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Abstract: This paper presents analytical models, as well as numerical and experimental verification
of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic
analytical governing equations are created for resonator vibrating at drive-mode and sense-mode,
and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified
that coincided well with finite element analysis (FEM) simulation results. Also, the comparison
of vibration field quantities is made to investigate the effect of different conditions on resonator
thermoelastic vibration behavior. The significant parameters of thermoelastic damping and quality
factor are subsequently deduced to analyze the energy dissipation situation in the vibration process.
Meanwhile, the corresponding conclusions from other studies are used to verify our theoretical model
and numerical results. By comparing with the experimental quality factor, the numerical values are
validated. The combination of the theoretical expressions, numerical results and experimental data
leads to an important insight into the achievable quality factor value of tuning-fork resonator, namely,
that the thermoelastic damping is the main loss mechanism in the micro-comb finger structure and
the quality factor varies under different vibration modes. The results demonstrate that the critical
geometry dimensions of tuning-fork resonator can be well designed with the assistance of this study.

Keywords: gyroscope resonator; intrinsic dissipation; thermoelastic damping; quality factor;
drive-mode; sense-mode

1. Introduction

Micro-resonators as critical components in microelectromechanical systems (MEMS), such as
accelerometers, gyroscopes, harvesters etc., have considerably aroused the interest of researchers [1–3].
For all these applications, the prevalent parameter that has emerged is the resonator’s quality factor
(Q) which is described as mechanical energy damping. In the MEMS field, it is important to design
and fabricate micro-resonators with very high quality factors or very little energy loss, because a high
quality factor results in high sensitivity and low power consumption [4]. Energy dissipation can occur
in micro-resonators through intrinsic and external energy loss. The thermoelastic damping (TED)
and the lattice defects belong to intrinsic loss while the air damping belongs to external energy loss.
TED has been identified as the fundamental limit for attainable high quality factor of micro-resonators.

TED results from the irreversible heat flow in the vibration process of resonators. When a mechanical
resonator vibrates, compressive stress occurs in some regions while tensile stress affects other regions.
Accordingly, compressed regions heat up while stretched regions cool down. Hence a temperature
gradient is established between different regions of a system. Thus, the system will adjust itself to the
thermal equilibrium state by thermal conduction. However, the energy used in the adjustment process
cannot be restored after the system returns to its original state. As long as the structure’s thermal
expansion coefficient is not zero, TED will exist in micro-resonators. In recent years, much work has
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been done on the TED of micro-resonators. Zener derived the analytical model of TED and predicted
thermoelastic losses which may be a limitation to the maximum Q of resonators [5,6]. Lifshitz and
Rouckes gave the derivation of an exact expression for thermoelastic damping in thin rectangular
beams and compared it with Zener’s approximation [7]. Rezazadeh et al. studied TED in a microbeam
with modified couple stress theory [8]. Jiao et al. presented the numerical results of thermoelastic
damping [9,10]. Kausinis used COMSOL Multiphysics to calculate damping in micromechanical
resonator structures [11]. Guo used a customized finite element method to evaluate the thermoelastic
damping in micro-beam resonators [12]. Yi used a reduced finite element formulation to investigate
the thermoelastic damping in contour-mode in-plane vibrations [13].

In the field of MEMS applications, as different resonators are used, many researchers directtheir
attention to the TED for various resonators. Lifshitz and Rouckes researched the TED effect in thin
rectangle beam. Amy Duwel and X. Guo presented the TED-based methodology to calculate the
microbeam resonator with different boundary conditions [14]. Nayfehprovided a model and analytical
expressions for the quality factors of microplates with TED [15]. De studied the TED of electrostatically
actuated resonators and Abouelregal researched the TED of an axially moving microbeam with external
loading [16,17]. Bassiouny presented a model for a layered thin plate of sandwich structure, which is
studied with the theory of TED [18].

Although a tremendous amount of work has been done on thermoelastic coupling of
micro-resonators in MEMS, very little research has been systematically undertaken on the gyroscope
resonator with different vibration states. Weijian has researched the longitudinal vibration of the
micro-resonators and made a comparison with the case of flexural vibration [9], and Sharmahas studied
the thermoelastic damping of 3-D cantilever beam [19]. Therefore, the gyroscope has two vibration
manners: the longitudinal vibration and the transverse vibration with Coriolis Effect. Thus, for 3D
SOI-based resonators, both the longitudinal vibration and transverse vibration should be considered
when analyzing TED of MEMS gyroscope. Also, the thermoelastic behavior of micro-resonators for
free and forced vibration with electrostatic load should be taken into account.

