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Abstract: This paper addresses the problem of the joint estimation of system state and generalized
sensor bias (GSB) under a common unknown input (UI) in the case of bias evolution in a
heterogeneous sensor network. First, the equivalent UI-free GSB dynamic model is derived and
the local optimal estimates of system state and sensor bias are obtained in each sensor node;
Second, based on the state and bias estimates obtained by each node from its neighbors, the UI
is estimated via the least-squares method, and then the state estimates are fused via consensus
processing; Finally, the multi-sensor bias estimates are further refined based on the consensus
estimate of the UI. A numerical example of distributed multi-sensor target tracking is presented to
illustrate the proposed filter.
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1. Introduction

The well-known Kalman filter is optimal given a linear Gaussian model, but its performance
will deteriorate in the presence of unknown biases, such as the unknown and time-varying delays
in chemical processes [1–4], faults or failures in fault-tolerant diagnosis and control systems [5,6],
registration errors in multi-sensor fusion [7–10], or inertial drift in navigation [11–14]. In general, such
a bias is represented as an unknown input (UI) to the nominal model. To the best of our knowledge,
approaches to UI modeling and the design of corresponding filters typically fall into one of the
following categories.

The first type of UI is zero-mean random noise with unknown covariance. In the case of the
stationary noise processes in linear dynamic systems, the covariance can be identified via Bayesian
or maximum likelihood estimation. A corresponding filter has been applied for orbit determination
for near-earth satellites [15,16]. Recently, this type of filter design has been extended to time-varying
covariance [17] and jump Markov stochastic systems [18]. Furthermore, an M-robust estimator [19]
has been derived for the simultaneous adaptive estimation of unknown states and observation noise
statistics. An auto-covariance least-squares method [20] has been presented to achieve lower-variance
covariance estimates along with the necessary and sufficient conditions for the uniqueness of the
estimated covariances. By treating unknown covariances as missing data, the adaptive estimation
problem has been transformed into a problem of the joint optimization of state estimation and
parameter identification, allowing it to be solved in an expectation-maximization (EM) iterative
processing framework [21].

The second type of UI is unknown but deterministic. Using least-squares estimation and
moving-window hypothesis testing, the corresponding filters can cope with cases in which the UI is
piecewise constant [22] or a sum of basis functions with piecewise-constant weights [23]. The problem
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of state estimation with UIs in both dynamic and measurement models has been addressed using a
joint EM optimization scheme for state estimation, parameter identification and iteration termination
decision-making [24], and this approach has been extended to a distributed EM algorithm for sensor
networks [25], and further extended to an adaptive divided difference filter for nonlinear system with
multiplicative parameters [26].

The third type of UI is completely arbitrary, without the availability of any prior knowledge about
its evolution. An asymptotically stable and UI-decoupled observer has been derived [27] based on the
condition that the rank of its distribution matrix must be less than that of the UI. For the case in which
the UI appears only in the process equation, a combination of least-squares estimation and the Kalman
filter has been proposed for joint state and UI estimation, and the necessary and sufficient condition
for the existence of such a joint estimator has also been presented [28]. In addition, this result has been
extended to the case in which the UI appears in both the process and measurement models [29].

The fourth type of UI is norm-bounded, and robust offline filters have been designed to minimize
the gain of the transfer function from the UI to the estimation error [30]. As an alternative approach,
a method of linear minimax regret estimation has been developed to minimize the worst-case regret
over all bounded data [31].

The fifth type of UI is characterized by a randomly switching parameter obeying a known
Markov chain. The corresponding solutions fall within the scope of multiple model estimators [32–37],
such as the interacting multiple model (IMM), which is well known in maneuvering-target tracking.
Motivated by the concept of establishing a general framework for joint state estimation and data
association in clutters for the tracking of a maneuvering target, the linear minimum-mean-square-error
(MMSE) estimator has been derived for discrete-time Markovian jump linear systems with stochastic
coefficient matrices [38].

In general, the filters discussed above are UI-specific because of the significant differences between
both the different types of UIs and the solutions designed to address them. However, in many practical
applications, much more complicated UIs may be encountered. Recently, the minimum upper bound
filter (MUBF) was proposed for a linear stochastic system corrupted by a generalized UI representing
an arbitrary linear combination of dynamic UIs, random UIs, and deterministic UIs [39]. The result
was further extended to a discrete-time non-linear stochastic system with a UI in its measurements,
and an iterative optimization method for joint estimation and parameter identification was derived [40].
In multi-sensor bias estimation [41], the concept of a generalized sensor bias (GSB) has been proposed,
which is represented by a dynamic model driven by a structured UI. By deriving an equivalent
state-free measurement model and the corresponding UI-free dynamic model for the GSB, the LMMSE
can be obtained via the orthogonal principle.

However, the application of the resultant filter is limited to the case in which all sensors have
an identical measurement matrix, and only the GSB can be estimated. This problem motivates us to
present and solve the problem of the joint estimation of the system state and the GSB under a UI in the
case of GSB evolution.

This paper presents the joint estimation of the system state and GSB under a common UI in the
case of bias evolution in a heterogeneous sensor network. To the best of the author’s knowledge, this is
the first attempt to achieve this kind of the joint estimation. In detail, a two-stages cooperative strategy
for pursuing consistent estimates in the distributed network is proposed. First, a joint UI-free evolution
model is derived, along with its necessary and sufficient conditions for existence. In the derived model,
the process noise and measurement noise are correlated. And the optimal local MMSE estimator with
correlated noise is obtained. Second, based on the local estimates, the global estimation of the target
state and UI are further achieved by network consensus. Through utilizing the global estimation of UI,
the GSB is refined. The optimal estimates of the target state, GSB and UI are finally obtained.

Throughout the paper, the superscripts “−1” , “T” and “+” represent the inverse, transpose, and
Moore-Penrose operations, respectively; “I” and “0” represent the identity matrix and the zero matrix,
respectively, of the proper dimensions; “0m×n” represents the zero matrix with dimensions of m× n;
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diag{·} indicates a diagonal matrix; col{·} denotes column augmentation; E{·} denotes the operator
of mathematical expectation; the superscript i indicates a matrix or variable related to the ith sensor;
rank{·} denotes the rank of the specified matrix; the subscripts “i”and “j” indicate the ith and jth
subblocks of a matrix, respectively; the superscripts “∧” and “˜” indicate the estimate and residual,
respectively, of a random vector; the subscripts “k|k + 1”represents the estimate of a vector at the time
k using measurements up to time k + 1 and

⊗
denotes the Kronecker product.

