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Abstract: This paper deals with the transduction of strain accompanying elastic waves in solids
by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by
guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic
strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain
conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is
studied. FEM analyses show that severe distortions of the interferometric response occur when the
attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain
transduction are presented for typical transducer shapes. They are used to compute input-output
relationships for the transduction of narrow-band strain pulses as a function of the mechanical
wavelength. The described approach applies to many transducers depending on the distributed
interaction with the investigated object.
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1. Introduction

Ultrasonic waves are convenient means to investigate the structural integrity of extended
objects [1–8]. Elastic waves in solids may propagate over considerable distances as various modes of
bulk waves, Rayleigh waves [9], Love waves [10] and Lamb waves [11], for example. Lamb waves
are easily excited in the device under test by attached piezoelectric actuators [3,4,12]. Damages in
the investigated object influence ultrasonic waves’ propagation or excite secondary partial waves.
Elastic waves may be visualized in a contactless manner by laser Doppler vibrometry, but they
are typically probed with attached transducers that are sensitive to strain variations induced by
elastic waves in the specimen [13]. A technically elegant way to perform such investigations is
to use a single piezoelectric transducer for both the excitation and detection of elastic waves [12].
However, piezoelectric strain transducers suffer from interferences by electromagnetic fields generated,
for example, during piezoelectric actuation of the elastic waves to be detected [14–16]. Fiber-optic
strain transducers, on the other hand, are beneficial because of their nearly perfect immunity to
external electromagnetic fields [17,18]. Even more, in contrast to piezoelectric strain transducers, the
attached lightweight optical waveguide has no relevant mechanical resonances and causes negligible
mechanical loading to the investigated specimen, which simplifies the analysis of the system behavior.

Fiber Bragg grating (FBG) transducers are very common devices for the transduction of elastic
waves [8]. FBGs make use of localized modulations of the characteristics of an optical waveguide.
Periodic modulation of waveguide parameters in the axial direction form a grating that shapes the
spectral transmission characteristic of such modified fiber sections. Subsequently, strain applied along
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the FBG region results in a shift of this spectral transmission characteristic, which can be evaluated
with a suitable optoelectronic signal processing system.

As an alternative approach, interferometric fiber-optic transducers rely on the strain dependence
of fiber-intrinsic properties [19,20]. Such transducers comprise typically two fiber arms, i.e., a segment
of an optical waveguide that is firmly attached to the investigated specimen and an unperturbed
reference fiber. They are complemented by an optical arrangement that ensures interference between
the light waves of measurement and reference waveguide. Pronounced directional, as well as perfect
omnidirectional detection characteristics can be achieved, depending on the shape of the interacting
fiber segment. At high ultrasound frequencies, however, the dimensions of all kinds of attached
transducers may become comparable to the wavelength of the elastic waves, which may impair the
fidelity of the readout signal. The bulk of the paper is devoted to a study of this generic situation, and
intrinsic fiber optic strain transduction is well suited for such a study.

Some fundamentals of strain conversion with optical waveguides are sketched in Section 2.
Section 3 describes a finite element model aiming at the evaluation of transduction distortions.
Furthermore, an analytical model is presented enabling conversion efficiency studies for various
configurations of distributed fiber-optic strain transduction. The related results will be presented in
Section 4.

2. Interferometric Strain Transduction

2.1. All Fiber Interferometer

The fiber-optic transducer illustrated in Figure 1 relies on a photodetector (PD), a sufficiently
coherent light source (LCS) and a 2 × 2 fiber coupler together forming a Michelson interferometer.
The coupler links the sensing and the reference fiber segment, both at the secondary ports to the light
source branch and the detector branch on the primary side. Nearly monochromatic light generated by
the source is split in the coupler and guided, e.g., towards two single-mode fiber coils. A segment of the
sensing fiber is tightly attached to the specimen that exhibits elastic deformation. Therefore, changes
of the optical path length of this wave guide will occur in relation to the reference segment. Through
the 2 × 2 coupler, part of the reflected waves of both the reference and sensing branch is guided to
the PD. Interference of the partial waves takes place at the photodetector and can be evaluated by
standard techniques.