On the basis of previous work, this paper presents the tuning-fork resonator model that illustrates
the thermoelastic coupling behavior. The micro-comb fingers model is established for analyzing the
thermoelastic coupling effect both in free vibration and electrostatic-actuated vibration. The governing
equations of coupled thermoelastic problems for two different vibration conditions are set up, before
the equations to analyze the influence of TED are calculated. The field quantities of displacement and
temperature distribution are analyzed and the TED factor is calculated under different conditions.
The corresponding finite element analysis (FEM) is made to verify the numerical results. Finally, the
significant parameter of Q is expressed as the reciprocal of TED, compared with the experimental
conclusion which is reported in the literature.

2. Theoretical Description of Thermoelastic Coupling Effects in Micro-Resonators

2.1. The Micro-Resonator Model Design

The critical component of gyroscope is the differential comb fingers resonator which acts as the
driven element. When voltage is applied to the resonator, the electrostatic force will be generated
correspondingly. The electrical load is composed of two components, which is AC and DC voltage.
The applied DC voltage deforms the upper elastic surface that causes change in the system capacitance.
If AC voltage is added to the DC one, the resonator that has harmonic motion can be obtained. Figure 1
shows a schematic view of a tuning-fork resonator which is consisted of a set of the movable and fixed
fingers. As illustrated in Figure 1, the voltage that applied in the fixed comb is Vdc + Vacsin (ωet) and
Vdc −Vacsin (ωet), respectively.
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Figure 1. Schematic view of an electrostatic comb structure. 
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Among it, dcV  represents direct voltage; acV  refers to altering voltage; e  stands for 
excitation frequency, N represents the number of comb fingers. 

To investigate the effect of TED on tuning-fork resonator, a group of comb fingers is selected as 
the research object. Figure 2 illustrates the model schematic. From the model schematic view, the 
movable finger is modeled with dimensions, 0 x L  , 2 2b y b    and 2 2h z h   . We 
define the x, y, z axes corresponding to the length, width and thickness, respectively. In the 
equilibrium, the initial temperature of resonator is 0T  everywhere. 

 
Figure 2. Illustration of a group of comb finger. 

2.2. Governing Equations of Resonator under Electrostatic-Forced Vibration and Free Vibration 

In the longitudinal vibrating process, each cross-section of the micro-structure remains plane 
and the transverse deformation is ignored. For the longitudinal vibration problem, all quantities are 
only dependent on variable x. u(x, t) is defined as a longitudinal deflection of the beam. The 
thermoelastic governing equation of the electrostatic load is written as Equation (3): 
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Figure 1. Schematic view of an electrostatic comb structure.

The system capacitance change value is

∆C =
2εbx

g
(1)

where ε is dielectric constant; b and g are thickness of comb and gap between the combs respectively.
Then, the electrostatic force can be presented as follows.

Fe =
1
2

∂C
∂x

V2 = Nε
b
g

VdcVacsin(ωet) (2)

Among it, Vdc represents direct voltage; Vac refers to altering voltage; ωe stands for excitation
frequency, N represents the number of comb fingers.

To investigate the effect of TED on tuning-fork resonator, a group of comb fingers is selected as the
research object. Figure 2 illustrates the model schematic. From the model schematic view, the movable
finger is modeled with dimensions, 0 < x < L, −b/2 < y < b/2 and −h/2 < z < h/2. We define
the x, y, z axes corresponding to the length, width and thickness, respectively. In the equilibrium, the
initial temperature of resonator is T0 everywhere.
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2.2. Governing Equations of Resonator under Electrostatic-Forced Vibration and Free Vibration

In the longitudinal vibrating process, each cross-section of the micro-structure remains plane and
the transverse deformation is ignored. For the longitudinal vibration problem, all quantities are only
dependent on variable x. u(x, t) is defined as a longitudinal deflection of the beam. The thermoelastic
governing equation of the electrostatic load is written as Equation (3):{

ρ ∂2u
∂t2 − E ∂2u

∂x2 +
αE

1−2υ
∂θ
∂x = F

κ ∂2θ
∂x2 − ρCv

∂θ
∂t − αET0

∂2u
∂x∂t = 0

(3)

where ρ, E, α, F, κ, Cv, t and υ are density, Young’s modulus, thermal expansion coefficient, electrostatic
force per unit volume, thermal conductivity, specific heat capacity, time and Poisson’s ratio, respectively.
Also, θ = T − T0 is temperature variation in which T is defined as temperature field of the resonator.
The first equation is deduced from the vibration equilibrium equation and the second equation is
derived from the thermal dynamic equation.
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In order to compare the thermoelastic coupling effect on various vibration forms of resonator, the
free harmonic vibration thermoelastic coupling equation is established as follows.{

ρ ∂2u
∂t2 − E ∂2u

∂x2 +
αE

1−2υ
∂θ
∂x = 0

κ ∂2θ
∂x2 − ρCv

∂θ
∂t − αET0

∂2u
∂x∂t = 0

(4)

As the gyroscope vibrates at the driven model, the micro-structure performs longitudinal vibration.
Then with the Coriolis Effect, the resonator transverse vibrates at the detection mode. Accordingly, the
flexural vibration governing the movable finger equation within the thermoelastic coupling effect is
given by the following equation.{