2. Problem Formulation

Sensor bias (SB) is widespread in multi-sensor systems and originates from two types of sources:
SBs of the first type are local SBs (LSBs), which are independent among sensors, such as calibration
error, navigation bias and sensor faults/drift, whereas sensor biases of the second type are global SB
(GLSB, also called UI in this work),which are common to all sensors, such as electronic countermeasures
(ECMs) in target tracking. A GSB model has been proposed based on dynamic evolution driven by both
independent LSBs and a common UI [41]. However, the corresponding filter has two shortcomings:
first, all sensors must have an identical measurement matrix, and second, the system state and the UI
cannot be estimated simultaneously because the SB estimation is obtained by deriving the equivalent
GSB model neglecting system state and UI. Here, we present the two assumptions adopted in our work.

Assumption 1. All measurements made by sensors in the network are continuously interrupted by the GSB,
which includes LSBs and GLSB.

Assumption 2. The network topology is fixed, and the target can be monitored by all sensors throughout the
entire process. There is no fusion centre or lead sensor in this sensor network. In other words, all sensors are
equal in status, and they reach a network consensus by exchanging information with their neighbours.

Consider a scenario of collaborative target tracking within a sensor network, as shown in
Figure 1. A target is continuously moving within a surveillance zone. Each sensor node obtains
raw measurements of the target corrupted by the GSB. At each step, each sensor obtains local estimates
of the target state and GSB, exchanges its local system-state estimate with its neighbors, and obtains
fused estimates of the target state and UI via network consensus. In other words, this sensor fusion
process can be regarded as the joint distributed estimation of the target state, GSB and UI without the
limitation that all sensor measurement matrices must be identical.
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Figure 1. Collaborative target tracking in sensor network.
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Consider a network of s sensor nodes. The network topology is represented by an undirected
graph G = (V , E ,A), where V = {1, 2, ..., s} denotes the set of nodes; E ⊂ V × V is the set of permissible
communication links; and A =

[
aij
]

is the graph topology matrix, the elements of which are defined as

aij =

{
1, (i, j) ∈ E or i = j
0, (i, j) /∈ E

Let Ni =
{

i ∈ V : aij > 0, i 6= j
}

denote the set of neighbors of the ith sensor, and let
Ji = Ni ∪ {i} denote the inclusive neighbor set of sensor i. Here, the presented network is assumed
to be a connected graph. Otherwise, at least two separate sub-networks would exist, and hence,
information could only be fused within each sub-network instead of throughout the entire network
because information could not be exchanged between the two.

Here, we formulate the following problem of distributed sensor fusion in the presence of
time-varying sensors subject to a common UI:

xk+1 = Φkxk + ζk, (1)

yi
k+1 = Hi

k+1xk+1 + Ni
k+1bi

k+1 + vi
k+1 (2)

bi
k+1 = Fi

kbi
k + Gi

kdk + wi
k (3)

where xk ∈ <n is the state vector; yi
k ∈ <

mi is the measurement vector of the ith sensor;
bi

k ∈ <
pi is the ith GSB, where i = {1, 2, ..., s}; dk ∈ <q is the common UI; and ζk, wi

k and vi
k are

all independent, zero-mean, Gaussian, white-noise components with covariances of Qk, Si
k and Ri

k,
respectively. The initial target state x0 and ith GSB state bi

0 are Gaussian distributed with respective
known means of x̄0 and b̄i

0 and associated covariances of Σx
0 and Σi,b

0 . Φk, Hi
k, Ni

k, Fi
k, and Gi

k are
known and have appropriate dimensions. Under the assumption that mi > pi ≥ qi, the Gi

k are of full
column rank.

Our aim is to design an unbiased minimum-variance filter to jointly estimate the target state xk,
the GSBs bi

k and the UI dk given the distributed measurements recorded up to time k.

Remark 1. The GSB bi
k in Equation (3) represents a generalized bias which includes multiple bias types as the

special case:
(1). If Fi

k = I, Gi
k = 0, Si

k = 0, then bi
k+1 = bi

k represents a constant-value bias.
(2). If Fi

k 6= 0, Gi
k = 0, then bi

k+1 = Fi
kbi

k + wi
k represents a time-varying bias with known dynamic model.

(3). If both Fi
k = 0, Gi

k = 0, then bi
k+1 = wi

k represents a zero-mean random error.
(4). If Gi

k 6= 0, then bi
k represents the dynamically evolving bias driven by arbitrary UI.

The second type of the UI mentioned in the introduction is equivalent to the case (1).
The third type of the UI mentioned in the introduction is equivalent to the case (4).
The first and fourth types of the UI mentioned in the introduction can be contributed to the case (4) when

these two types of UI can be decoupled from Equation (3).
The above four types of UI can be accommodated within the single-model system proposed in this work.

However, for the fifth type of UI mentioned in the introduction, it is usually regarded as a randomly switching
parameter obeying a known Markov chain which is classified to the multiple-models system, so this type of UI
cannot be accommodated within the presented model in this work. Nevertheless, for this type of UI, if GSB model
can be established for the each mode of Markov chain. According to Equation (3), GSB model can be written as

bi,j
k+1 = Fi,j

k bi,j
k + Gi,j

k dk + wi,j
k , j = 1, 2...r (4)
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where r represents the number of states of the Markov chain. Meanwhile, according to Equation (10),
the decoupling condition of the corresponding GSB model can be also confirmed as

rank
(

H̄i
k+1Ḡi,j

k

)
= rank

(
Ḡi,j

k

)
, j = 1, 2...r (5)

These decoupling conditions for a UI obeying a Markov chain are more stringent than those considered
in this work, as Equation (5) must hold for every r. Then the fifth type of UI can be accommodated within the
proposed framework.

