
sensors

Article

A Web Service Protocol Realizing Interoperable
Internet of Things Tasking Capability

Chih-Yuan Huang 1,* and Cheng-Hung Wu 2

1 Center for Space and Remote Sensing Research, National Central University, Taoyuan 320, Taiwan
2 Department of Civil Engineering, National Central University, Taoyuan 320, Taiwan;

103322089@cc.ncu.edu.tw
* Correspondence: cyhuang@csrsr.ncu.edu.tw; Tel.: +886-3-422-7151 (ext. 57692)

Academic Editors: Mihai Lazarescu and Luciano Lavagno
Received: 8 June 2016; Accepted: 26 August 2016; Published: 31 August 2016

Abstract: The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable
devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical
mashup applications can be constructed to improve human’s daily life. In general, IoT devices
provide two main capabilities: sensing and tasking capabilities. While the sensing capability is
similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However,
currently, IoT devices created by different manufacturers follow different proprietary protocols and
are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between
IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing
an interoperable solution called tasking capability description that allows users to control different
IoT devices using a uniform web service interface. This paper demonstrates the contribution of the
proposed solution by interconnecting different IoT devices for different applications. In addition,
the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service
standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can
realize both IoT sensing and tasking capabilities in an integrated and interoperable manner.

Keywords: Internet of Things; tasking capability; interoperability; OGC SensorThings API

1. Introduction

1.1. Background

The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices
using the Internet. While the IoT is attracting attention from various fields, it is not a brand new
concept. From the early stage of the 20th century, similar concepts were proposed, and some related
communication technologies like the radio, barcodes, the Internet and radio frequency identification
(RFID) were also invented [1,2]. At the early stage of the IoT, the main focus of IoT was to identify
and track every physical thing, and many applications such as warehouse management and logistics
applications applied RFID technology to prove the concept [1,3].

With the advances of communication and sensor technologies in recent years, the definition
and scope of IoT have been extended. For instance, the International Telecommunication Union
(ITU) defined the IoT as “a global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on existing and evolving interoperable
information and communication technologies [4]”. ITU shows that every physical thing can have a
virtual identity in the information world. Through those virtual identities, every thing can interconnect
and communicate with each other.

Sensors 2016, 16, 1395; doi:10.3390/s16091395 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1395 2 of 23

With the extended definition and scope, the IoT is no longer confined to object identification
applications. Everyday appliances, such as TVs, ovens, heaters, lamps, door locks, could be connected
to the Internet via different local communication technologies (e.g., Bluetooth and Zigbee, WiFi).
By connecting devices to the Internet, users and applications can access device capabilities in a
remote and real-time manner. Hence, the vision of the IoT started to attract the attention of various
domains and applications. For example, Gubbi et al. [5] mentioned that IoT applications have four main
categories: (1) Personal and Home; (2) Enterprise; (3) Utilities; and (4) Mobile. Atzori et al. [2] think that
the IoT can be applied in: (1) Transportation and Logistics; (2) Healthcare; (3) Smart environment (home,
office, plant); (4) Personal and social. Meanwhile, many predictions estimated that the number of IoT
devices would reach 20 billion to 50 billion by 2020 (http://www.gartner.com/newsroom/id/3165317).
As we can see from these predictions and envisioned applications, the IoT is one of the most popular
developments in recent years.

In general, the IoT has two main capabilities, which are sensing and tasking capabilities:

(1). Sensing capabilityThe sensing capability monitors devices’ statuses or the environmental
properties of their surroundings. Users can remotely capture the properties for data analysis and
application. People can use different sensors to collect not only the environmental properties like
temperature, humidity, and location information, but also the status of devices such as “On” or
“Off”. While sensors can monitor various properties, sensor owners or users can remotely access
the sensor observations through the Internet. For example, users can understand if a device
is “On”, or the battery status of each device. In general, the sensing capability allows users to
remotely monitor device statuses and various properties, and consequently, users can utilize the
sensor observations to support automatic and efficient applications.

(2). Tasking capabilityThe tasking capability allows other devices or users to actuate devices via
the Internet so the users can easily control the devices to execute feasible tasks remotely.
For example, existing IoT products such as Philips Hue and Belkin WeMo provide tasking
capabilities. The Philips Hue allows users to remotely turn on or off light bulbs as well as
adjust brightness and saturation via the Internet. The Belkin WeMo is a smart switch. Users can
connect their traditional appliances to the WeMo and remotely turn on or off these appliances by
controlling the WeMo. Overall, while the sensing capability allows users to continuously monitor
the statuses of devices and the environmental properties, the tasking capability can help users to
make adjustments accordingly by controlling devices remotely.

In general, mashing-up the sensing and tasking capabilities of different IoT devices enables users
to create various automatic and efficient applications. These kinds of applications are called “physical
mashup” applications [6]. For instance, an application can use the GPS sensor in a mobile phone
to monitor a user location. When the application senses that the user is heading back home, the
application can automatically turn on air conditioners or heaters. In this case, the house will be at a
comfortable temperature when the user arrives home. As a result, to facilitate the mashups of IoT
capabilities, one of the key requirements is to provide a uniform interface for users or applications to
access the capabilities in an interoperable manner.

1.2. The IoT Architecture

To further define the scope of this research, here we introduce the IoT architecture. As shown in
Figure 1, there are four layers in the architecture which are Device Layer, Gateway Layer, Web service
Layer and Application Layer [2]. The Device Layer contains the devices connecting to the Internet,
such as appliances and smart sensors. With the ability to connect to the Internet, devices can upload
sensor observations to a web service or be controlled by users via the Internet. However, devices
can be divided into two types. The first type of device has enough computation resource to directly
connect to the Internet. The second type of device is the device that is too resource-constrained to
directly connect to the Internet by itself.

http://www.gartner.com/newsroom/id/3165317

Sensors 2016, 16, 1395 3 of 23
Sensors 2016, 16, 1395 3 of 23

Figure 1. Architecture of Internet of Things.