PD

Strain

Mirror

Mirror

Ref. Coil

2x2
Coupler

Sensing Coil

LCS

Figure 1. Fiber-optic Michelson interferometer for strain transduction. The sensing fiber coil is bonded
to the specimen, which is strained by an elastic wave. The produced light from LCS and the light
reflected at the fiber’s end are split/recombined in the coupler.

2.2. Fiber-Intrinsic Strain Effects

The elastic wave propagating in the plate causes oscillatory material particle movement, which
influences the attached optical waveguide fiber. Deformation of the fiber changes its length L, diameter
D and, because of the photo-elastic effect, the effective refraction index neff(λ) of the fiber material.
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The variation of the fiber cross-section size has been shown to have negligible impact on light guidance
compared to concurrent length changes [21].

The optical path length of a fiber segment is the product of the effective refractive index of the fiber
neff and its physical length L. Changes in the refractive index4neff, as well as changes in the optical
fiber length4L modulate the optical path length. Due to reflection at the end faces of the measurement
and reference waveguide, the optical phase shift ϕ between light emission and re-entrance at the
secondary ports of the coupler is given by:

ϕ = 4πneffL/λ0, (1)

when the interferometer is in balance. λ0 denotes the free space wavelength of the guided light.
Uniform axial strain caused by an elastic wave along a predetermined interaction path, which is
defined by the attached fiber segment itself, changes neff, as well as L. Hence, the total propagation
delay is converted into changes of phase ∆ϕ,

∆ϕ ∝ ∆ (neff L) = neff ∆L + L ∆neff. (2)

In general, the variation of the fiber length is given by the path integral of the local fiber axis strain.
Using the average strain ε =

´
L ε dl of the fiber, the first term on the right hand side of

Equation (2) reads:
neff4L = neff ε L (3)

while4neff can be computed from [17]:

4ne f f = 0.5 n3
0 ε (ν (P11 + P12)− P12) ≈ −0.314 ε. (4)

Here, Pij and ν are the photo-elastic constants and the Poisson number of silica, respectively. According
to [17], the relevant photo-elastic tensor elements are P11 = +0.121 and P12 = +0.270; n0 = 1.456 is
the refraction index of the relaxed fiber at the preferred wavelength of 1310 nm, and ν = 0.17. Hence,
Equation (2) becomes:

4(neff L)= 0.686 neff ε L. (5)

Roughly speaking, the index change compensates nearly 30% of the propagation delay caused by
the geometric stretch of the fiber length alone [21]. However, the simple relation Equation (5) conceals
a rich variety of sensing peculiarities. As the sensitivity of the interferometric fiber-optic transducer
increases with the interacting length of the fiber, it is advisable to shape the attached fiber segment into
a flat, multi-turn spiral form. Then, the local angle θ between the fiber axis and strain orientation at
the plate surface varies, and the sensitivity to local strain is governed by the cosine of θ. Furthermore,
the extension of the spiral coil may easily exceed the wavelength λM of the elastic waves, leaving us
with the problem of distributed detection and related signal distortions by convolution of the detector
characteristic with the strain field of the exciting wave. For this study, it has to be assured whether or
not the repercussion of the attached silica fiber on the elastic perturbation in the specimen is negligible
at least to a first order approximation.

The main questions to be answered by finite element analysis (FEA) are: (i) What is the conversion
efficiency of the transducer? (ii) Are there severe repercussion effects of the attached silica fiber coil to
the investigated plate? (iii) What detection characteristics result, considering typical wavelengths of
ultrasound diagnostics and the design of the fiber segment (spiral coil or straight)?

