes less
energy as compared to them.
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