Therefore, an additional layer called the Gateway Layer is required to serve as an intermediate
layer to connect the resource-constrained devices on one end and connect to the Internet on the other
end [7]. Usually, gateways act as a translator converting the device protocol to the web service
protocol and vice versa. After connecting to the gateways, the resource-constrained devices will be
able to connect to the Web Service Layer.

The Web Service Layer contains services that may receive data from gateways or directly from
devices. Different services may provide different functionalities, such as data processing, data
storing, data management and query. Finally, the Application Layer is where applications retrieve
the resources from the Web services and usually provide graphical user interfaces for users to
operate and consume the IoT data.

In order to achieve an interoperable IoT infrastructure, standards are necessary for the
communications between layers. When two layers follow the same standard, they can communicate
and understand each other based on the defined data model and protocol. In this case, the IoT can
achieve interoperability [2,5]. With the increasing amount of Internet of Things devices, different
and various IoT devices would cause heterogeneity issues. These heterogeneity issues could be
solved by following certain standards to achieve the IoT interoperability [5,8].

In principle, two layers following the same standard can communicate with each other. While
there have been some open standards proposed to support communication in the Gateway and
Device layers, e.g., Bluetooth Low Energy, Zigbee, 6LoWPAN, and WIFI, we argue that a
comprehensive IoT Web service standard is currently missing. Hence, this research mainly focuses
on the communication between the Web Service layer and Internet-connected devices (including the
resource-constrained devices connected to gateways).

1.3. Problems and Objectives

While the IoT is attracting much attention, companies are defining different proprietary web
service protocols, and only their own IoT devices support those protocols. Either with the intention
or without, these companies construct closed ecosystems, which we call the IoT silos. Each silo may
have its complete IoT architecture and components including devices, gateways, services, and
applications. However, the components in one silo cannot connect to the components in another
silo as they support different communication protocols. For example, users usually need to use
specific software or applications provided by different companies to access different IoT devices,
such as the Philips Hue or the Belkin WeMo Switch, as these devices use different communication
protocols. Hence, the IoT is currently suffering from a lack of interoperability and faces
heterogeneity problem. This heterogeneity problem seriously damages the development of the IoT
as users and applications cannot communicate with every IoT devices in a uniform way [5,8].
Moreover, the heterogeneity problem impedes the design of a unifying framework and the
communication protocol [9]. As a result, since IoT devices cannot be easily connected, extra costs
are required to achieve automatic and efficient physical mashup applications.

We identify two main approaches to address this IoT heterogeneity issue. The first one is the
hub approach. The hub approach mainly focuses on developing different connectors to

Figure 1. Architecture of Internet of Things.

Therefore, an additional layer called the Gateway Layer is required to serve as an intermediate
layer to connect the resource-constrained devices on one end and connect to the Internet on the other
end [7]. Usually, gateways act as a translator converting the device protocol to the web service protocol
and vice versa. After connecting to the gateways, the resource-constrained devices will be able to
connect to the Web Service Layer.

The Web Service Layer contains services that may receive data from gateways or directly from
devices. Different services may provide different functionalities, such as data processing, data storing,
data management and query. Finally, the Application Layer is where applications retrieve the resources
from the Web services and usually provide graphical user interfaces for users to operate and consume
the IoT data.

In order to achieve an interoperable IoT infrastructure, standards are necessary for the communications
between layers. When two layers follow the same standard, they can communicate and understand
each other based on the defined data model and protocol. In this case, the IoT can achieve
interoperability [2,5]. With the increasing amount of Internet of Things devices, different and various
IoT devices would cause heterogeneity issues. These heterogeneity issues could be solved by following
certain standards to achieve the IoT interoperability [5,8].

In principle, two layers following the same standard can communicate with each other.
While there have been some open standards proposed to support communication in the Gateway
and Device layers, e.g., Bluetooth Low Energy, Zigbee, 6LoWPAN, and WIFI, we argue that a
comprehensive IoT Web service standard is currently missing. Hence, this research mainly focuses
on the communication between the Web Service layer and Internet-connected devices (including the
resource-constrained devices connected to gateways).

1.3. Problems and Objectives

While the IoT is attracting much attention, companies are defining different proprietary web
service protocols, and only their own IoT devices support those protocols. Either with the intention
or without, these companies construct closed ecosystems, which we call the IoT silos. Each silo
may have its complete IoT architecture and components including devices, gateways, services, and
applications. However, the components in one silo cannot connect to the components in another silo
as they support different communication protocols. For example, users usually need to use specific
software or applications provided by different companies to access different IoT devices, such as
the Philips Hue or the Belkin WeMo Switch, as these devices use different communication protocols.
Hence, the IoT is currently suffering from a lack of interoperability and faces heterogeneity problem.
This heterogeneity problem seriously damages the development of the IoT as users and applications
cannot communicate with every IoT devices in a uniform way [5,8]. Moreover, the heterogeneity
problem impedes the design of a unifying framework and the communication protocol [9]. As a result,
since IoT devices cannot be easily connected, extra costs are required to achieve automatic and efficient
physical mashup applications.

Sensors 2016, 16, 1395 4 of 23

We identify two main approaches to address this IoT heterogeneity issue. The first one is the
hub approach. The hub approach mainly focuses on developing different connectors to communicate
with different IoT devices and provides users/applications a uniform interface, such as the Apple
HomeKit, Alphabet (Google) Nest ecosystem and If-This-Then-That (IFTTT). The connectors could be
in the Gateway Layer, Web Service Layer, or Application Layer. However, as the devices or services in
different IoT silos support different protocols, the hub approach needs to implement every kind of
connector to communicate with all the IoT silos, which would result in a large development cost.