ρA ∂2w
∂t2 + EI ∂4w

∂x4 + ∂2 MT
∂x2 = 0

( Eα
1−2υ )

2
IT0

∂
∂t

∂2w
∂x2 + κ ∂2 MT

∂x2 − κp2MT − ρCv
∂MT

∂t = 0
(5)

As is noted, the cross-section of the micro-resonator is rectangular, the area and moment of inertia
of the cross-section are A = bh and I = bh3/12 where h is the thickness. MT = Eαb

1−2υ

∫ h/2
−h/2 θzdz is

thermal moment and w(x, t)refers to transverse deflection of the resonator. In Equation (5), p is equal
to π/h.

3. Analysis Methods of the Coupling Equations

To evaluate the coupling strength between structure mechanical and temperature fields, the
analytical approaches are used to solve three governing equations. Therefore, the direct coupling
method can be used to solve the thermoelastic coupling problems in micro-comb fingers resonator
with and without electrostatic load in drive-mode of longitudinal vibration and in sense-mode of
transverse vibration.

3.1. Direct Coupling Method in Resonator with Electrostatic Load

For the sake of solving Equation (3), the following dimensionless variables are used to transform
Equation (3) into a non-dimensional form.

u =
u
L

, x =
x
L

, θ =
θ

T0
, t =

t
t0

, t0 = L/
√

E/ρ, F =
F

EA
(6)

Therefore, the governing equation in its non-dimensional form is simplified as:{
∂2u
∂t2 − ∂2u

∂x2 + a1
∂θ
∂x = F

∂2θ
∂x2 − a2

∂θ
∂t − a3

∂2u
∂x∂t = 0

(7)

where a1 = αT0
1−2υ , a2 = ρCv L2

κt0
, a3 = αEL2

κt0
.

In the interest of dealing with the problem, both initial and boundary conditions should be
taken into consideration. The initial conditions of temperature and displacement are assumed to be
homogeneous. The initial conditions and boundary conditions are presented as below.{

u|t=0 = ∂u
∂t |t=0 = 0, θ|t=0 = ∂θ

∂t |t=0 = 0
∂u
∂x |x=0,L = 0, θ|x=0 = ∂θ

∂x |x=L = 0
(8)

The same transformation is used for the initial and boundary conditions. Equation (8) is rewritten
as follows. {

u|t=0 = ∂u
∂t |t=0 = 0, θ|t=0 = ∂θ

∂t |t=0 = 0
∂u
∂x |x=0,1 = 0, θ

∣∣
x=0 = ∂θ

∂x |x=1 = 0
(9)
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To solve the mechanical and thermal coupled Equation (3) more conveniently, the Laplace
transform is introduced. The Laplace transform is defined as:

X(s) =
∫ ∞

0
x(t)e−stdt (10)

Substituting Equation (10) into Equation (3), the result is s3U − du
dt

∣∣∣
t=0
− s2 u|t=0 − d2U

dx2 − a1
dΘ
dx = a2F

d2Θ
dx2 − a2s2Θ + a2s θ

∣∣
t=0 − a3s2 dU

dx + a3s u|t=0 = 0
(11)

The initial equations are substituted into Equation (11), which can be rewritten as below.{
s3U − d2U

dx2 + a1
dΘ
dx = a2Fs

d2Θ
dx2 − a2s2Θ− a3s2 dU

dx = 0
(12)

U, Θ and Fs denote themselves Laplace transforms, respectively, and s denotes the Laplace
transform parameter. The differential equations for U and Θ are given by using the elimination
methodin Equation (12). {

( d4

dx4 + A1
d2

dx2 + A2)U = A3Fs

( d4

dx4 + A1
d2

dx2 + A2)Θ = 0
(13)

where A1 = −a1a3s2 − a2s2 − s3, A2 = a2s5, A3 = a2s2

The solution to Equation (13) in the Laplace domain can be presented as:
U = A3

A2
Fs +

4
∑

i=1
Ciemix

Θ =
4
∑

i=1
C′i e

mix
(14)

where Ci and C′i are parameters depending on s and mi, i = 1, 2, 3, 4 are the roots of the characteristic
equation: m4 + A1m2 + A2 = 0.

Substituting Equation (14) into differential equation about Θ gives the compatibility between Ci

and C′i .C
′
i = βiCi, where βi =

a3s2mi
m2

i −a2s
.