Remark 2. There are two distinct strategies of networked sensor fusion. The first is the centralized
strategy [41,42], i.e., all sensors transmit their measurements to a fusion centre, which is responsible for
integrated data processing for state estimation and/or parameter identification. The second is the distributed
strategy [25], i.e., each sensor processes its own measurements and then shares its processing results with
its neighbors in an iterative manner to achieve consistent fusion. Obviously, the distributed fusion strategy
allows the computational burden to be shared among sensors and consequently is more desirable for large-scale
networks. However, distributed fusion is much more complex, involving both local processing and global fusion.
Currently, distributed fusion in the presence of time-varying sensor biases driven by a common UI remains an
open problem.

Remark 3. Concerning our proposed problem, there exist two possible solution approaches. One is iterative
optimization between state estimation and UI identification, as in the well-known expectation-maximization
(EM) scheme [25]. As shown later via simulation, the EM scheme is not desirable here because it must treat the
UI as a constant or slowly varying parameter in each iterative window. The other approach is UI decoupling plus
state estimation, which serves as the basis for our proposed method, as derived later. The main technical difficulty
of this approach is to determine how to adaptively decouple the UI and then fuse the local state and UI estimates.

3. Main Results

Because of the presence of the UI, the target state and GSB cannot be estimated directly. In this
section, an equivalent UI-free dynamic model of the bias is derived and the necessary and sufficient
conditions for the UI-free model are explored. Afterwards, optimal estimators, in the sense of minimum
variance, are proposed for the target state xk and the local GSBs bi

k.

3.1. Local LMMSE Filter for System State and Local SB

Lemma 1. For matrices Γ, Ψ and I with proper dimensions, if the matrix Ψ is of full column rank, the equality

Ψ
[

I − (ΓΨ)+ (ΓΨ)
]
= 0 (6)

will hold if and only if
rank{ΓΨ} = rank{Ψ} (7)

Proof. See Appendix A.

For convenience of derivation, the model defined in Equations (1) and (2) can be rewritten
as follows:

zi
k+1 = Ai

kzi
k + Ḡi

kdk + ζ̄ i
k (8)

yi
k+1 = H̄i

k+1zi
k+1 + vi

k+1 (9)

where zi
k = col{xk, bi

k}, Ai
k = diag{Φk, Fi

k}, Ḡi
k = col{0n×q, Gi

k}, ζ̄ i
k = col{ζk, wi

k} and

H̄i
k =

[
Hi

k Ni
k

]
. It is easy to find that S̄i

k
.
=E
[
ζ̄ i

k
(
ζ̄ i

k
)T
]
=diag{Qk, Si

k}.
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Theorem 1. (UI decoupling). Consider the system model defined in Equations (8) and (9). If and only if

rank
(

H̄i
k+1Ḡi

k

)
= rank

(
Ḡi

k

)
(10)

then the UI will be decoupled from zi
k+1, i.e., there will exist the following UI-free dynamic model of the

sensor bias:
zi

k+1 = F̄i
k Ai

kzi
k + C̄i

kyi
k+1 + B̄i

kw̄i
k (11)

where

Πi
k =

(
H̄i

k+1Ḡi
k

)+
(12)

C̄i
k = Ḡi

kΠi
k (13)

F̄i
k = In+pi − C̄i

k H̄i
k+1 (14)

w̄i
k = col{ζ̄ i

k, vi
k+1} (15)

B̄i
k =

[
F̄i

k −C̄i
k

]
(16)

Proof. See Appendix B.

Remark 4. If the matrices Γ and Ψ satisfy Equation (7), then the row rank of the matrix Γ should be no less than
the column rank of the matrix Ψ in Lemma 1. As shown in Equation (10), this means that the maximum number
of UIs that can be decoupled from the system must be fewer than the number of independent measurement
components of all sensors.

As shown in Equation (11), the measurements yi
k are introduced into the equivalent bias dynamic

model to decouple dk from bi
k. Defining Q̄i

k
.
=E
(

w̄i
k
(
w̄i

k
)T
)

and Mi
k+1

.
=E
(

B̄i
kw̄i

k

(
vi

k+1

)T
)

, we have

Q̄i
k = diag{S̄i

k, Ri
k+1} (17)

Mi
k+1 = −C̄i

kRi
k+1 (18)

Here, Mi
k+1 6= 0 means that the process noise w̄i

k is correlated with the measurement noise vi
k.

Thus, designing an unbiased minimum-variance linear filter for the system defined in Equations (1)
and (2) is equivalent to finding the MMSE estimation for the system defined in Equations (9) and (11)
with correlated process noise and measurement noise.

Theorem 2. The MMSE estimators for the UI-free system defined in Equations (9) and (11) have the following
recursion relations:

ẑi
k+1|k = F̄i

k Ai
k ẑi

k|k + C̄i
kyi

k+1 (19)

Pi
k+1|k = F̄i

k Ai
kPi

k|k

(
F̄i

k Ai
k

)T
+ B̄kQ̄k

(
B̄i

k

)T
+ C̄i

kRk+1

(
C̄i

k

)T
(20)

ẑi
k+1|k+1 = ẑi

k+1|k + Ki
k+1

[
yi

k+1 − H̄i
k+1ẑi

k+1|k

]
(21)

Pi
k+1|k+1 = Pi

k+1|k − Ki
k+1

[
H̄i

k+1Pi
k+1|k +

(
Mi

k+1

)T
]

(22)

where the estimator gain is

Ki
k+1 =

[
Pi

k+1|k

(
H̄i

k+1

)T
+ Mi

k+1

] [
H̄i

k+1Pi
k+1|k

(
H̄i

k+1

)T
+ H̄i

k+1Mi
k+1 +

(
H̄i

k+1Mi
k+1

)T
+ RT

k+1

]−1
(23)
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Proof. The term C̄i
kyi

k+1 is an additive known input. Equations (9) and (11) are linear, with additional
Gaussian noise. Hence, the optimal filter with correlated process noise and measurement noise [43]
can be directly utilized.

The framework and pseudo-code for the proposed local MMSE estimation are presented in
Figure 2 and Table 1, respectively.

