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Abstract: This paper presents a non-destructive test method for steel corrosion in reinforced
concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze
the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning
device and the measurement mode of the micro-magnetic sensor are introduced. The numerical
analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic
field leakage data obtained from magnetic sensor-based measurement and numerical calculation,
it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the
edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves
can be used to detect and evaluate the range of the inner steel corrosion in engineering structures.
The findings of this work propose a new and effective non-destructive test method for steel corrosion,
and therefore enlarge the application of the micro-magnetic sensor.

Keywords: steel corrosion; non-destructive test; micro-magnetic sensor; self-magnetic flux leakage;
numerical simulation

1. Introduction

Reinforced concrete is the most popular construction material in the world and widely used to
bridge construction due to the advantage of strong bearing, low-cost, and easy construction. However,
a major issue for reinforced concrete structures is the corrosion of the reinforcement steel bars exposed
to aggressive environmental conditions, such as a humid, saline-alkaline climate. The steel corrosion
makes a significant contribution to the failure of an engineering structure. Approximately 40% of
damages of engineering structure result from the steel corrosion and there is a loss of ~14 billion
dollars per year just in the United States. Therefore, the evaluation of corrosion in reinforced concrete
is very important for the management and maintenance of engineering structures. The traditional
nondestructive test techniques, such as electrochemical method [1], linear ultrasonic testing (UT) [2],
eddy current testing (ECT) [3], infrared thermography (IRT) [4], and X-ray diffraction (XRD) [5], are all
time-consuming technology or need expensive equipment for determining corrosion in the depth of
reinforced concrete.

Reinforcing steel bars are made from a typical ferromagnetic material, which is a very important
component of the reinforcing concrete structure. A defect (e.g., cracking, fatigue failure, stress
concentration and corrosion) in ferromagnetic materials can change the structure of magnetic domains
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and their macro-properties are consequently changed, such as magnetoconductivity, coercive force,
and hysteresis. This effect can be used for different applications in material science, especially in
the field of nondestructive testing by using magnetic measurement to evaluate the status of the steel
material in engineering structures, in particular to detect the stress-concentration, corrosion, and
failure-originated zones. A number of nondestructive magnetic techniques have been developed, such
as magnetic Barkhausen emission (MBE) [6], magnetoacoustic emission (MAE) [7], stress-induced
magnetic anisotropy (SMA) [8], and magnetic field leakage (MFL) [9–13]. The physical mechanics of
these techniques requires a strong magnetic field to magnetize the specimen for testing, and then detect
induced-related phenomena to evaluate the health status of a specimen, so these techniques could be
called active magnetic test methods. On the other hand, the shape and density of stimulated magnetic
fields differ from the characteristic of tested objects. These techniques are time-consuming and even
difficult to operate for some irregular structures [14]. For meeting the requirement of developing a
more simple and effective magnetic technique in engineering, a positive magnetic method called metal
magnetic memory (MMM) technique was proposed by A. A. Doubov in 1997 [15]. The advantage of
MMM technique is that the Earth’s magnetic field instead of an artificial strong field is used as the
stimulus source. Under the effect of the earth field and mechanical loads/defects, the self-magnetic
field leakage (SMFL) signals are generated from corroded or stress-concentration regions where the
tangential component reaches a maximum and the normal component transfers its polarity and has a
zero value. The MMM technique is suitable for many engineering practices [16–18], but up to now has
only been used as a qualitative test technique to determine the possible dangerous positions without
quantitative results. The more accurate and quantitative criteria are deficient and required for the
MMM technique.

In the present work, we introduce a passive magnetic test method to detect and evaluate the
corrosion of reinforcement steel bars in the reinforced concrete structure by detecting the SMFL from
the corrosion region. When a local corrosion happens, it brings a strong local corrosion pressure for
expanding of corrosion products, which breaks the magnetic continuity and improves the magnetic
resistivity of corrosion parts for the material loss and the magnetic-stress coupling [16,19]. The magnetic
permeability is accordingly changed because of the stress-magnetic effect of iron as a ferromagnetic
material. As a consequence, the SMFL is generated from the corrosion zone. By detecting and analyzing
the SMFL signal produced by the corrosion, the position and status of corrosion in the reinforced
concrete structure can be determined. This method does not need the equipment to actively excite a
magnetic field, it is an effective, time-saving, and easy-operation method to non-destructively test the
corrosion in the reinforced concrete structure.