Governing Equation (14) can be represented as:
U = A3

A2
Fe +

4
∑

i=1
Ciemix

Θ =
4
∑

i=1
βiCiemix

(15)

Then, the boundary conditions of Laplace transform to Equation (9) are

∂U
∂x

∣∣∣∣
x=0,1

= 0, Θx=0 =
∂Θ
∂x

∣∣∣∣
x=1

= 0 (16)

Substituting Equation (15) into the above boundary Equation (16), the four linear equations in the
matrix form can be obtained as follows.

m1 m2 m3 m4

m1em1 m2em2 m3em3 m4em4

β1 β2 β3 β4

β1m1em1 β2m2em2 β3m3em3 β4m4em4




C1

C2

C3

C4

 =


0
0
0
0

 (17)
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Ci of the solution of the above linear equations is the unknown parameters. It is difficult to find
the inverse Laplace transform of temperature and displacement distribution in the Laplace domain
analytically. In order to determine the temperature variation and displacement distributions in the
time domain, the Riemann-sum approximation method is used to obtain the numerical results [20].
In this method, any function in the Laplace domain can be inverted to that in the time domain. The
Riemann-sum approximation method is defined as below.

f (t) =
eζt

t
[
1
2

Re[F(ζ)] + Re
N

∑
n=0

F(ζ +
inπ

t
)(−1)n] (18)

where Re and i are real part and imaginary part, respectively. For fast convergence, numerical
experiments have shown that ζ equals to 4.7/t, which can meet the above relation.

3.2. Direct Coupling Method in Resonator without Electrostatic Load

The Laplace transform is used in Equation (4) for comparing thermoelastic behavior in the
micro-resonator with electrostatic-forced vibration before the dimensionless governing equation in
free harmonic vibration is listed as.{

( d4

dx4 + A1
d2

dx2 + A2)U′ = 0

( d4

dx4 + A1
d2

dx2 + A2)Θ′ = 0
(19)

where A1, A2 are defined as in Equation (13). The solution to Equation (19) can be obtained as follows.
U′ =

4
∑

i=1
Giemix

Θ′ =
4
∑

i=1
G′i e

mix
(20)

Also, G′i = βiGi where βi = a3s2mi/
(
m2

i − a2s
)
. Applying the same boundary condition in

Equation (8) to Equation (20), another four linear equations in the matrix form can be obtained
as follows. 

m1 m2 m3 m4

m1em1 m2em2 m3em3 m4em4

β1 β2 β3 β4

β1m1em1 β2m2em2 β3m3em3 β4m4em4




G1

G2

G3

G4

 =


0
0
0
0

 (21)

3.3. Analytical Approaches to Resonator in Transverse Vibration

In gyroscope sense-mode, the movable comb finger vibrates in flexible vibration. In the resonator,
the Euler-Bernoulli assumption is used so that any plane cross-section initially is perpendicular to the
axis of the beam and remains plane during bending.

To solve the coupling Equation (5), the assumption is made that the thermal moment MT and
displacement component w are time-harmonic forms.

w(x, t) = w (x) eiωt, MT(x, t) = MT(x)eiωt (22)

Equation (5) can be represented as{
−ρAω2w + EI ∂4w

∂x4 + ∂2 MT
∂x2 = 0

−κ ∂2 MT
∂x2 + (κp2 + iωCv)MT = iω( Eα

1−2υ )
2
IT0

∂2w
∂x2

(23)
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The boundary conditions of the movable comb finger in flexural vibrating are given by the
following equation.  w|x=0 = ∂w

∂x

∣∣∣
x=0

= 0, ∂2w
∂x2

∣∣∣
x=l

= ∂3w
∂x3

∣∣∣
x=l

= 0
∂MT

∂x

∣∣∣
x=0

= MT |x=l = 0
(24)

Differentiating the thermal conduction equation of Equation (5) with respect to x and substituting
the first equation of Equation (5) into it results in

A′
∂6w
∂x6 + B

∂4w
∂x4 + C

∂2w
∂x2 + Dw = 0 (25)

where A′ = κEI B = −((κp2 + iωρCv)EI + iω( Eα
1−2υ )

2
IT0)

C = −κρSω2 D = (κp2 + iωρCv)ρSω2

The solution of Equation (25) can be expressed as

w(x) =
3

∑
m=1

(Lmsinh(rmx) + Nmcosh(rmx)) (26)

where ±rm(m = 1, 2, 3) are the roots of the equation of A′ r6 + Br4 + Cr2 + D = 0, and Lm,Nm

(m = 1, 2, 3) are constants.
Substituting the dynamic equation of Equation (5) into the thermal conduction equation, the

result is as follows.

(κp2 + iωρCv)MT = κEI
∂4w
∂x4 + iω(

Eα

1− 2υ
)

2
IT0

∂2w
∂x2 − κρAω2w (27)

Substituting Equation (26) into Equation (27) leads to

MT =
3

∑
m=1

(Lmhmsinh(rmx) + Nmhmcosh(rmx)) (28)

where hm =
(
−EIκr4

m + iω( Eα
1−2υ )

2
IT0r2

m + κρAω2
)

/
(
κp2 + iωρCv

)
Thus, the solution of displacement component and the temperature moment can be deduced.

w(x) =
3
∑

m=1
(Lmsinh(rmx) + Nmcosh(rmx))

MT =
3
∑

m=1
(Lmhmsinh(rmx) + Nmhmcosh(rmx))

(29)

Substituting the boundary conditions into Equation (29), Equation (30) can be obtained.