Equivalent system state evolution model

 Equivalent UI-free state evolution model

( )
( )

[ ]

1 1

1 1

1

1 1 1

where

k+ k k k k k+ k k

+

k k k+ k k k k k+ k

k k k k k k

k k k+

z = F A z + C y + B w

   F I C H C G = H G

            B F C w = col

            H H N

vz +

+ +

= - = Õ Õ

é ù= -ë û

=

System model

Joint estimation of state and biases

1k+y
+1k

z

1k k k k
x x z+ = F +

Target state evolution model

1k+ k k k k k
b = F b + G d + w

Sensor bias evolution model

+1 +1 +1 +1 +1 +1k k k k k k
y = H x + N b + v

Measurement model

1

where ( ) ( , )

( , ) ( , )

kk+ k k k k

k k k k k k

kk n q k k k

z = A z + G d + ζ

A =diag ,F z col x b

G col 0 G ζ col ζ w´

F =

= =

k
ζ

k
d

k
w

1k+
v

1
ˆ

k+
x

1
ˆ

k +
b

Figure 2. The scheme of joint MMSE estimation of the state and the SB.

Table 1. Pseudo-code for the local MMSE estimation.

Check the Applicability of the Method
Step 1: Check the existence condition given by Equation (10). If the condition is satisfied, then perform
the following computation. Otherwise, the proposed method is not applicable.

Offline Equivalence Transformation
Step 2: Construct the equivalent system-state evolution model by defining F̄i

k, Ai
k, C̄i

k, B̄i
k, and w̄i

k
using Equations (12)–(16).
Step 3. Determine the parameters Πi

k and Mi
k using Equations (12) and (18).

Online Estimator Implementation
Step 4: Initialize the estimators: Pi

0|0 = Pi(0) and zi
0 = zi (0).

Step 5: Compute the predictions ẑi
k+1/k and the corresponding covariances Pi

k+1|k using Equations (19) and (20).
Step 6: Calculate the filter gains Ki

k+1 using Equation (23).
Step 7: Obtain the ẑi

k+1/k+1 and the corresponding covariances Pi
k+1|k+1 using Equations (21) and (22).

Step 8: Set k = k + 1 and go to Step 1.

3.2. Consensus Estimation of the Target State and the UI

Given the local estimate ẑi
k+1|k+1 of the ith sensor derived in the previous section, each sensor

exchanges its own estimates with its neighbours to reach consistent consensus estimates of xk and dk.
The corresponding consensus estimates consist of two parts: an average consensus filter for xk and a
distributed least-squares (DLS) estimate for dk.



Sensors 2016, 16, 1407 8 of 23

3.2.1. Local LS Estimator of UI

Let us rewrite the sensor bias evolution model defined in Equation (3) as

Gi
kdk = bi

k+1 − Fi
kbi

k − wi
k

= b̂i
k+1|k+1 − Fi

k b̂i
k|k +

(
b̃i

k+1|k+1 − Fi
k b̃i

k|k − wi
k

)
= b̄i

k + ξ i
k

(24)

where b̄i
k = b̂i

k+1|k+1 − Fi
k b̂i

k|k and ξ i
k = b̃i

k+1|k+1 − Fi
k b̃i

k|k − wi
k. ẑi

k+1|k+1 is the unbiased estimate of zi
k+1

in Section 2. It is easily confirmed that E
(
ξ i

k
)
= 0. We can rewrite Equation (24) as the following

compact expression:
Gkdk = Bk + ξk

where Gk = col
{

Gj
k : j ∈ Ji

}
, Bk = col

{
b̄j

k : j ∈ Ji

}
, and ξk = col

{
ξ

j
k : j ∈ Ji

}
Furthermore, based on the local GSB estimates of the ith node and its neighbours, the local DLS
estimate of dk and the corresponding covariance of the ith sensor are obtained as follows:

d̂i
k = GT

k (Gk)
−1 GT

k Bk (25)

Pdd,i
k =

(
GT

k Gk

)−1
(26)

3.2.2. Average Consensus Filter for the Target State and the UI

Now, estimates of the target state and the UI have been obtained, but they are local. In other words,
the estimates from different nodes are not identical to each other. Therefore, an average consensus
fusion (ACF) is presented here to obtain a uniform result at each node via iterative interaction.

LetW (l) =
[
wij (l)

]
denote the linear weight matrix in the lth step of iteration. Here, wij (l) is the

measurement weight of node j at node i, which satisfies

s
∑

j=1
wij (l) = 1

s
∑

i=1
wij (l) = 1

wij (l) ≥ 0

LetW x
k (l) =

[
wx

ij (l)
]

andWd
k (l) =

[
wd

ij (l)
]

represent the weight matrices for the target state and
the UI, respectively.

Given the consensus covariances of the state estimate and bias estimate of node i after the lth
iteration, denoted by Pxx,i

k|k (l) and Pdd,i
k (l), respectively, we design the weight matrices as follows:


wx

ij (l + 1) =
tr
[(

Pxx,j
k|k (l)

)−1
]

∑
t∈Ji

tr
[(

Pxx,t
k|k (l)

)−1
] j ∈ Ji

wx
ij (l + 1) = 0 otherwise

and 
wd

ij (l + 1) =
tr
[(

Pdd,j
k (l)

)−1
]

∑
t∈Ji

tr
[(

Pdd,t
k (l)

)−1
] j ∈ Ji

wd
ij (l + 1) = 0 otherwise

such that local estimates of higher accuracy will be assigned higher weights in the weighted
fusion process.
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Then, the initial values can be set to x̂i
k|k (0)

.
= x̂i

k|k, d̂i
k (0)

.
= d̂i

k, Pxx,i
k|k (0) .

= Pxx,i
k|k , and

Pdd,i
k (0) .

= Pdd,i
k , where x̂i

k|k and Pxx,i
k|k are subblocks of ẑi

k|k and Pi
k|k, respectively, i.e., ẑi

k|k =

[
x̂i

k|k
b̂i

k|k

]

and Pi
k|k =

[
Pxx,i

k|k Pxb,i
k|k

Pbx,i
k|k Pbb,i

k|k

]
.

Theorem 3. Consider the multi-sensor system defined in Equations (1)–(3), with topology G = (V , E ,A) and
weight matrices

[
wx

ij(l)
]

and
[
wd

ij(l)
]

for the target state and UI, respectively, at the lth step of iteration.
The ACFs for xk and dk are

x̂i
k|k (l + 1) = ∑

j∈Ji

wx
ij (l) x̂j

k|k (l) (27)

d̂i
k (l + 1) = ∑

j∈Ji

wx
ij (l) d̂j

k (l) (28)

where

Pxx,i
k|k (l + 1) = ∑

j∈Ji

wx
ij (l)

[
Pxx,j

k|k (l) + x̂j
k|k (l)

(
x̂j

k|k (l)
)T
]
− x̂i

k|k (l + 1)
(

x̂i
k|k (l + 1)

)T
(29)

Pdd,i
k (l + 1) = ∑

j∈Ji

wd
ij (l)

[
pdd,j

k (l) + d̂j
k (l)

(
d̂j

k (l)
)T
]
− d̂i

k (l + 1)
(

d̂i
k (l + 1)

)T
(30)

Proof. See Appendix C.