The other approach is the open standard approach, which is usually the best approach to
ultimately address heterogeneity issues [5,8]. There have also been some IoT standards proposed
to address the IoT heterogeneity issue. Among which, the SensorThings API v1 standard [10]
defined by the Open Geospatial Consortium (OGC). SensorThings API defines comprehensive
query functionalities based on the OGC Observation & Measurements data model standard [11].
The SensorThings API provides a uniform service interface to host the virtual identities of IoT devices
as well as the generated sensor observations. However, the IoT tasking capability is not supported by
the first version of the SensorThings API, which means users/applications still cannot send requests to
IoT devices with a uniform interface.

Therefore, to fill the gap, the goal of this study is to propose a potential solution to realize the
IoT tasking capability in an interoperable manner. While a naïve solution is to define an IoT device
protocol for manufacturers to follow, from a previous study experience, we can understand that
manufacturers prefer having the flexibility to define their proprietary protocols instead of following a
defined standard [12]. Therefore, we choose to define a web service protocol and a description data
model to communicate with different IoT devices. Overall, this study has three main objectives:

(1). Firstly, this research aims at defining a common and uniform description document standard
that can describe the communication protocols of IoT devices. This description allows the web
service layer to automatically understand the device protocols. Currently, we only focus on
HTTP protocols.

(2). Secondly, we propose a web service protocol that can automatically translate between users’
tasking requests and device protocol requests. Therefore, users/applications can use a uniform
interface to control different IoT devices even if the devices follow different proprietary protocols.

(3). Thirdly, this research aims at integrating the proposed solution with the OGC SensorThings API,
which supports the IoT sensing capability [10]. The integrated web service protocol is named
the Extended SensorThings API. In this case, the Extended SensorThings API could be the solution
that manages the virtual identities of IoT devices and supports both IoT sensing and tasking
capabilities in an interoperable manner.

In the next section, this paper reviews the existing solutions for solving the heterogeneity problem
and then indicates the limitations of these solutions. In Section 3, we first introduce the overall
architecture of the Extended SensorThings API, as well as define the scope of this research, and then
explain the proposed solution. In Section 4, we apply the proposed solution on some existing IoT
products and demonstrate the contributions by constructing some applications. Finally, this paper
concludes in Section 5.

2. Related Work

Interoperability of IoT implementations is a critical issue to be solved to realize the IoT vision.
After reviewing the existing approaches addressing this issue, we categorize them into two approaches,
which are the hub approach and the open standard approach.

The hub approach is an intuitive and common solution to solve the heterogeneity problem. A hub
could connect with different IoT products by developing connectors following different communication
protocols. Hubs could be in Gateway Layer, Web Service Layer, or Application Layer. Through the hubs,
users can communicate with different IoT products. The hub approach can be effective, and many

Sensors 2016, 16, 1395 5 of 23

industrial companies have applied this approach to interconnect IoT devices, such as the Apple
HomeKit, Alphabet (Google) Nest ecosystem and IFTTT. The key of these hubs is to develop connectors
to support different IoT device communication protocols. For example, IFTTT is a web platform
supporting many connectors for various IoT products. Users can use IFTTT “recipes” to connect their
IoT devices and online services (e.g., email, calendar) to realize automatic applications. However,
although the hub approach is effective, connectors specifically developed for different IoT products
is necessary. As the number of IoT products increases rapidly, the cost of developing every possible
connector get higher. Therefore, we believe that the hub approach is not the ultimate solution for the
IoT heterogeneity issue.

On the other hand, the open standard approach defines standards to address the heterogeneity
problem. In principle, with open standards, manufacturers and users can follow the same data model
and communication protocol to create devices, gateways, web services and applications that can
automatically understand each other.

There have been some efforts defining IoT standards. For example, the HyperCat is a standard
proposed by Flexeye and other companies [13]. HyperCat provides a hypermedia catalogue standard
to index and shares IoT resources (e.g., products and data) online [13]. As a catalogue service standard,
HyperCat mainly focuses on the resource discovery functionalities and the heterogeneity problem
of connecting IoT devices is not the focus. In addition, the OpenIoT and OM2M (https://wiki.
eclipse.org/OM2M/one) standards both define web service protocols to manage IoT products and
data [14]. However, these two standards still need to build different connectors to communicate
with different IoT devices. Furthermore, the OGC Sensor Web Enablement (SWE) standards such as
the Sensor Observation Service (SOS) [15] and Sensor Planning Service (SPS) [16] are also relevant.
The SOS focuses on the sensing capability and defines service interfaces to help users to share sensor
observations and sensor metadata. The SPS focuses on the tasking capability and defines service
interfaces to help users control their sensors. However, as the SPS and aforementioned standards
mainly defines web service interfaces, connectors should be implemented to control devices. Therefore,
similar to the hub approach, these existing standards still cannot solve the heterogeneity problem of
connecting IoT devices.

Although the intuitive approach to connect IoT devices is to define a uniform device communication
protocol, previous experience tells us that manufacturers prefer having the flexibility to define their
proprietary protocols instead of following a defined standard [12]. Therefore, we need a solution that
allows users to communicate with IoT devices with a uniform interface while manufacturers can design
their device protocols. In order to achieve this objective, we first consider the interaction between IoT
devices and users. The interaction between users and IoT devices is similar to the interaction between
client and server, in which, an IoT device can be regarded as a server that receives requests from
clients. In tradition, before a client sends a request, the server needs a way to advertise its protocol.
A web service description is a document describing the functionalities and communication protocols
of the service [17]. With the web service description, a client could automatically understand how to
communicate with the service.

There have been some existing web service descriptions such as the Web Service Descriptions
Language (WSDL) [17] and the HTML Microformat for Describing RESTful Web Services (hRESTS) [18].
WSDL is an XML-based service description standard, and it defines not only the functionalities and
protocols of services but also the format and schema of data. In recent years, while RESTful web
services become popular and the WSDL is not suitable to describe RESTful web services, Kopecky
et al. [18] proposed the hRESTS based on XHTML format to describe RESTful service protocols.
However, even with hRESTS, users still need to develop connectors to communicate with different IoT
devices [19].