3
∑

m=1
(Nm) = 0,

3
∑

m=1
(Lmrm) = 0

3
∑

m=1
(Lmr2

msinh(rml) + Nmr2
mcosh(rml)) = 0,

3
∑

m=1
(Lmr3

mcosh(rml) + Nmr3
msinh(rml)) = 0

3
∑

m=1
(Lmhmrm) = 0,

3
∑

m=1
(Lmhmsinh(rml) + Nmhmcosh(rml)) = 0

(30)
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The corresponding frequency equations of thermoelastic coupling transverse vibration are:∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 0 1
r1 0 r2 0 r3 0

r2
1sinh(r1l) r2

1cosh(r1l) r2
2sinh(r2l) r2

2cosh(r2l) r2
3sinh(r3l) r2

3cosh(r3l)
r3

1cosh(r1l) r3
1sinh(r1l) r3

2cosh(r2l) r3
2sinh(r2l) r3

3cosh(r3l) r3
3sinh(r3l)

r1h1 0 r2h2 0 r3h3 0
h1sinh(r1l) h1cosh(r1l) h2sinh(r2l) h2cosh(r2l) h3sinh(r3l) h3cosh(r3l)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (31)

By solving a complex transcendental Equation (31), the frequency ω can be obtained.
The numerical method will be employed to solve this equation in the next section.

4. Numerical Results

The material used to fabricate the gyroscope is Si, and the parameters in numerical calculation
and simulation are listed in Table 1.

Table 1. Mechanical, thermal, physical and electrical properties of gyroscope with silicon material.

Mechanical E/GPa υ ρ/kg·m−3 Thermal α/K−1 κ/W·m−1·K−1 Cv/J·kg−1·K−1 T0/K

Values 165 0.22 2330 values 2.6 × 10−6 159 713 300
Physical L/m h/m b/m g/m Electrical Vac/V Vdc/V ε/F·m−1 t/µs
Values 60 × 10−6 15 × 10−6 5 × 10−6 5 × 10−6 Values 3 15 8.854 × 10−12 0.01

4.1. Thermoelastic Behaviors of Micro-Comb Finger Vibration with Electrostatic Load

The defined Riemann-sum approximation method in Equation (18) is used to perform the
numerical inverse Laplace transform. The vibration displacement and temperature that generate
during the vibration process are obtained. Figure 3 indicates the dynamic displacement and
temperature of the micro-resonator for the coupled thermoelastic case. It can be observed in Figure 3
that the displacement u reaches maximum value both in two ends to satisfy the boundary Equation (8).
Also, it can be seen from inverse Laplace transform that the vibration of the movable comb finger
decays with time increasing when the coupling between strain and thermal fields are taken into
account. Also the temperature decreases with the time increasing which means the mechanical
energy of resonator is dissipated in the form of thermal energy. From the relationship between
vibration displacement and temperature, it can be concluded that the temperature increases with
vibration strength. When the resonator vibrates at drive-mode with electrostatic load, the variation of
temperature is more severe.
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Comparison is made between the displacement variation for different electrostatic parameters
of direct voltage and alternating voltage, respectively. In the calculation process, the non-contrast
parameters are kept in initial value (Table 1).

Figure 4 shows the graphical result of field quantities with the variation of the electrostatic
parameters for altering voltage and direct voltage. From Figure 4a,b, the field quantities are sensitive
to the variation of Vac and Vdc. When micro-comb finger harmonic vibration with AC voltage is
applied, the field quantities are more sensitive to Vac. The amplitudes of displacement and temperature
variation with the effect of altering voltage are 0.1 µm and 1 K, respectively, and 0.05 µm, 0.5 K with
direct voltage.
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4.2. Thermoelastic Behaviors of Micro-Comb Finger Vibration without Electrostatic Load

In order to measure the effect of electrostatic load on the thermal and vibration couple process, the
vibration with electrostatic load and without load is compared. The results are graphically presented
in Figure 5. Note that the longitudinal free vibration moves around the first resonance frequency.
From Figure 5, there is a quite obvious difference in the displacement under two different conditions.
The discrepancy is about 0.1 µm in displacement, and the temperature variation shows 1.0 K difference.
From the results, the thermoelastic coupling strength of micro-comb fingers with electrostatic load is
stronger than that without electrostatic load.Sensors 2016, 16, 1445 10 of 16 
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4.3. Micro-Comb Finger Thermoelastic Behaviors for Bending Vibration in Sense-Mode