The paper is organized as follows. In Section 2, the experimental setup and theoretical model
based on the micro-magnetic sensor are introduced. The experimental results and calculated data of
the SMFL signals are shown in Section 3, and the quantitative relationship between leaked magnetic
field and steel corrosion is given. In Section 4, we summarize all these results.

2. Experimental Setup and Theoretical Model Based on Micro-Magnetic Sensor

2.1. Experiment Details Based on Micro-Magnetic Sensors

The corroded specimens of reinforced concrete are prepared by electrochemical method as shown
in Figure 1. A steel bar is enwrapped by concrete, whose thickness T = 3 cm and the steel bar length
L = 150 cm. The corrosion level can be controlled by the corroded current and time according to the
Faraday law and the corrosion length can be controlled by the size of region infiltrated by electrolyte
(5% NaCl solution).

Figure 2 shows the self-designed 3-dimensional (3D) scanning device for magnetic field
measurement based on the 3D mechanical displacement system and the high-precision micro-magnetic
sensor. The mechanical displacement system consists of 3D aluminum track and bracket system,
stepping motor driver, and a hollow bar for supporting the sensor. The displacement accuracy of
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the stepping motor driver is as high as 0.1 mm. To improve the stability of the supporting bar when
moving, a cable-stayed-like structure was used in the scanning device. The Honeywell HMR 2300
magnetometer is employed as the micro-magnetic sensor. It is a three-axis smart digital magnetometer,
and the three axes oriented in orthogonal directions of HMR 2300 can measure the X, Y and Z vector
components of a magnetic field. The output range of this micro-magnetic sensor is ±2 Gs with a
resolution to less than 70 µGs.Sensors 2016, 16, 1439 3 of 10 
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2.2. Theoretical Model for Measured Data

In order to establish a physical model for the SMFL signals from a corrosion region, a linear model
considering the redistribution of magnetic charge in the corrosion zone is presented. Magnetic charge
is an equivalent model, which has been developed to simulate the magnetic field leakage [20–23]. For a
ferromagnet, its exterior magnetic field would be considered to originate from the magnetic charge:
ρ = −∇·M. M is the magnetization satisfying M = (µr − 1)HmL, where µr is the relative magnetic
permeability and HmL is the Weiss field which is the effective field producing self-magnetization in the
ferromagnet. It is obvious that the quantity of charge is decided by the magnetization M, and then is
only decided by µr when the Weiss field HmL is fixed. In other words, the magnetic charge is changed
with the magnetic permeability of the material. For the steel bar under a local mechanical stress, the
magnetic permeability would change due to the stress-magnetic effect. As a result, magnetic charge
changes accordingly in these zones. For simplicity, here a phenomenological model is built in which a
linear charge distribution is adopted.

As shown in Figure 4, we assume a defect with width 2b and depth h at the bar surface when
the steel bar is partially lost due to the corrosion. Under the earth magnetic field, the dislocated
magnetic charge is concentrated at both ends of the corrosion zone. Moreover, the corrosion induces
a strong pressure stress on the steel bar and there exists a local stress concentration in the corrosion
zone. For this reason, a redistribution of magnetic charge occurs at the bottom of the corrosion zone.
The magnetic charge density in the corrosion zone can be expressed as

ρ(x, y) =


ρmax, (x = −b,−h < y < 0)
−ρmax, (x = b,−h < y < 0)
−ρmax

x
b , (−b < x < b, y = −h)

(1)

where ρmax denotes the maximum charge density, and the charge density is considered as the uniform
distribution at the edges of the corroded region for simplicity.Sensors 2016, 16, 1439 5 of 10 
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As shown in Figure 5, the self-magnetic leakage field at a space point (x, y) generated by the
charge elements of the three regions can be expressed by Equation (2), respectively.

dH1(x, y) = ρ(x′ ,y′)dy′

2πµ0r1
2 r1

dH2(x, y) = −ρ(x′ ,y′)dy′

2πµ0r2
2 r2

dH3(x, y) = ρ(x′ ,y′)dx′

2πµ0r3
2 r3

(2)

where µ0 denotes the magnetic permeability in the air, r1, r2, and r3 denote the space vectors from the
charge element to the space point, respectively.
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Thus, the x and y components of total leaked magnetic field at space point (x, y) can be obtained
by the integral of Equation (2). It can be expressed as