2.3. Previous Work

In prior work, we have established a small-scale FEA suite for studies of fiber-optic Lamb wave
transduction [22]. Fundamental symmetric Lamb waves were excited by suitable boundary conditions,
and the propagation of related wave pulses could be observed with transient FEA. Such small-scale
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models are beneficial with respect to computational efforts, but multiple reflections at the model
boundaries reduce the useful time span of such studies. However, using this approach, it was possible
to demonstrate that mechanical reactions owing to an attached fiber-optic transducer are only weak [22].
These efforts focused specifically on attached fiber segments shaped in the form of a flat spiral, which
enables omnidirectional transduction.

In order to verify the fiber optical transducer function, a FEM model comprising a thin aluminum
plate with an attached five-turn spiral monomode optical fiber was assembled. Aluminum 3003-H18
material (ρ = 2730 kg/m3, E = 69 GPa, ν = 0.33, loss factor 0.001) was used for the plate of thickness
d = 0.75 mm and a 4.5 cm × 12.5 cm area. A silica monomode fiber with 125 µm diameter, protected
by an acrylic coat of 250 µm outer diameter was slightly adapted to obtain an economic simulation
model. For fast simulations, the circular fiber cross-section was approximated by a square shape with
a side length of 250 µm, and the material parameters E = 14.3 GPa, ν = 0.22 and ρ = 431.95 kg/m3

were adjusted according to the cross-section ratios of the fiber, coating and model. A single-sine burst
pressure signal:

p (t) = sin (2π f0t) · [sin (π f0t/N))]2 , 0 < t < N/ f0, (6)

with N = 2 was imposed parallel to the x-axis at one edge face of the plate that is oriented
perpendicular to this axis, where f0 = 100 kHz denotes the center frequency of the wave packet. As
the resulting dilatational perturbation excites exclusively the compressional S0 Lamb wave mode, the
related strain is also oriented parallel to the x-axis and related to the x-derivative of the x-displacement.
The simulated y-displacement induced by the attached fiber coil turned out to be in the order of 1% of
the primary x-displacement.

Figure 2 displays a representative snapshot of the simulated surface strain taken at 10.6 µs of
elapsed time.

Time =1.06e-5,  Surface: Strain tensor, X component [mm]

Figure 2. FEM result for comprising a five-turn spiral-wound fiber replacement of outer diameter
2R = 25 mm on an aluminum plate. Color code: x-component of S0 wave strain at 10 µs.

The interferometric signal was derived from the total length change of the edge length of the
spiraled fiber. This strain conversion corresponds to an integration along the fiber axis of the local fiber
stretching ε by the local strain given by ε2 =~a · G ·~a, where G denotes Green’s deformation tensor and
~a the unit vector in the axial direction. Interferometric conversion by an attached fiber involves a spatial
convolution operation of the propagating strain field with the spatial fiber sensitivity characteristic.
Of course, the convolution result is directly mapped to the time domain in the case of negligible velocity
dispersion. Fortunately, FEA results for compressional waves revealed a nearly constant propagation
velocity for the simulated frequency band centered at 100 kHz. The actual propagation velocities
could be estimated from the further progress of the strain pattern shown in Figure 2. At f0 = 100 kHz,
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a group velocity of 5250 m/s results. The corresponding transducer response is shown in Figure 3
together with the wave strain variation at the center of the spiral to emphasize the significant temporal
stretch of the transducer output.
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-0.5

0

0.5
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1.5
Normalized FEM results, 100 kHz S0

spiral fiber elongation
wave strain

Time [µs]

Figure 3. Simulated elongation of a five-turn fiber spiral in response to the shown single-sine strain
pulse excitation with f0 = 100 kHz.

Based on the estimated propagation velocity and the actual size of the fiber coil, the strain response
can also be computed by an analytical model, which is described in detail below. Instead of a spiral
coil, the analytical model assumes a semicircular shape of the fiber, and the results are then multiplied
by a factor of 10 for comparison with the FEM results for a five-turn fiber spiral.