When the gyroscope vibrates at the x axial then the resonator will vibrate at the y axial as
rotating force is applied to the z axial. The x axial is defined as drive-mode and y axial is called
sense-mode. The resonator performs longitudinal vibration at drive-mode and flexural vibration
at sense-mode. Then the thermoelastic behaviors of the resonator should be considered in terms of
transverse vibration. Figure 6 shows displacement and temperature variation of resonator bending
vibration. Temperature has the opposite variation with displacement. The resonator deflection shares
zero at the fixed end while the temperature has the maximum value. It is attributed to the presence
of maximum stress of the resonator’s fixed end, which results in the peak temperature at this point.
At the free end is also a similar trend.
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4.4. Simulation Results

In this section, models of the micro-comb finger in the presence of TED are investigated with
COMSOL Multiphysics software. A 3-D computational model that provides the approximation of TED
for both vibrations at drive-mode and sense-mode is developed. The geometry dimension is illustrated
in Table 1. The mesh generation is implemented by adopting the mapping approach. To eliminate the
effect of air on the resonator, the simulation is carried out under vacuum (below 0.01 mTorr). The initial
and mechanical boundary conditions are based on the former setting (Equation (8)). The forced
vibration characteristics at the first longitudinal mode are shown in Figure 7. The path analysis is
made through selecting a line along the x direction in the movable comb upper face. The results are
presented in Figure 8. It is observed that the longitudinal vibration u is symmetrically distributed at the
range of −0.752~0.752 µm and the temperature θ increases directly with the location at the resonator
length direction changing. Figure 9 provides the simulation results of vibration without electrostatic
load. The contour plots of the temperature distribution and the vibration deformation are presented.
From the figures, the maximum value of generated temperature is 5.210 K which is smaller than that
with electrostatic-actuated vibration. Moreover, the displacement maximum value is smaller than that
with forced vibration. The same analysis is applied in Figure 9, and the results are shown in Figure 10.
Compared with the electrostatic-actuated vibration, the temperature and displacement distribution
follow an similar pattern except for the extreme value. The sense-mode vibration characteristics are
shown in Figure 11, and the path analysis of numerical results is illustrated in Figure 12. The field
quantities of drive-mode and sense-mode are presented in Table 2, illustrating that the theoretical
values coincide with simulation results within some small errors. Moreover, from Table 2 it can be
seen that thermoelastic behaviors at sense-mode are more sensitive than those that at drive-mode.



Sensors 2016, 16, 1445 11 of 16

Sensors 2016, 16, 1445 11 of 16 

 

the figures, the maximum value of generated temperature is 5.210 K which is smaller than that with 
electrostatic-actuated vibration. Moreover, the displacement maximum value is smaller than that with 
forced vibration. The same analysis is applied in Figure 9, and the results are shown in Figure 10. 
Compared with the electrostatic-actuated vibration, the temperature and displacement distribution 
follow an similar pattern except for the extreme value. The sense-mode vibration characteristics are 
shown in Figure 11, and the path analysis of numerical results is illustrated in Figure 12. The field 
quantities of drive-mode and sense-mode are presented in Table 2, illustrating that the theoretical 
values coincide with simulation results within some small errors. Moreover, from Table 2 it can be 
seen that thermoelastic behaviors at sense-mode are more sensitive than those that at drive-mode.  

 
(a) (b)

Figure 7. Distribution of temperature and variation of displacement for electrostatically actuated 
longitudinal vibration: (a) temperature displacement; (b) displacement variation. 

 
Figure 8. The path analysis result of temperature distribution and displacement variation. 

 
(a) (b)

Figure 9. The temperature variation and displacement distributionfor longitudinal vibration without 
electrostatic load: (a) temperature variation; (b) displacement distribution. 

Figure 7. Distribution of temperature and variation of displacement for electrostatically actuated
longitudinal vibration: (a) temperature displacement; (b) displacement variation.

Sensors 2016, 16, 1445 11 of 16 

 

the figures, the maximum value of generated temperature is 5.210 K which is smaller than that with 
electrostatic-actuated vibration. Moreover, the displacement maximum value is smaller than that with 
forced vibration. The same analysis is applied in Figure 9, and the results are shown in Figure 10. 
Compared with the electrostatic-actuated vibration, the temperature and displacement distribution 
follow an similar pattern except for the extreme value. The sense-mode vibration characteristics are 
shown in Figure 11, and the path analysis of numerical results is illustrated in Figure 12. The field 
quantities of drive-mode and sense-mode are presented in Table 2, illustrating that the theoretical 
values coincide with simulation results within some small errors. Moreover, from Table 2 it can be 
seen that thermoelastic behaviors at sense-mode are more sensitive than those that at drive-mode.  

 
(a) (b)

Figure 7. Distribution of temperature and variation of displacement for electrostatically actuated 
longitudinal vibration: (a) temperature displacement; (b) displacement variation. 

 
Figure 8. The path analysis result of temperature distribution and displacement variation. 