In the ith node, Equations (27)–(30) will remain iterative until∣∣∣tr [Pxx,i
k|k (l + 1)

]
− tr

[
Pxx,i

k|k (l)
]∣∣∣

tr
[

Pxx,i
k|k (l)

] ≤ ηx (31)

and ∣∣∣tr [Pdd,i
k (l + 1)

]
− tr

[
Pdd,i

k (l)
]∣∣∣

tr
[

Pdd,i
k (l)

] ≤ ηd (32)

where ηx and ηd are positive thresholds for system state and UI, respectively.

3.2.3. Refinement of the Local Bias Estimates

After the consensus iteration of x̂i
k|k and d̂i

k−1, the sensor biases can be refined according to
Equation (3), that is,

b̂i
k|k = Fi

k−1b̂i
k−1|k−1 + Gi

k−1d̂i
k−1 (33)

where d̂i
k−1 is the consensus estimate at the kth sampling instant. The covariance of b̂i

k|k is as follows:

Pbb,i
k|k = Fi

k−1Pbb,i
k−1|k−1

(
Fi

k−1

)T
+ Gi

k−1Pdd,i
k−1

(
Gi

k−1

)T
+ Si

k−1 (34)

Thus, the estimates b̂i
k|k, Pbb,i

k|k , x̂i
k|k, Pxx,i

k|k , d̂i
k−1 and Pdd,i

k−1 will be output as the final results at the kth
sampling instant.

The framework and pseudo-code for the iterative consensus process are presented in Figure 3
and Table 2, respectively.
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Figure 3. The scheme of the consensus estimation process for the target state and the UI.

Table 2. Pseudo-code for the consensus estimation.

Formulate the Local Information Before Transmission
Step 1: Calculate the estimators b̄i

k using Equation (24).

Exchange Information with All Neighbours of the ith Sensor
Step 2: Exchange Gi

k, x̂i
k|k, Pxx,i

k|k , and b̄i
k with all neighbouring sensors.

Formulate the Local LS Estimators of the UI
Step 3: Define the parameters Gk and Bk.
Step 4: Use the exchanged information to calculate d̂i

k−1 and Pdd,i
k−1 via Equations (25) and (26).

Consensus Estimation after Transmission
Step 5: Set l = 1, x̂i

k|k (0) = x̂i
k|k, Pxx,i

k|k (0) = Pxx,i
k|k , d̂i

k−1 (0) = d̂i
k−1 and Pdd,i

k−1 (0) = Pdd,i
k−1.

Step 6: Calculate the ACF estimators x̂i
k|k (l) and Pxx,i

k|k (l) using Equations (27) and (29).

Step 7: Calculate the ACF estimators di
k−1 (l) and Pdd,i

k−1 (l) using Equations (28) and (30).
Step 8: If Equations (31) and (32) hold, go to Step 9; otherwise, set l = l + 1 and go to Step 6.

Refine the Local Sensor Bias Estimators after Consensus
Step 9: Refine the estimates bi

k|k and Pi,bb
k|k using Equations (33) and (34).

Step 10: Set k = k + 1 and go to Step 1.

Remark 5. In this paper, a fusion algorithm for multiple cooperative sensors subject to interference from GSBs
is proposed. However, when this algorithm is applied to continuous target tracking in a wireless sensor networks
(WSN), a new problem should be considered. Because of the sensors’ limited detection capabilities and low energy
storage, a WSN is divided into many clusters. Each cluster forms a sub-WSN and is responsible for tracking
the target for a certain period of time. When the target moves out of the surveillance area of the current cluster,
one or more new clusters must be generated dynamically; thus, a strategy for generating such clusters must be
proposed. This strategy must specify how to choose the leader and followers in each cluster and how to transmit
estimate information between clusters. This problem will be an interesting topic for future research regarding the
joint optimization of signal processing and distributed cooperative detection. Currently, this topic has been tried
in our research group [44].

Remark 6. For the case of multiple-target tracking with dense clutter, the association relationships between
the targets and measurements are unknown. Therefore, the problem of data association must be considered
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when our proposed algorithm is applied for multiple-target tracking. To this end, the optimal estimation for a
single target must be extended to the joint optimization of state estimation and target identification for multiple
targets. However, because of the limited detection capabilities of nodes in a WSN, as also mentioned in Remark 5,
a WSN is often divided into many clusters, each of which monitors only a relatively small region. Consequently,
the probability of multiple targets being present in any single cluster is statistically low. Therefore, our algorithm
is focused only on single-target tracking.

4. Numerical Example

Consider examples of distributed networks tracking one constant-velocity target. The target state
is [xk, ẋk, yk, ẏk]

T , where [xk, ẋk]
T and [yk, ẏk]

T represent the target’s Cartesian position and velocity
on the x and y axes, respectively. The sampling interval is T = 1 s, and the number of the samples
is 60. Each sensor node synchronously measures the position of the target at each sampling instant.
The measurements of each sensor node are corrupted by a local dynamic system bias, and all local
system biases originate from a common UI. This situation can be modelled using Equations (1) and (3)
with the following parameters:

Φk = I2 ⊗
[

1 T
0 1

]
, Fi

b =

[
−0.05 −0.84
0.5170 0.8069

]
, Gi

k =

[
2.58
−2.5008

]
, Hi

k =

[
1 0 0 0
0 0 1 0

]

The initial position of the target is [0, 0]T , in units of m, and the initial velocity is [50, 60]T , in m/s.
The initial value of the bias is b̄i

0 = [1, 1]T , in m. The covariance matrices are as follows (all in m2/s4):

Ri
k =

[
16 0
0 16

]
, Qk = 0.01× I2 ⊗

[
T2/2

T

]
×
[

T2/2 T
]

, Si
k =

[
0.36 0.342

0.342 0.3249

]

4.1. A Distributed Network of Twelve Sensors

Consider an example of a distributed network of twelve sensors, and the matrices Ni
k for the

12 sensor nodes are

N1
k = diag (3,−5) , N2

k = diag(7, 1), N3
k = diag(−3, 7), N4

k = diag(4,−6),

N5
k = diag(7, 3), N6

k = diag(2,−8), N7
k = diag(−7, 5), N8

k = diag(3, 8),

N9
k = diag(2,−5), N10

k = diag(7, 4), N11
k = diag(−9, 8), N12

k = diag(8, 4)

The dimensions of the surveillance area are 16 km × 14 km. The topological map is depicted in
Figure 4a, and the sensors’ true locations and the target trajectory are depicted in Figure 4b.