Hx(x, y) = ρmax
2πµ0

(
arctan( y+h

x+b )− arctan( y
x+b )

)
− ρmax

2πµ0

(
arctan y+h

x−b − arctan y
x−b

)
+ ρmax

2πµ0b

(
2b− (y + h)

(
arctan b−x

y+h − arctan−b−x
y+h

))
+ ρmax

2πµ0b

(
x
2 ln (b−x)2+(y+h)2

(b+x)2+(y+h)2

)
Hy(x, y) = ρmax

4πµ0
ln (x+b)2+(y+h)2

(x+b)2+y2

− ρmax
4πµ0

ln( (x−b)2+(y+h)2

(x−b)2+y2 )

− ρmax
2πµ0b

(
(y+h)

2 ln (b−x)2+(y+h)2

(b+x)2+(y+h)2

)
− ρmax

2πµ0b

(
x
(

arctan b−x
y+h − arctan−b−x

y+h

))

(3)

3. Results and Discussion for Steel Corrosion Based on Micro-Magnetic Sensor

First, we scanned the magnetic field around the two samples and obtained the tangential field
(Hx) distributions as shown in Figures 6 and 7, respectively. For the existence of demagnetization
field of steel bar and the earth magnetic field, the Hx is nonzero, but the x-Hx curves at different LFH
are almost parallel to each other for no damaged condition. There is no curve intersection, as shown
in Figures 6a and 7a, which is a typical Hx distribution for a healthy steel bar. Figure 6b–d plot the
Hx dependent on the sensors position of sample #1 for the corrosion time of 96 h, 120 h, and 144 h,
respectively. It is obvious that all the curves with different LFH intersect to two points when the
samples are corroded. The distances between two intersecting points are 16.0 cm, 17.5 cm, and 18.5 cm
for the different corrosion time, respectively. The longer the corrosion time is, the closer the distance is
to the length of corrosion region. A similar result is found from the measurement for sample #2 for
which curves are shown in Figure 7b–d. The result indicates that the position and regions of corrosion
can be obtained by analyzing the SMFL signals outside of reinforced concrete.

For testing the real corroded area, the partial concrete has been removed to expose the corroded
zone of the steel bar after magnetic detection. The morphology of the corrosion zone is shown in
Figure 8. It can be found that the corrosion is actually not serious because the average corrosion
depth is ~2 mm. Even the screw threads of the steel bar are not completely removed in the corroded
zone. This means that the material removal is not the leading factor for the SMFL, but the corrosion
pressure is.

For better understanding the experimental results, the tangential component Hx of self-magnetic
leakage field outside of concrete can be determined according to Equation (3). Figure 9 shows the Hx
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distributions affected by the corrosion length (the value of 2b in the Figure 4). Clearly, the phenomena
observed in the experiment have been captured in this model. The peaks of x-Hx exhibit the center of
the corrosion region. Furthermore, it can be found that the x-Hx curves at different lift-off height (the
value of y in Figure 5) all intersect at the same two points observed in the experiments. The distance
∆x between the intersecting points is enlarged by increasing corrosion length and ∆x almost equal to
the corrosion length.Sensors 2016, 16, 1439 7 of 10 
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4. Conclusions

In this work, by detecting and analyzing the SMFL signals outside of corroded reinforced concrete
using a micro-magnetic sensor, we find that the x-Hx curves obtained at different lift-off heights all
intersect at the same points and the distances between intersecting points are basically equal to the
length of the corrosion region. By a linear magnetic charge model, the distribution of Hx component is
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simulated and the intersection of curves is also found in the calculated results. This means that the
corrosion improves the magnetic resistivity of the steel bar and produces magnetic charge concentration
in the corrosion region, which generates this abnormal magnetic field distribution. The results propose
a new magnetic NDT technique to detect and evaluate the inner corrosion in engineering structures
using high-resolution micro-magnetic sensors. This method has many advantages over traditional
techniques. It is a simple, inexpensive and efficient method to non-destructively test the corrosion in
the reinforced concrete structure.
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