 
(a) (b)

Figure 9. The temperature variation and displacement distributionfor longitudinal vibration without 
electrostatic load: (a) temperature variation; (b) displacement distribution. 

Figure 8. The path analysis result of temperature distribution and displacement variation.

Sensors 2016, 16, 1445 11 of 16 

 

the figures, the maximum value of generated temperature is 5.210 K which is smaller than that with 
electrostatic-actuated vibration. Moreover, the displacement maximum value is smaller than that with 
forced vibration. The same analysis is applied in Figure 9, and the results are shown in Figure 10. 
Compared with the electrostatic-actuated vibration, the temperature and displacement distribution 
follow an similar pattern except for the extreme value. The sense-mode vibration characteristics are 
shown in Figure 11, and the path analysis of numerical results is illustrated in Figure 12. The field 
quantities of drive-mode and sense-mode are presented in Table 2, illustrating that the theoretical 
values coincide with simulation results within some small errors. Moreover, from Table 2 it can be 
seen that thermoelastic behaviors at sense-mode are more sensitive than those that at drive-mode.  

 
(a) (b)

Figure 7. Distribution of temperature and variation of displacement for electrostatically actuated 
longitudinal vibration: (a) temperature displacement; (b) displacement variation. 

 
Figure 8. The path analysis result of temperature distribution and displacement variation. 

 
(a) (b)

Figure 9. The temperature variation and displacement distributionfor longitudinal vibration without 
electrostatic load: (a) temperature variation; (b) displacement distribution. 

Figure 9. The temperature variation and displacement distributionfor longitudinal vibration without
electrostatic load: (a) temperature variation; (b) displacement distribution.Sensors 2016, 16, 1445 12 of 16 

 

 
Figure 10. The path analysis results of temperature and displacement variation. 

 
(a) (b)

Figure 11. The temperature variation and displacement distribution for transverse vibration: (a) 
temperature variation; (b) displacement distribution. 

 
Figure 12. The path analysis results of temperature and displacement variation. 

Table 2. Field quantities simulation and analytical comparison results for vibration at drive-mode 
and sense-mode. 

Vibration Mode Displacement/µm Temperature/K 

Drive-mode 

Forced vibration 

Theoretical value 0.735 −0.735 5.943 0 

Simulation value 0.752 −0.752 5.977 0 

Error rate (%) 2.312 2.312 0.572 / 

Free vibration 
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Figure 10. The path analysis results of temperature and displacement variation.
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Table 2. Field quantities simulation and analytical comparison results for vibration at drive-mode
and sense-mode.

Vibration Mode Displacement/µm Temperature/K

Drive-mode

Forced vibration
Theoretical value 0.735 −0.735 5.943 0
Simulation value 0.752 −0.752 5.977 0

Error rate (%) 2.312 2.312 0.572 /

Free vibration
Theoretical value 0.667 −0.698 4.950 0
Simulation value 0.69 −0.750 5.210 0

Error rate (%) 3.448 3.448 5.252 /

Sense-mode
Theoretical value −2.966 0 0 7.85
Simulation value −3.17 0 0 7.98

Error rate (%) 6.878 / / 1.656

5. The Thermoelastic Damping and Quality Factor

In this section, the parameter of TED that characterizes the energy dissipation at the vibration
process is discussed. The thermal energy method will be used to calculate the thermoelastic damping.
Landau and Lifshitz derived expressions for energy dissipation due to thermoelastic coupling effect by
seeking the dissipated vibration energy, which is equal to the amount of heat flowing from a hot to
cold region [21]. The assumption is made that the lost energy per cycle of vibration is all transformed
into thermal energy. The dissipated energy is thus presented as:

∆W =
∫ 2π/ω

0

∫
V

κ

T0
(∇θ)

2

dVdt (32)
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The stored mechanical energy per cycle of vibration is:

W =
1
2

∫
V
(σε)dV (33)

From the above graphics, it can be found that the dissipated energy and stored mechanical energy
per cycle have been deduced. The TED is defined as below.

QTED = ∆W/2πW =
∫ 2π/ω

0

∫
V

κ

T0
(∇θ)

2

dVdt
/

π
∫

V
(σε)dV (34)

where σ and ε are the stress and strain under vibration process. On account of inverse Laplace
transformation of s domain to time domain, the dependence of TED on resonator material and
geometry dimension is deduced. It is difficult to find the inverse Laplace transformation in the
Laplace domain analytically, so the numerical results for different conditions are plotted in Figure 13.
The results show that as the resonator length increases, the TED first increases and then decreases.
Furthermore, there exists a critical size at which TED takes the maximum value. It is shown that
under different vibration modes, the TED reaches different peak values. TED for electrostatic-actuated
vibration at drive-mode is larger than that for free vibration, and TED of resonator vibration at
sense-mode is larger than that at drive-mode. For the movable comb resonator with 60 µm length,
TED at drive-mode of electrostatic-forced vibration and free vibration and sense-mode vibration
is 1.278 × 10−6, 1.212 × 10−6, 7.662 × 10−6 and the maximum TED value with critical size is
1.9 × 10−8 m, 3.6 × 10−8 m, 4.3 × 10−7 m, respectively.
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Once TED is known, the quality factor related to the TED in the tuning-fork resonator can be
calculated as