The UI, plotted in Figure 5, is

dk =



0m 0 < t ≤ 5
5× sin π(t−5)

10 m 5 < t ≤ 25
0m 25 < t ≤ 35
0.5× (t− 45)m 35 < t ≤ 55
0m 55 < t ≤ 60

The histograms shown in Figure 6 depict the numbers of steps of iteration for different thresholds.
Clearly, the number of iterations required for consensus increases with a decreasing threshold.
Moreover, when the threshold is greater than 0.1, the number of iteration steps varies only slowly.
However, when the threshold is less than 0.1, the number of iteration steps increases sharply, and the
computational cost is dramatically increased. Considering both calculation and accuracy, the consensus
threshold values for both target state and UI estimation are chosen to be ηx = ηd =0.1.
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Figure 4. Examples of networks with 12 sensor nodes: (a) Graph-topological map of the network
(b) Sensors’ real locations and target trajectory.
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Figure 5. Real unknown input in the multi-sensor system.
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Figure 6. The mean numbers of iteration steps for (a) state and (b) UI estimation with
different thresholds.

In accordance with Theorem 2, the rank of the filter matrix is rank
(

H̄i
k+1Ḡi

k

)
=rank

(
Ḡi

k
)
= 1,

which satisfies Equation (10).
The proposed algorithm is compared with the EM algorithm [25] in this simulation. The iteration

threshold for the EM algorithm is δ = 10−4, and the processing window length is l = 5. We also apply
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the standard Kalman filter, neglecting the presence of a UI. The estimation of the Kalman filter shows
that the fusion performance will deteriorate considerably when bias exists in the sensor measurements.

Because of the page limitation and the similarity in the data variation trends among the simulated
sensors, only the estimation results for the fourth sensor are presented here. Figures 7 and 8 show the
target-state estimation errors for the Kalman filter (called ‘KF’), the EM method, and the proposed
method without consensus (called ‘DP no consensus’) and with consensus (called ‘DP consensus’).
It can be seen that in the DP methods, the UI is decoupled from the system. Furthermore, the estimation
error of the DP consensus method is less than that of the DP no consensus method, and the estimation
accuracy is also improved for the DP consensus method. It is also observed that the estimation
results based on the KF and EM methods are not as good as those achieved using the DP methods.
Two reasons for these findings can be identified. One is that the UI is ignored in the KF method,
causing the KF algorithm to become invalid. The other is that the UI is assumed to take a constant
value in the iterative process of the EM method. Similar conclusions can also be drawn from the results
of the sensor bias estimation, as shown in Figure 9.
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Figure 7. State estimation errors in the x direction using the KF, DP consensus, DP no consensus and
EM methods for sensor 4. (a) position estimation; (b) velocty estimation.
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Figure 8. State estimation errors in the y direction using the KF, DP consensus, DP no consensus and
EM methods for sensor 4. (a) position estimation; (b) velocty estimation.
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Figure 9. Bias estimation errors using the KF, DP consensus, DP no consensus and EM methods for
sensor 4. (a) x-axis; (b) y-axis.

The estimation errors for the UI based on the DP methods with and without consensus are plotted
in Figure 10. It can be seen that the UI estimation error is greatly reduced by the consensus processing.
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Figure 10. UI estimation errors of the DP consensus and DP no consensus methods for sensor 4.

The mean and peak values of the estimation errors for the target state [x, ẋ, y, ẏ]T and the bias
[bx, by]T based on the KF, EM and DP methods are listed in Tables 3 and 4, respectively. It can be
seen from Table 3 that the mean estimation error values of the DP consensus method are all smaller
than those of the KF, EM and DP no consensus methods. As shown in Table 4, the peak estimation
error values are also smallest for the DP consensus must. Thus, the proposed method is proven to
be effective.

The run times are also compared as listed in Table 5. It can be seen that the run time for the DP no
consensus method is merely 0.33 s because of its non-iteration operation. After iteration, the run time
of the DP consensus method is 4.89 s, which is nevertheless shorter than the 6.57 s required for the
EM method.

Table 3. Comparison of mean estimation error values.

x ẋ y ẏ bx by

KF (m) 1.18 0.48 −2.66 0.29 1.16 −0.28
EM (m) 26.83 0.79 32.33 0.91 −6.89 5.76

DP no consensus (m) −10.87 −0.26 18.81 0.63 2.92 −1.51
DP consensus (m) 0.19 0.09 −9.55 0.27 −1.37 0.39
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Table 4. Comparison of peak estimation error values.

x ẋ y ẏ bx by

KF (m) 76.27 6.21 48.52 3.76 19.11 17.07
EM (m) 62.26 10.81 59.95 10.30 19.84 12.33

DP no consensus (m) 30.55 1.71 46.73 4.56 9.47 8.12
DP consensus (m) 4.28 1.17 13.90 1.98 4.08 4.67

Table 5. Total run times (60 samples).