A similar work to our proposed solution is the Sensor Interface Descriptor (SID), which is a
declarative model based on the OGC Sensor Model Language (Sensor ML) standard for describing
device capabilities [20]. As shown in Figure 2, the SID describes sensor metadata, sensor commands

https://wiki.eclipse.org/OM2M/one
https://wiki.eclipse.org/OM2M/one

Sensors 2016, 16, 1395 6 of 23

and device protocols. With a SID Interpreter, a data acquisition system can retrieve data from sensors
and communicate with the SOS and SPS services [20]. SID provides a uniform interface for SWE
standards and establishes the connection between the SWE web service standards and the sensors.
In terms of the tasking capability, although SID seems able to describe device protocols with the OSI
model (Open Systems Interconnection model), clear description and examples of how to automatically
compose device requests based on SID seems to be missing from the references [20]. In addition,
while SID presents a complete but complicated data model and verbose XML schema, to understand
and adapt the SID may be costly for IoT device manufacturers. Therefore, this research proposes an
alternative solution that uses a relatively simple data model to describe IoT device protocols.

Sensors 2016, 16, 1395 6 of 23

sensors. In terms of the tasking capability, although SID seems able to describe device protocols
with the OSI model (Open Systems Interconnection model), clear description and examples of how
to automatically compose device requests based on SID seems to be missing from the references
[20]. In addition, while SID presents a complete but complicated data model and verbose XML
schema, to understand and adapt the SID may be costly for IoT device manufacturers. Therefore,
this research proposes an alternative solution that uses a relatively simple data model to describe
IoT device protocols.

Figure 2. The architecture of SID [20].

In general, we argue that the existing solutions cannot fully address the IoT heterogeneity issue.
This research focuses on developing a uniform service description for the IoT tasking capabilities
that is flexible enough to describe different HTTP protocols for controlling IoT devices. Also, while
most of the existing service description solutions are based on the XML format, the documents are
usually large in size [21] and not suitable for resource-constrained IoT devices. Hence, the web
service description this research proposes is based on the JSON format. Overall, by describing device
protocols in a uniform manner, a web service can be constructed to connect automatically to
different IoT devices, and consequently, users can control different devices using a single service
protocol.

3. Methodology

This study aims to define an interoperable solution for the IoT tasking capability. The proposed
solution has two main parts. Firstly, we define a JSON-based web service description to describe
device tasking capabilities including the metadata and communication protocols. Secondly, for users
to remotely connect with different IoT devices with a uniform interface, we propose a web service
that can understand the proposed service description and automatically transform users’ tasks into
device requests. We also specifically design the web service as an extension of the OGC
SensorThings API based on the idea that the Extended SensorThings API could provide access to
both IoT sensing and tasking capabilities. In this section, we first introduce the overall workflow of
the proposed solution and the connection with the SensorThings API. Then we present the details of
the proposed tasking capability service description. Finally, we explain the proposed solution with
an example.

Figure 2. The architecture of SID [20].

In general, we argue that the existing solutions cannot fully address the IoT heterogeneity issue.
This research focuses on developing a uniform service description for the IoT tasking capabilities
that is flexible enough to describe different HTTP protocols for controlling IoT devices. Also, while
most of the existing service description solutions are based on the XML format, the documents are
usually large in size [21] and not suitable for resource-constrained IoT devices. Hence, the web service
description this research proposes is based on the JSON format. Overall, by describing device protocols
in a uniform manner, a web service can be constructed to connect automatically to different IoT devices,
and consequently, users can control different devices using a single service protocol.

3. Methodology

This study aims to define an interoperable solution for the IoT tasking capability. The proposed
solution has two main parts. Firstly, we define a JSON-based web service description to describe
device tasking capabilities including the metadata and communication protocols. Secondly, for users
to remotely connect with different IoT devices with a uniform interface, we propose a web service that
can understand the proposed service description and automatically transform users’ tasks into device
requests. We also specifically design the web service as an extension of the OGC SensorThings API
based on the idea that the Extended SensorThings API could provide access to both IoT sensing and
tasking capabilities. In this section, we first introduce the overall workflow of the proposed solution
and the connection with the SensorThings API. Then we present the details of the proposed tasking
capability service description. Finally, we explain the proposed solution with an example.

Sensors 2016, 16, 1395 7 of 23

3.1. The Overall Workflow of the Extended SensorThings API

To propose a complete and interoperable solution for the IoT, this study integrates the proposed
solution with the OGC SensorThings API [10]. The OGC SensorThings API provides an open and
flexible web service protocol to host “things” and manage observations [10]. This standard is based on
the JSON format and mainly follows the OGC Observation and Measurement (OGC O&M) model
as the sensor observation model (Figure 3) [11]. In general, the first and current version of the
SensorThings API is mainly designed for the IoT sensing capability and did not include the tasking
capability. Therefore, to provide a complete IoT web service, this research proposes an interoperable
solution as an extension to the SensorThings API, where the general operations (e.g., the Create, Read,
Update, and Delete of entities) directly follow the SensorThings API standard. For the remainder of
this paper, this extended service is referred to as Extended SensorThings API.

Sensors 2016, 16, 1395 7 of 23

3.1. The Overall Workflow of the Extended SensorThings API

To propose a complete and interoperable solution for the IoT, this study integrates the
proposed solution with the OGC SensorThings API [10]. The OGC SensorThings API provides an
open and flexible web service protocol to host “things” and manage observations [10]. This
standard is based on the JSON format and mainly follows the OGC Observation and Measurement
(OGC O&M) model as the sensor observation model (Figure 3) [11]. In general, the first and current
version of the SensorThings API is mainly designed for the IoT sensing capability and did not
include the tasking capability. Therefore, to provide a complete IoT web service, this research
proposes an interoperable solution as an extension to the SensorThings API, where the general
operations (e.g., the Create, Read, Update, and Delete of entities) directly follow the SensorThings
API standard. For the remainder of this paper, this extended service is referred to as Extended
SensorThings API.