Q = Q−1
TED = 2πW/∆W (35)

The numerical results of Q are shown in Figure 14. It shows that with the vibration strength
increasing, the dissipated thermal energy also increased. Therefore, Q of the movable resonator for
vibration at sense-mode shares the minimum value. For an intuitive impression, the numerical result
Q within theoretical and simulation methods is listed in Table 3.
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Vibration
Mode

Drive-Mode
Sense-Mode

Forced Vibration Free Vibration

Theoretical
Value
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Value
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Rate %

Theoretical
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Frequency/HZ 4.406 × 108 4.409 × 108 0.068 4.403 × 108 4.406 × 108 0.068 2.264 × 108 2.261 × 108 0.133
TED 1.278 × 10−6 1.260 × 10−6 1.41 1.212 × 10−6 1.198 × 10−6 1.259 7.662 × 10−6 7.746 × 10−6 1.10

Q 7.825 × 105 7.937 × 105 1.47 8.251 × 105 8.347 × 105 1.163 1.305 × 105 1.291 × 105 1.07

Table 3 clearly shows that theoretical values are in line with simulation results within a small
fluctuation, verifying the theoretical model. We conclude that within vibration at sense-mode, more
mechanical energy is dissipated through thermal energy, and its quality factor is correspondingly
lower than that at drive-mode.

6. Experimental Verification

To verify the thermoelastic coupling effect on the tuning-fork resonator, the experimental
conclusions are used from the paper of Xu [22]. In Xu’s results, the model consists of a tuning-fork
comprised of a set of three flexural beams and two proof masses, and is fixed on the substrate through
the two anchors located at the center of the whole device. The study in this thesis focuses on one group
comb finger. According to the experimental conclusions from Xu, the quality factor expression can be
written as

Qmesured =
ωLio

Rio + R0
(36)

where Ro represents the external resistor.Lio, Rio is the equivalent circuit model of the tuning-fork
structure consisting of a RLC circuit in series, and the values of the equivalent electrical components of
the structure can be calculated as follows.

Lio =
M

V2
dc (dC/dx)2 , Rio =

√
k ·M

V2
dc (dC/dx)2 Q

where M and k are the modal mass and stiffness, respectively.
From Xu’s results, the TED for a whole device is the dominant loss in the drive-mode and

sense-mode of the tuning-fork structure, occupying as high as 76% of the total energy loss. The comb
finger parameters are substituted to the Q expression in Xu’s experimental research, which can obtain
the relationship between Q and resonator length. The comparison was made between the simulated
results of comb finger and the calculated results from Equation (36).

From the comparison results in Figure 15, the simulated Q values are about 10% smaller than
the results from Equation (36). According to Xu, the sum of electronics damping and anchor loss is
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about 20% of measured Q. The electronics damping is not considered in the simulation process, so the
simulated Q value is a little smaller than the calculated value. The analytical solution coincides with
the calculated results from Equation (36). The analytical conclusions are thus experimentally verified.
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Figure 15. The compared Q values of the drive-mode and sense-mode of micro-comb finger versus
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7. Conclusions

Aimed at the internal dissipation due to thermoelastic coupling in tuning-fork resonator, this
paper established the thermoelastic coupling governing equations for vibrations at drive-mode and
sense-mode. The numerical results of vibration displacement and the temperature which generated
in vibration process are then calculated, and the comparison is made between numerical results and
simulation results. From that, the calculated results of displacement and temperature coincide with
the FEM simulated results. Through the results, the generated heat due to the vibration process
shares a small magnitude. In other words, the loss energy enjoys a lower level compared with the
vibration energy. The temperature generated under three conditions is 5.943 K, 4.950 K and 5.210 K,
respectively. Also, the error between theoretical and simulated results is quite small. Additionally,
TED and Q are analyzed with theory and simulation. By means of other researchers’ experimental
conclusions, the analytical and simulated results can be verified. The TED numerical results have
the order of 10−6 for 60 µm length micro-comb finger at both drive-mode and sense-mode vibrations.
At the drive-mode vibration, the electrostatically actuated TED is slightly higher than that at the free
vibration. For the transverse vibration, the calculated value is 7.662 × 10−6, which is larger than the
drive-mode vibration. The comparison is thus made between the simulated Q value and the calculated
Q value based on Xu’s conclusion, thereby showing that the TED is the dominant loss for a gyroscope
with tuning-fork resonator in the drive-mode and sense-mode.
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