EM DP No Consensus DP Consensus

time (s) 6.57 0.33 4.89

4.2. A Distributed Network of Sixty Sensors

Now we consider an example of distributed network of sixty sensors, and the matrices Ni
k of the

sensor nodes are

N1
k = N13

k = N25
k = N37

k = N49
k = diag(3,−5), N2

k = N14
k = N26

k = N38
k = N50

k = diag(7, 1),

N3
k = N15

k = N27
k = N39

k = N51
k = diag(−3, 7), N4

k = N16
k = N28

k = N40
k = N52

k = diag(4,−6),

N5
k = N17

k = N29
k = N41

k = N53
k = diag(7, 3), N6

k = N18
k = N30

k = N42
k = N54

k = diag(2,−8),

N7
k = N19

k = N31
k = N43

k = N55
k = diag(−7, 5), N8

k = N20
k = N32

k = N44
k = N56

k = diag(3, 8),

N9
k = N21

k = N33
k = N45

k = N57
k = diag(2,−5), N10

k = N22
k = N34

k = N46
k = N58

k = diag(7, 4),

N11
k = N23

k = N35
k = N47

k = N59
k = diag(−9, 8), N12

k = N24
k = N36

k = N48
k = N60

k = diag(8, 4)

The dimensions of the surveillance area are 18 km × 16 km. The topological map is shown in
Figure 11a. Sensors’ true locations and the target trajectory are depicted in Figure 11b.

In accordance with Theorem 2, the rank of filter matrix rank
(

H̄i
k+1Ḡi

k

)
=rank

(
Ḡi

k
)
= 1 for each

sensor in the network, which satisfies Equation (10).
The UI, as plotted in Figure 12, is a stochastic noise obeying Gaussian distribution with mean 0

and covariance 152.
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Figure 11. Examples of networks with 60 sensors: (a) Graph-topological map of the network;
(b) Sensors’ true locations and target trajectory.
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Figure 12. Real unknown input in the multi-sensor system of 60 sensors.

The histograms in Figure 13 depict the mean numbers of consensus iteration with different
thresholds. Similarly, the consensus iteration number increases with thresholds decreasing, and when
the thresholds are less than 0.1, the iteration step number increase sharply. Therefore, we choose the
threshold as ηx = ηd = 0.1. It is interesting to see from the histograms that the consensus iteration
needed for UI is roughly one more time than that needed for sensor states.
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Figure 13. The mean numbers of iteration steps for (a) state and (b) UI estimation with different
thresholds in the multi-sensor system of 60 sensors.

Due to the page limitation and the similar data variation trend in simulation figures, only the
estimation results for the forth sensor is presented here. The iteration threshold for EM algorithm is
δ = 10−4 and the processing window length is l = 5 too. Figures 14–17 show the proposed algorithm
estimation results are obviously better than those of KF and EM methods. Indeed, The estimation
errors are greatly reduced by the DP consensus operation.

The mean and peak values of the estimation errors of the target state [x, ẋ, y, ẏ]T and the bias
[bx, by]T based on the KF, EM and DP methods are correspondingly computed and listed in Tables 6
and 7, respectively. It can be seen from the Tables that our proposed method is proven to be effective.

The run times listed in Table 8 show that the run time of DP consensus is slightly shorter than
that of EM method.
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Figure 14. State estimation errors in the x direction using the KF, DP consensus, DP no consensus
and EM methods for sensor 4 in the multi-sensor system of 60 sensors. (a) position estimation;
(b) velocty estimation.
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Figure 15. State estimation errors in the y direction using the KF, DP consensus, DP no consensus
and EM methods for sensor 4 in the multi-sensor system of 60 sensors. (a) position estimation;
(b) velocty estimation.
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Figure 16. Bias estimation errors using the KF, DP consensus, DP no consensus and EM methods for
sensor 4 in the multi-sensor system of 60 sensors. (a) x-axis; (b) y-axis.
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Figure 17. UI estimation errors of the DP consensus and DP no consensus methods for sensor 4 in the
multi-sensor system of 60 sensors.

Table 6. Comparison of mean estimation error values of the network of 60 sensors.

x ẋ y ẏ bx by

KF (m) −12.721 −3.86 −13.54 −5.72 −0.40 1.19
EM (m) 180.14 4.16 299.97 6.58 −182.47 −306.07

DP no consensus (m) −20.73 −0.84 −15.03 −0.34 8.56 3.63
DP consensus (m) −1.21 −0.15 0.063 −0.09 3.63 8.56

Table 7. Comparison of peak estimation error values of the network of 60 sensors.

x ẋ y ẏ bx by

KF (m) 396.46 80.08 526.54 80.03 220.43 156.67
EM (m) 381.98 64.60 443.66 78.49 803.40 973.76

DP no consensus (m) 65.62 7.12 52.05 5.54 21.61 14.26
DP consensus (m) 5.73 0.94 5.76 0.59 12.91 21.61

Table 8. Total run times (60 samples) of the network of 60 sensors.

EM DP No Consensus DP Consensus

time (s) 27.39 1.65 24.56

4.3. Computational Burden Analysis

Computation burden is also a critical issue to determine the practical applicability of the proposed
method and worth to be discussed. Generally speaking, the computational burden is strongly related
to the total sensors’ number and the connectivity of the sensor network. Thus, the mean values
of run times of DP consensus method are tested with different sensor numbers and connectivity
probabilities. In the simulation, the network are generated randomly with different connective
probabilities. And the simulation program runs ten times with every connective probability and sensor
number. The mean values of run time for one sensor of processing 60 samples are recorded to measure
the computational burden.

According to Figures 6 and 13, the thresholds are chosen as ηx = ηd =0.1 in this simulation.
Further, Figure 18 depicted the relationship between the mean of the run time and the number of sensor
at different connectivity probabilities (’CP’ in Figure 18). It can be seen from Figure 18 that the run time
increases with sensor number increase. It means more iterations are needed to reach a consensus when
sensor number increase. Particularly, when the number of the sensor are 12 and 60 with connectivity
probability of 1, the run times reach 0.08 s and 0.28 s, respectively. Furthermore, when the sensor
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number fixed, the run time increases with the connectivity probability decreases. This is because that a
looser sensor network topology means fewer neighboring sensors, therefore, more jumpers are needed
between each pair of sensors. So more iterations are needed to reach consensus, and the computational
cost is corresponding high. It is also worth to mention that when the connectivity probability is larger
than 0.2, run time almost have no difference. It implies that our proposed algorithm is somewhat
robust when the connectivity probability is larger than 0.2.

As Figure 18 shows, with the sensor number increases, the mean values of run time for one sensor
increases linearly. Thus, our proposed method can handle a relatively large network in a reasonable
period of time.
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Figure 18. The mean values of the run times with different sensor numbers.