2.4. Remaining Scientific Topics

The finite extension of the region of contact between the strain transducer and the carrier of the
elastic perturbation may cause severe distortions of transduced strain pulses, as Figure 3 demonstrates.
The transduction of strain pulses depends on the actual transducer shape governing the orientation of
the attached fiber segments with respect to the wavefront of the guided elastic wave. In the following,
the pulse transduction distortions are studied for some important configurations of the fiber-optic
strain transducer using the approved FEA approach.

The transducer output pulses may show severe distortions for short wavelengths λM, which
requires an appropriate measure for the conversion efficiency. As the elastic wave-based diagnostic
usually depends on wave pulses, the detectability of such pulses is a key issue. The ratio of the
distorted transducer output pulse energy over the strain pulse energy proved to be a useful quantity
for this purpose. On the basis of this performance figure, a sort of transfer function can be computed,
based on a fixed strain pulse shape, but varying center frequency f0. The presented approach uses the
popular sine-burst wave pulse family and the assumption of a constant propagation velocity.

3. Modeling of Specific Optical Fiber Configurations

A modified FEM model according to Figure 4 was designed to simulate the response of circular and
straight fiber optic transducer segments simultaneously. Instead of a spiral wound fiber, the aluminum
plate of 0.75 mm thickness bears a half-circle-shaped fiber imitation adjacent to the symmetry plane
of the model that is complemented by a straight segment, which spans the diameter of the circle.
Assuming negligible loading effects, the model enables the computation of the elongations of circular,
as well as straight transducer configurations.



Sensors 2016, 16, 1433 6 of 14

Semicircular fiber segment

Straight fiber segment

Figure 4. FEM model exhibiting a snapshot of a 100-kHz plane S0 strain pulse, with the aluminum
plate as the monitoring structure. The attached sensor fiber segment is at the same time a straight piece
and a semicircle.

Analytical Model for Input-Output Analyses

Guided waves are typically produced by piezoelectric ceramic devices glued to the plate.
Depending on the device shape and the distance between the source and sensing transducer, various
shapes of the guided wavefront are observed. In this section, some fundamental consequences of the
guided wave detection with circular fiber-optic transducers are discussed. To quickly cover the typical
convolution characteristics for plane and circular crested plate waves, as well, an analytical model of
fiber optic strain conversion has been established. This model is capable of examining wave strain
conversion by a straight piece of fiber inclined at a preselected angle to the propagation direction.
Furthermore, transduction by a circular bent fiber of radius R can be treated for plane and circular
crested wavefronts, where a center to center distance d = 2R was chosen for explicit results in the
latter case. At last, the analytical approach is also used to model the frequency dependence of the
strain pulse conversion.

To enable a straightforward treatment of circular and straight transducer fiber, plane Lamb waves
are given preference. Fortunately, at large distances from any actuator, initially curved wavefronts
become nearly flat. Consequently, the obtained behavior is also typical for circular fiber transducers
located far from the site of arbitrarily-shaped actuators.

Figure 5 explains the interaction of a plane wavefront (colored vertical bar) with a circularly bent
fiber. The pure compressional wave is assumed to propagate along the x1-direction, and therefore, the
wave related strain εS at the plate surface is also parallel to x1. The wavefront under consideration
crosses the circle at a distance X < R from the center. Then, the cosine of the crossing angle ϕ between
surface strain orientation and the tangent to the fiber circle is given by:

cos ϕ = Y/R =
√

1− X2/R2.