Figure 3. The data model of the OGC SensorThings API [10].

While the details of the proposed tasking capability data model are presented in Section 3.2,
here we use an example to explain the conceptual model of the Extended SensorThings API. As
shown in Figure 4, regarding the sensing capability, a “room” can be regarded as a Thing, and the
Location records the position information of the room. In this room, a “thermometer” is modeled as
the Sensor measuring “air temperature” (i.e., ObservedProperty) of the room (i.e., FeatureOfInterest)
with the UnitOfMeasurement “degree Celsius”. In this example, the sensor performs an Observation at
PhenomenonTime 9 May 2016 23:20 and receives a Result of 29. This information is modeled as a
Datastream of the Thing.

Regarding the tasking capability, this room has a “smart air conditioner” which could be
described as an Actuator, which provides an ability for users to turn it on or off via HTTP requests.
This ability is modeled as a TaskingCapability of the room (i.e., Thing) as an ability to adjust the
temperature of the room. This TaskingCapability describes the acceptable parameters in Parameters
and uses HTTPProtocol to record the device protocol template. With this information, users can
create a Task to remotely control this TaskingCapability via the Internet. For example, to cool down the
room, a user can set an Input with the parameter “on” as true in a Task.

Figure 3. The data model of the OGC SensorThings API [10].

While the details of the proposed tasking capability data model are presented in Section 3.2, here
we use an example to explain the conceptual model of the Extended SensorThings API. As shown in
Figure 4, regarding the sensing capability, a “room” can be regarded as a Thing, and the Location records
the position information of the room. In this room, a “thermometer” is modeled as the Sensor measuring
“air temperature” (i.e., ObservedProperty) of the room (i.e., FeatureOfInterest) with the UnitOfMeasurement
“degree Celsius”. In this example, the sensor performs an Observation at PhenomenonTime 9 May 2016
23:20 and receives a Result of 29. This information is modeled as a Datastream of the Thing.

Regarding the tasking capability, this room has a “smart air conditioner” which could be described
as an Actuator, which provides an ability for users to turn it on or off via HTTP requests. This ability is
modeled as a TaskingCapability of the room (i.e., Thing) as an ability to adjust the temperature of the
room. This TaskingCapability describes the acceptable parameters in Parameters and uses HTTPProtocol
to record the device protocol template. With this information, users can create a Task to remotely
control this TaskingCapability via the Internet. For example, to cool down the room, a user can set an
Input with the parameter “on” as true in a Task.

Sensors 2016, 16, 1395 8 of 23
Sensors 2016, 16, 1395 8 of 23

Figure 4. An example of the Extended SensorThings API.

One thing to note is that similar to the SensorThings API data model, users/providers have the
flexibility to model their scenario. For example, a user could also model the air conditioner as a Thing
instead of an Actuator providing TaskingCapability for the room. This decision is left for
users/applications to decide. In general, the Extended SensorThings API can handle both sensing
and tasking capabilities so that users can access complete IoT capabilities in a single service and
integrate the capabilities for different applications. For example, an environment control application
can retrieve temperature readings from Extended SensorThings API periodically. When the
temperature exceeds predefined maximum or minimum thresholds, the application will
automatically turn on or off the air conditioner by creating a Task entity.

After introducing the overall high-level model of Extended SensorThings API, one of the main
objectives of this study is to design an IoT tasking capability solution so that users can control IoT
devices with a uniform interface while allowing manufacturers to define proprietary device
protocols. Before presenting the details, we first describe the key ideas and the overall workflow:

(1). Describe the IoT device tasking capability: To connect IoT devices while allowing
manufacturers to define different protocols, this study proposes a uniform web service
description format (presented in Section 3.2). By following the service description, users or
manufacturers can first write documents to describe the tasking capabilities of IoT devices,
which include the templates of device protocols.

(2). Register the IoT tasking capability to an Extended SensorThings API service: After preparing
the tasking capability description, users, manufacturers or devices themselves can register the
descriptions to a web service following the Extended SensorThings API. The web service can
then automatically understand the device protocols of different IoT devices.

(3). Retrieve the tasking capability from the Extended SensorThings API service: Before users or
applications control the IoT devices, they can retrieve the available tasking capabilities from the
Extended SensorThings API to understand the allowed input parameters. While the
SensorThings API provides a simple and RESTful interface for the user to retrieve resources, the
Extended SensorThings API follows the same procedure. Based on the information in the
tasking capability document users retrieved, users can create valid task entities (presented in
Section 3.2) for controlling different tasking capabilities.

(4). Control IoT devices via the Extended SensorThings API service: Finally, users create task
entities in the Extended SensorThings API service. The Extended SensorThings API will parse

Figure 4. An example of the Extended SensorThings API.

One thing to note is that similar to the SensorThings API data model, users/providers have
the flexibility to model their scenario. For example, a user could also model the air conditioner
as a Thing instead of an Actuator providing TaskingCapability for the room. This decision is left for
users/applications to decide. In general, the Extended SensorThings API can handle both sensing and
tasking capabilities so that users can access complete IoT capabilities in a single service and integrate
the capabilities for different applications. For example, an environment control application can retrieve
temperature readings from Extended SensorThings API periodically. When the temperature exceeds
predefined maximum or minimum thresholds, the application will automatically turn on or off the air
conditioner by creating a Task entity.

After introducing the overall high-level model of Extended SensorThings API, one of the main
objectives of this study is to design an IoT tasking capability solution so that users can control IoT
devices with a uniform interface while allowing manufacturers to define proprietary device protocols.
Before presenting the details, we first describe the key ideas and the overall workflow:

(1). Describe the IoT device tasking capability: To connect IoT devices while allowing manufacturers
to define different protocols, this study proposes a uniform web service description format
(presented in Section 3.2). By following the service description, users or manufacturers can first
write documents to describe the tasking capabilities of IoT devices, which include the templates
of device protocols.