5. Conclusions

The joint estimation of system state and sensor bias based on a generalized system model is
proposed. The conditions for UI decoupling derived in this paper are helpful for guiding sensor
choice and deployment. Local UI estimates are obtained via the LS approach using all estimates from
neighboring sensors. Network consensus processing is then applied to obtain more accurate estimates
of the system (target) state and the UI. Future work may address distributive and collaborative
processing in sensor networks in the case in which bias exists in only a subset of the sensors.
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Abbreviations

UI Unknown input
GSB generalized sensor biases
EM Expectation-maximization
IMM Interacting multiple model
LMMSE Linear minimum-mean-square-error
MUBF Minimum upper bound filter
SB Sensor bias
ECM Electronic counter-measure
LSB Local sensor bias
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GLSB Global sensor bias
ACF Average consensus fusion
DLS Distributed least squares
WSN Wireless sensor networks
KF Kalman Filter
DP no consensus The proposed method without consensus processing
DP consensus The proposed method with consensus processing
CP Connectivity probability

Appendix A

Proof of Lemma 1. Sufficient: If rank(ΓΨ) =rank(Ψ) and Ψ is of full column rank, then the matrix ΓΨ
is also of full column rank, and hence, its left pseudo-inverse matrix (ΓΨ)+ =

[
(ΓΨ)T(ΓΨ)

]−1
(ΓΨ)T

exists, satisfying
(ΓΨ)+ ΓΨ = I (A1)

Clearly, Equation (6) holds.

Necessary: If Equation (6) holds, then Ψ = Ψ (ΓΨ)+ (ΓΨ) or ΨT = (ΓΨ)T
[
Ψ (ΓΨ)+

]T
,

implying that ΨT belongs to the space of the matrix (ΓΨ)T ; hence, we have the following inequality:

rank{(Ψ)T} ≤ rank{(ΓΨ)T}

or
rank{Ψ} ≤ rank{ΓΨ} (A2)

Meanwhile, we know that

rank{ΓΨ} ≤ min (rank{Γ}, rank{Ψ}) ≤ rank{Ψ} (A3)

Combining Equations (A2) and (A3), we obtain Equation (7).

Appendix B

Proof of Theorem 2. By left-multiplying both sides of Equation (8) by H̄i
k+1, we obtain

H̄i
k+1zi

k+1 = H̄i
k+1 Ai

kzi
k + H̄i

k+1Ḡi
kdk + H̄i

k+1ζ̄ i
k (B1)

Meanwhile, Equation (9) can be rewritten as

H̄i
k+1zi

k+1 = yi
k+1 − vi

k+1 (B2)

Then, substituting Equation (B1) into Equation (B2) yields

H̄i
k+1Ḡi

kdk = yi
k+1 − vi

k+1 − H̄i
k+1 Ai

kzi
k − H̄i

k+1ζ̄ i
k

with the following solution:

dk = Πi
k

(
yi

k+1 − vi
k+1 − H̄i

k+1 Ai
kzi

k − H̄i
k+1ζ̄ i

k

)
+
[

Iq −Πi
k

(
H̄i

k+1Ḡi
k

)]
κ (B3)

where Πi
k

.
=
(

H̄i
k+1Ḡi

k

)+
=

[(
H̄i

k+1Ḡi
k

)T
H̄i

k+1Ḡi
k

]−1 (
H̄i

k+1Ḡi
k

)T
in Equation (12) and Equation (B3)

and κ is an arbitrary matrix with the proper dimensions.
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Further substituting Equation (B3) into Equation (8) yields

zi
k+1 = Ai

kzi
k + ζ̄ i

k + C̄i
k

(
yi

k+1 − vi
k+1 − H̄i

k+1 Ai
kzi

k − H̄i
k+1ζ̄ i

k

)
+ Ḡi

k

(
Iq −Πi

k H̄i
k+1Ḡi

k

)
κ

= F̄i
k Ai

kzi
k + C̄i

kyi
k+1 + B̄i

kw̄i
k + Ḡi

k

[
Iq −Πi

k H̄i
k+1Ḡi

k

]
κ

(B4)

where C̄i
k and B̄i

k are given in Equations (13) and (16), respectively. For any κ , the necessary and
sufficient condition for guaranteeing the uniqueness of zi

k+1 in Equation (B4) is

Ḡi
k

(
Iq −Πi

k H̄i
k+1Ḡi

k

)
= Ḡi

k

(
Iq −

(
H̄i

k+1Ḡi
k

)+
H̄i

k+1Ḡi
k

)
= 0 (B5)

According to Lemma 1, Equation (B5) will hold if and only if Equation (10) holds.
Finally, substituting Equation (B5) into Equation (B4) results in Equations (11)–(13).

Appendix C

Proof of Theorem 4. In Equation (27), wx
ij (l) ≥ 0 denotes the probability of being in state i at iteration

l. The covariance of the mixture is

E
{[

xk − x̂i
k|k (l + 1)

] [
xk − x̂i

k|k (l + 1)
]T
}

= E ∑
j∈Ji

wx
ij (l)

{[
xk − x̂j

k|k (l) + x̂j
k|k (l)− x̂i

k|k (l + 1)
] [

xk − x̂j
k|k (l) + x̂j

k|k (l)− x̂i
k|k (l + 1)

]T
}

= E ∑
j∈Ji

wx
ij (l)

{[(
xk − x̂j

k|k (l)
) (

xk − x̂j
k|k (l)

)T
]
+
[

x̂j
k|k (l)− x̂i

k|k (l + 1)
] [

x̂j
k|k (l)− x̂i

k|k (l + 1)
]T
}

= ∑
j∈Ji

wx
ij (l) Pxx,i

k|k (l) + ∑
j∈Ji

wx
ij (l)

[
x̂j

k|k (l)− x̂i
k|k (l + 1)

] [
x̂j

k|k (l)− x̂i
k|k (l + 1)

]T

(C1)

The second term in Equation (C1) has the following alternative expression:

∑
j∈Ji

wx
ij (l)

[
x̂j

k|k (l)− x̂i
k|k (l + 1)

] [
x̂j

k|k (l)− x̂i
k|k (l + 1)

]T

= ∑
j∈Ji

wx
ij (l) x̂j

k|k (l)
(

x̂j
k|k (l)

)T
− x̂i

k|k (l + 1)
(

x̂i
k|k (l + 1)

)T (C2)

Substituting Equation (C2) into Equation (C1) yields Equation (29), and Equation (30) can be
obtained similarly.
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