Neglecting any repercussion on the wave by the attached fiber, the axial strain of the fiber at the
wavefront cross-over location is given by εS · cos[ϕ(X)]. Simply put, cos[ϕ(x1)] is the spatial sensitivity
characteristic of the circular fiber in the case of plane compressional waves. To obtain the total length
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change of the circular fiber at a specified moment t0, the effect of the momentary snapshot of the wave
strain εS (x1, t0) has to be integrated along the full circular path:

2 ·
ˆ R

−R
εS (x1, t0) · cos[ϕ (x1)]dx1, (7)

where we took advantage of the x1-axis symmetry. To compute the time dependent response to a
compressional wave, the propagation of the wavefront must be considered. This is most easily done
for stable wave packet shape functions, i.e., non-dispersive waves. Then, a time shift dτ corresponds
to a wavefront propagation distance dx1 = vPH · dτ. In other words, the strain pattern is shifted by dx1

with respect to the circular integration path or the sensitivity function is shifted against the snapshot
of the wave strain pulse by the same amount. The complete response of the circular fiber to a compact
wave packet can be computed from a convolution integral of the momentary spatial shape of the
strain pulse and the fiber sensitivity curve in the space domain. If the strain pulse has a duration
of τP, its spatial extension measures l = τP · vPH , and the total convolution response requires a shift
distance ≥ (l + 2R). Hence,

f (x) =

x0+l+Rˆ

x0−R

εS (ξ)w (x− ξ)dξ, (8)

where εS (ξ) denotes the strain pulse snapshot in the space domain, starting at ξ = x0, and:

w (x) = 2
√

1− x2/R2, x2 < R2 (9)

is the sensitivity function of the circular bent fiber, where the factor of two results from the two
intersections of the wavefront and the full circle.

x1

x2

Y

X

R

wavefront

Circular
fiber segment

(strain)

Figure 5. Derivation of the strain conversion by circular fibers for plane compressional waves.

For circular crested waves emerging from a center at distance d from the center of the fiber circle,
the window functions for radial and tangential (hoop) strain conversion, wr (x) and wt (x), follow
from basic geometrical relations as:

wr (x) = 2d ·
√

1− x2/R2/
√

d2 + R2 − 2dx, x2 < R2 (10)

and:

wt (x) =
(

2xd− R2
)

/
√

d2 + R2 − 2dx, x2 < R2, (11)
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respectively. While the radial strain accompanying circular crested elastic waves is given by the
gradient of wave displacement, the hoop strain is in proportion to the radial wave displacement
divided by the radius of the wavefront curvature. Extrema of both wt (x) and wr (x) occur where the
wavefront is perpendicular or parallel to the fiber circle.

For a single straight fiber of length 2R oriented in the propagation direction of a plane
compressional wave, one obtains:

ws (x) = 1, x2 < R2, (12)

whereas for the same fiber segment, but inclined at an angle Θ relative to the propagation direction:

wi (x) = cos Θ, x2 < (R · cos Θ)2 (13)

follows. Figure 6 depicts window functions over x/R for some of these cases, showing the strong
influence of both the active transducer segment and the wavefront shapes on the strain conversion.

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

0.5

1.0

1.5

2.0

plane wavefront, straight fiber

plane wavefront, circular fiber

circular wavefront, circular fiber, radial

circular wavefront, circular fiber, tangential

Figure 6. Normalized window functions for strain conversion by straight (Θ = 0) and circular optical
fibers. Plane and circular wavefronts are considered. The circular crested waves emerge at a distance
d = 2R.

It is obvious that the convolution integral of Equation (8) extends the response f (x) by 2R or
2R cos Θ compared to the strain pulse εs (x) for any window function of Figure 6.

For dispersion-free waves, the argument of the response has to be replaced to get the temporal
response, i.e., g (t) = f (x/vPH), that is then prolonged by 2R/vPH compared to the duration of
the strain pulse at any fixed position. For strain pulses accompanying dispersive modes of elastic
waves, Equation (8) has to be modified by replacing εS (ξ) with εS (ξ, t) to account for the temporal
development of the wave strain.