(2). Register the IoT tasking capability to an Extended SensorThings API service: After preparing
the tasking capability description, users, manufacturers or devices themselves can register the
descriptions to a web service following the Extended SensorThings API. The web service can
then automatically understand the device protocols of different IoT devices.

(3). Retrieve the tasking capability from the Extended SensorThings API service: Before users or
applications control the IoT devices, they can retrieve the available tasking capabilities from the
Extended SensorThings API to understand the allowed input parameters. While the SensorThings
API provides a simple and RESTful interface for the user to retrieve resources, the Extended
SensorThings API follows the same procedure. Based on the information in the tasking capability

Sensors 2016, 16, 1395 9 of 23

document users retrieved, users can create valid task entities (presented in Section 3.2) for
controlling different tasking capabilities.

(4). Control IoT devices via the Extended SensorThings API service: Finally, users create task entities
in the Extended SensorThings API service. The Extended SensorThings API will parse the
input parameters and values, retrieve the corresponding tasking capability description from the
database, and automatically compose a device request based on the protocol template in the
tasking capability description. Finally, the service sends the request to control the IoT devices.

3.2. The Data Model of the Tasking Capability Description

As we mentioned earlier, IoT devices and products are similar to web services, which should have
documents to advertise their capabilities and communication protocols. While XML format may not
be suitable for resource-constraint IoT devices, this research tries to propose a JSON-based tasking
capability document standard, which is called “tasking capability description”. In general, the tasking
capability description is a JSON-based description that mainly describes the IoT tasking capability
including the communication protocols and metadata of IoT devices. Figure 5 shows the data model of
the tasking capability. To connect the proposed tasking capability with the SensorThings API, we can
simply connect the Thing entity from the SensorThings API with the TaskingCapability entity, which
represents the controllable ability of the Thing.

Sensors 2016, 16, 1395 9 of 23

the input parameters and values, retrieve the corresponding tasking capability description from
the database, and automatically compose a device request based on the protocol template in
the tasking capability description. Finally, the service sends the request to control the IoT
devices.

3.2. The Data Model of the Tasking Capability Description

As we mentioned earlier, IoT devices and products are similar to web services, which should
have documents to advertise their capabilities and communication protocols. While XML format
may not be suitable for resource-constraint IoT devices, this research tries to propose a JSON-based
tasking capability document standard, which is called “tasking capability description”. In general,
the tasking capability description is a JSON-based description that mainly describes the IoT tasking
capability including the communication protocols and metadata of IoT devices. Figure 5 shows the
data model of the tasking capability. To connect the proposed tasking capability with the
SensorThings API, we can simply connect the Thing entity from the SensorThings API with the
TaskingCapability entity, which represents the controllable ability of the Thing.

Figure 5. The data model of tasking capability.

While the main purpose of the tasking capability description is to describe the protocol of IoT
devices, a TaskingCapability entity uses the HTTPProtocol and zero-to-many Parameter entities to
describe the protocol. The HTTPProtocol presents the template of the device request, which includes
every component of an HTTP request. The Parameter records not only the description of Parameter
but also the Definition, which defines the data type, unit of measurement, and AllowedValues so that
users can understand the feasibly allowed values to the specific Parameter. In this research, we
mainly focus on the HTTP-based protocol as most IoT devices are connected to the web. Tasks are the
entities users send to the service to control IoT devices, which contain users’ input values in the
Inputs. In Section 3.2.1, this paper introduces the details of each class.

For addressing the heterogeneity issue the IoT devices facing, the proposed tasking capability
data model should be able to describe possible IoT device protocols. In this section, we introduce the
details of each defined class.

Figure 5. The data model of tasking capability.

While the main purpose of the tasking capability description is to describe the protocol of IoT
devices, a TaskingCapability entity uses the HTTPProtocol and zero-to-many Parameter entities to describe
the protocol. The HTTPProtocol presents the template of the device request, which includes every
component of an HTTP request. The Parameter records not only the description of Parameter but also
the Definition, which defines the data type, unit of measurement, and AllowedValues so that users can
understand the feasibly allowed values to the specific Parameter. In this research, we mainly focus on
the HTTP-based protocol as most IoT devices are connected to the web. Tasks are the entities users send
to the service to control IoT devices, which contain users’ input values in the Inputs. In Section 3.2.1,
this paper introduces the details of each class.

Sensors 2016, 16, 1395 10 of 23

For addressing the heterogeneity issue the IoT devices facing, the proposed tasking capability
data model should be able to describe possible IoT device protocols. In this section, we introduce the
details of each defined class.

3.2.1. TaskingCapability

This research designs the TaskingCapability to be the controllable ability of a Thing. For example,
a Thing can be an Internet smart light bulb, a smart lock or a smart plug. A smart light bulb could have
tasking capabilities that can change its color, brightness, and saturation. In terms of the TaskingCapability
class in the data model, TaskingCapability provides a uniform way to describe these controllable
abilities of Thing so that users can understand the controllable abilities of the Thing. Moreover, one
Thing can have multiple TaskingCapabilities to describe different controllable abilities. Table 1 shows
that Tasking Capability only has one Description property to explain what this TaskingCapability is.
The detailed information of the TaskingCapability is shown in the linked Parameter, HTTPProtocol,
and Actuator entities.

Table 1. Properties of the TaskingCapability.

Name Definition Data Type Multiplicity and Use

Description A human-readable description
for the Tasking Capability CharacterString One (Mandatory)

3.2.2. Actuator

The Actuator is used to describe the specific actuator of a TaskingCapability. For example, an Internet
camera (as a Thing) may have a motor actuator, which can support two tasking capabilities. One is
for the pan and tilt movement. Another is for the zoom in and zoom out. So an Actuator may link
to multiple TaskingCapabilities. As shown in Table 2, Actuator has three properties. Description helps
users understand the actuator. Metadata describes the detail of this actuator, which is usually based on
a structured format. EncodingType presents the DataType of the Metadata. With the EncodingType,
manufacturers can describe the Metadata of their IoT products in a standard format, e.g., the OGC
SensorML, or in any data types such as plain-text, XML, and JSON.