4. Results

4.1. Transduction Distortions

Due to the distributed transduction of the wave strain, we observe a strong frequency dependence
of the transduction signal fidelity. At low frequencies, where λM � 2R = D, the transducer output
signal exhibits a minor temporal stretch compared to the wave strain. Figures 7–10 depict the input
wave strain for an S0 sine-burst wave of pulse length N = 2 (see Equation (6)) and the related
transducer outputs for both a straight and a semicircular shape of the attached fiber. Both fiber
segments extend over a distance D along the propagation direction of the wave. In order to display
the signal distortions due to the distributed sensing clearly, all displayed FEM results are normalized
with respect to their magnitudes.
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Figure 7. Low frequency transduction of plane wave strain by a circular and a straight fiber optic
transducer. The fiber extent D is λM/4 with λM = vPH/ f0.

For λM = 2D the temporal stretch of the transducer signals becomes obvious in Figure 8, where
the straight fiber causes the larger temporal stretch.

5 10 15 20

-1.5

-1

-0.5

0

0.5

1

1.5
Normalized FEM results, 100 kHz S0
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Figure 8. Plane wave S0(100 kHz) strain and converted signals for both transducer elongation
configurations for λM = 2D.

For λM = D, the transducer signal shapes exhibit severe deviations from the wave strain time
dependence; see Figure 9. The simulated wave strain exhibits a trailing undulation as a result of the
non-vanishing dispersion of the fundamental compressional mode.
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Figure 9. Time dependence of plane wave strain and circular/straight transducer output signals for
λM = D.
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Figure 10 shows FEM results for f0 = 400 kHz, which corresponds to 2λM = D. The integral
over the wave strain signal that equals wave displacement is shown to illustrate its affinity with the
convolution of wave strain with the two-step functions included in Equation (12), i.e., the processing
by the straight transducer. The period between the positive and negative peak of the elongation signal
corresponds to the passage time of the pulse D/vph, i.e., 25 mm/5.25 kms−1= 4.76 µs.

5 10 15 20
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Normalized FEM results, 400 kHz S0

λM/D = 0.5

circular fiber elongation
straight fiber elongation
wave strain
wave displacement

Time [µs]

Figure 10. Extremely distorted outputs of straight and circular fiber transducers in response to the
indicated plane wave strain and displacement result for short mechanical wavelengths 2λM = D.

4.2. Pulse Energy Transduction

4.2.1. Wavelength Dependence of Straight Fiber Transducers

It seems instructive to consider conversion efficiencies for the fixed displacement magnitude, as
well as the fixed strain magnitude of the applied waves. Constant strain means that the displacement
magnitude increases proportionally to the wavelength λM of the elastic wave, whereas for constant
displacement amplitude, the strain amplitude varies in proportion to λ−1

M .
To derive a figure of merit for the transduction in the case of severe signal distortions, there is no

generally applicable procedure available. If signal fidelity is not feasible, a criterion for the detection
threshold could be of primary interest. For this purpose, the peak-signal ratio of the transducer signal
and the exciting strain signal may be used, for example. Such performance figures, however, are
vulnerable in the case of significant measurement noise. We, therefore, suggest to relate the mean
pulse energy of the distorted transducer signal to the mean pulse energy of the exciting signal as an
appropriate measure of the transducer efficiency.

Figure 11 depicts analytically-computed energy conversion efficiencies of an attached straight
optical waveguide of length D for various plane wave pulses based on Equations (8) and (12).
Three types of sine-burst pulses according to Equation (6) with N = 2, 4 and 20 were considered.
At long wavelengths of the elastic wave, the wave strain does not vary significantly along the attached
fiber, and the energy of the output signal pulse saturates. Towards short wavelengths, the wave
strain varies along the attached fiber segment, and severe convolution distortions take place, leading
to a decrease of the conversion efficiency by about 30 dB/decade. For sufficiently long sine-burst
strains, e.g., for N = 20, the conversion efficiency exhibits marked notches when the length of the
attached fiber measures a multiple of the center wavelength of the elastic wave, i.e., D/λ approaches
an integer value.

Figure 12 depicts the conversion efficiency for elastic waves of a straight segment of attached fiber
when the maximum displacement of the wave pulse is kept constant. Towards short wavelengths
λM � D, the conversion efficiency decreases with decreasing wavelength of the elastic wave by about
10 dB/decade due to severe convolution distortions, which are not completely compensated by the
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increasing peak strain. Towards very long wavelengths, the squared signal magnitude decreases with
increasing wavelength by 20 dB/decade according to the decrease of the wave strain.
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Figure 11. Normalized energy conversion of various sine-burst pulses by a straight fiber segment as a
function of λM/D. The wave strain magnitude is kept constant.
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Figure 12. Normalized energy conversion of various sine-burst pulses by a straight fiber segment as a
function of λM/D. The wave displacement magnitude is kept constant.

The effect of the inclined incidence of elastic waves on the straight transducer efficiency can be
seen from Figure 13. Any tilt between the fiber axis and strain normal direction of the wave results in a
reduction of the efficiency at long wavelengths according to the cosine function of the enclosed angle.
However, the stretching of the apparent wavelength along the fiber axis, which is proportional to the
scans of the same angle, slows down the decrease of the transduction efficiency at short wavelengths.
Thus, in this region, more inclination between fiber and wavefront may enhance the strain conversion,
as the characteristics for N = 2 and the 45° and 60° inclination of Figure 13 reveal.
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Figure 13. Conversion efficiency of a straight fiber segment oriented parallel or inclined to the wave
propagation direction as a function of λM/D.

4.2.2. Wavelength Dependence of Circular Fiber Transducers

The response of a circular fiber transducer to elastic waves is omnidirectional. Figure 14 shows the
normalized efficiency of the strain pulse conversion of a semicircular optical waveguide as a function
of the center wavelength of an elastic plane wave pulse. Figure 15 depicts the efficiency of pulse energy
transduction by circular fiber segments for constant wave strain magnitude.
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Figure 14. Normalized energy conversion of various sine-burst pulses by a circular fiber segment as a
function of λM/D. The wave strain magnitude is kept constant.

Compared to the straight fiber transducer, the circular configuration shows a significantly worse
transduction efficiency at short wavelengths. The notches of the circular characteristics do not coincide
with the 1/N fractions of the center wavelength to diameter ratio.

The normalization of the conversion efficiency graphs hides the absolute values. For uniform
strain or very long wavelengths, the output signal of a straight fiber transducer of length D, oriented
in parallel to the propagation direction, exceeds that of a semicircular fiber of diameter D by a factor
of 4/π. Because of the weighting function Equations (9) and (12), the output of the straight fiber is
exceeded by a factor of π/2 by complementing the semicircle to a full turn.
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Figure 15. Normalized energy conversion of various sine-burst pulses by a circular fiber segment as a
function of λM/D. The wave displacement magnitude is kept constant.

5. Conclusions

The modeling of wave strain conversion using fiber-optic interferometry and compact strain
pulses was successfully performed for several shapes of attached fiber segments at a broad range
of ultrasonic wavelengths. The fiber-intrinsic conversion of wave strain demands for a finite length
of rigid mechanical coupling between the optical fiber and the investigated body. This interaction
length determines, on the one hand, the magnitude of the conversion efficiency and, on the other
hand, its frequency dependence. In the time domain, distorted transduction takes place whenever the
interaction length approaches the order of magnitude of the wavelength of the elastic perturbation.
Small-scale FEM models are well suited to characterize distortions owing to distributed transduction.
The shown examples of signal distortions were obtained with FEM analysis. The frequency dependence
of pulse energy conversion, as well as the spatial conversion characteristics were derived from
analytical models of the fiber-based strain transduction. The results are typical for all detection
techniques of wave strain if the involved transducer employs a distributed conversion that extends
over a significant fraction of a half wavelength. Further extensions of the presented analytical approach
may comprise the transduction of dispersive elastic waves. Moreover, the interaction of circular
crested elastic waves with circular, as well as arbitrarily-oriented straight fiber segments will be of
substantial interest.
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