Table 2. Properties of the Actuator.

Name Definition Data Type Multiplicity and Use

Description A human-readable description
for the Actuator CharacterString One (Mandatory)

EncodingType Data type of the metadata ValueCode (e.g., for SensorML,
application/xml, application/json) One (Mandatory)

Metadata A metadata of the actuator Any One (Mandatory)

3.2.3. Parameter

The Parameter mainly has four properties (Table 3) for describing all of the acceptable parameters
of the TaskingCapability. ParameterID shows the unique identification of an allowed parameter.
Description can be used to describe the meaning of the parameter so that user could understand
the use of it. Use is used to identify whether the parameter is “Optional” or “Mandatory”.
CorrespondingTemplate records the corresponding portion of the template in the HTTPProtocol of a
specific optional parameter. CorrespondingTemplate helps remove the unrequired portion from the
template when composing a device request (details presented in Section 3.3). Also, the Parameter has a
set of properties to describe the details, including the Definition, AllowedValues, Value and Range shown
in Tables 4–7, respectively.

Sensors 2016, 16, 1395 11 of 23

Table 3. Properties of the Parameter.

Name Definition Data Type Multiplicity and Use

ParameterID The unique identification for
an allowed parameter CharacterString One (Mandatory)

Description A human-readable description
for the Parameter CharacterString One (Mandatory)

Use The necessity of the
ParameterID

“Mandatory” or
“Optional” One (Mandatory)

CorrespondingTemplate
The corresponding portion of
template in the HTTPProtocol
of an optional ParameterID

CharacterString Zero to one (Optional)

Table 4. Properties of the Definition.

Name Definition Data Type Multiplicity and Use

InputType The data type of the
input value

“String”, “Double”,
“Boolean”, “Integer” One (Mandatory)

UnitOfMeasurement Unit of measurement
of the input value JSON_Object One (Mandatory)

Table 5. Properties of the AllowedValues.

Name Definition Data Type Multiplicity and Use

Value An acceptable value for
the Parameter Value Zero to many (at least one Value or

one Range is required)

Range An acceptable value
range for the Parameter Range Zero to many (at least one Value or

one Range is required)

Table 6. Properties of the Value.

Name Definition Data Type Multiplicity and Use

Value An acceptable value for the Parameter Any One (Mandatory)
Description A human-readable description of the Value CharacterString One (Mandatory)

Table 7. Properties of the Range.

Name Definition Data Type Multiplicity and Use

Min The minimum value of a range Double or Integer One (Mandatory)

Max The maximum value of a range Double or Integer One (Mandatory)

Description A human-readable description of the Range CharacterString One (Mandatory)

One Parameter has one Definition that is used to describe the input data type and unit of
measurement. Then one Definition may have multiple AllowedValues because a Parameter can have more
than one acceptable value. For example, a smart light bulb may have a parameter “status”, and the
allowed value of the “status” could be “On” or “Off”. Moreover, each allowed value should have one
Description to describe the meanings of allowed values.

Also, while allowed values could be in a specific range, our proposed solution defines the Range
class for this scenario. Range records Max, Min. For example, because the brightness of the smart light
bulb may have a range (e.g., from 1 to 254), the Range can represent the maximum and minimum values
of the brightness. In general, through these properties, the acceptable parameters of a TaskingCapability
can be modeled completely.

Sensors 2016, 16, 1395 12 of 23

3.2.4. HTTPProtocol

In order to automatically communicate with different IoT devices, this research designs a class
to describe possible communication protocols of IoT devices. In this study, we mainly focus on
HTTP-based protocol [22]. While manufacturers could design device protocols in different ways, such
as using different HTTP methods (e.g., GET, POST, PUT, DELETE) and putting input values in the
URL, in HTTP headers, or in message body, in order to describe every possible protocol, we design the
HTTPProtocol as a request template according to the device communication protocol.

In the template, we use the ParameterIDs in the Parameters as placeholders to indicate the
location that input values should be. By simply replacing the placeholders in the template with
input values, the Extended SensorThings API can automatically compose a request. We call this
process “keyword replacement” and further explain it in Section 3.3. Therefore, to accommodate
any possible device protocol, the HTTPProtocol contains properties for describing the common HTTP
request components [22] as shown in Table 8.

Table 8. Properties of the HTTPProtocol.

Name Definition Data Type Multiplicity
and Use

HTTPMethod The HTTP method of the device HTTP request HTTP Method One
(Mandatory)

AbsoluteResourcePath Absolute resource path of the device HTTP request URL One
(Mandatory)

MessageBodyDataType The data type for the MessageBody, which can be
used to verify the content in the MessageBody

ValueCode (e.g., for
application/xml,
application/json)

Zero to one
(Optional)

MessageBody The MessageBody of the device HTTP request CharacterString Zero to one
(Optional)

QueryString The QueryString of the device HTTP request CharacterString Zero to one
(Optional)

Headers The Headers of the device HTTP request CharacterString Zero to many
(Optional)

Fragment The Fragment of the device HTTP request CharacterString Zero to one
(Optional)

Authentication Authentication information for accessing the
IoT device Authentication Zero to one

(Optional)

In addition, while the privacy and security requirements are critical for some IoT applications,
some IoT products/services require users to provide authentication information (e.g., username
and password) when connecting to IoT devices. Therefore, the proposed HTTPProtocol and web
service implementation can describe and support authentication standards such as the HTTP Basic
Authentication and Digest Authentication [23]. Users can first register their authentication information
with the Authentication properties shown in Table 9, and then the web service will automatically apply
the specified authentication standard when sending device requests.

Table 9. Properties of the Authentication.

Name Definition Data Type MultIPLICITY and Use

Type Type of HTTP authentication Value code (e.g., for HTTP
Basic, HTTP Digest) One (Mandatory)

Account User accounts for accessing IoT devices CharacterString One (Mandatory)

Password Password for accessing IoT devices CharacterString One (Mandatory)

Sensors 2016, 16, 1395 13 of 23

Through the above four classes in the tasking capability data model, the data model can completely
describe the IoT device communication protocol. However, for users to control IoT devices in a uniform
manner while following the general SensorThings API operation, this study designs the Task class as
an entity type in the Extended SensorThings API.

3.2.5. Task

While users can create entities in a general SensorThings API service by sending HTTP POST
requests, we design our system so that users can send tasks by simply creating Task entities in an
Extended SensorThings API service. In this case, users can control IoT devices in a uniform way. To be
specific, the Task contains properties for a user to identify the TaskingCapability he/she wants to control,
the time point for executing the Task (i.e., Time), and the input values for the Task (i.e., Inputs). For each
Input, users should specify a ParameterID and a Value so that the Extended SensorThings API can use
the ParameterID to find the placeholder in the HTTPProtocol template and replace the placeholder with
the input Value. In addition, users can follow the SensorThings API Read operation to retrieve the
created Task entities and find out their statuses (i.e., Status) and Responses from devices. The following
Tables 10 and 11 present the properties of Task and Input, respectively.

Table 10. Properties of the Task.

Name Definition Data Type Multiplicity
and Use

Time Time for executing the task. If the Time is not
specified, the request will be sent immediately. ISO 8601 Time String Zero to one

(Optional)

Status The task status automatically changed by
the service CharacterString One

(Mandatory)

ResponseDataType The data type of the response from device
ValueCode (e.g., for

application/xml,
application/json)

Zero to one
(Optional)

Response The response message from device Any Zero to one
(Optional)

Table 11. Properties of the Input.

Name Definition Data Type Multiplicity and Use

ParameterID The unique identification
of the Parameter CharacterString One (Mandatory)

Value User’s input value Any (but limited by the Parameter’s
Definition and AllowedValue) One (Mandatory)

3.3. Keyword Replacement

To support any possible protocols that IoT devices could use, this study proposes an approach
called “keyword replacement”. When users or manufacturers create a tasking capability description,
the HTTPProtocol entity mainly presents the request template of device protocol. In the HTTPProtocol
properties, manufacturers can place “keywords” at the locations where users’ input value should be.
Then by simply replace the keywords with the Values in a Task, the service can automatically compose
a device request. The designed style of the keyword is simple, which is using curly brackets (i.e., “{”
and “}”) to encompass a ParameterID. For example, if a ParameterID is “On”, its keyword is “{On}”.
We expect this approach could accommodate the heterogeneities in IoT device protocols and provide a
uniform web service interface for users to access the IoT tasking capability.

Here we use an example to explain the keyword replacement process, for a scenario that a user
owns a smart light bulb, he/she registered the tasking capability of the light bulb (Figure 6) to an

Sensors 2016, 16, 1395 14 of 23

Extended SensorThings API service. When this user sends a Task with the Inputs shown in Figure 7a to
turn on the light bulb, the service will first parse the Inputs. The service will find the ParameterID
“on” and “bri” with Value true and 255, respectively. Then the service composes keywords “{on}” and
“{bri}” to find the placeholders in the HTTPProtocol template. In this case, the service will use the Value
true and 255 to replace the “{on}” and “{bri}” in the MessageBody. As a result, the final device request
is shown in Figure 7c.

In addition, while some Parameters are optional, and the HTTPProtocol records a complete template,
the portion for those optional parameters should be removed from the final request if unrequired.
For example, when users only want to turn off the light bulb by specifying the ParameterID “on” and
Value false in the Task as shown in Figure 7b, the portion of the template for ParameterID “bri” is not
required in this case. Hence, we design the CorrespondingTemplate in Parameter shown in Figure 6
to specify the corresponding portion of the template in HTTPProtocol. In this case, when the service
is composing a device request, Figure 7d shows the service removes the CorrespondingTemplates
of optional Parameters that are not required and composes a device request. Finally, if a request has
a MessageBody, the service will use the MessageBodyDataType to verify and fix simple formatting
issues in the MessageBody, such as removing necessary commas from a JSON String. As a result,
the service can automatically compose a complete HTTP request for controlling an IoT device.

Sensors 2016, 16, 1395 14 of 23

Here we use an example to explain the keyword replacement process, for a scenario that a user
owns a smart light bulb, he/she registered the tasking capability of the light bulb (Figure 6) to an
Extended SensorThings API service. When this user sends a Task with the Inputs shown in Figure 7a
to turn on the light bulb, the service will first parse the Inputs. The service will find the ParameterID
“on” and “bri” with Value true and 255, respectively. Then the service composes keywords “{on}”
and “{bri}” to find the placeholders in the HTTPProtocol template. In this case, the service will use the
Value true and 255 to replace the “{on}” and “{bri}” in the MessageBody. As a result, the final device
request is shown in Figure 7c.

In addition, while some Parameters are optional, and the HTTPProtocol records a complete
template, the portion for those optional parameters should be removed from the final request if
unrequired. For example, when users only want to turn off the light bulb by specifying the
ParameterID “on” and Value false in the Task as shown in Figure 7b, the portion of the template for
ParameterID “bri” is not required in this case. Hence, we design the CorrespondingTemplate in
Parameter shown in Figure 6 to specify the corresponding portion of the template in HTTPProtocol. In
this case, when the service is composing a device request, Figure 7d shows the service removes the
CorrespondingTemplates of optional Parameters that are not required and composes a device
request. Finally, if a request has a MessageBody, the service will use the MessageBodyDataType to
verify and fix simple formatting issues in the MessageBody, such as removing necessary commas
from a JSON String. As a result, the service can automatically compose a complete HTTP request for
controlling an IoT device.

{
 “Thing”: {“_link”: “/Thing”},
 “Description”: “This capability description can control a smart light bulb”,
 “Parameters”: [
 {“ParameterID”: “on”, “Description”: “This parameter is used to turn on or off the smart light bulb”,
 “Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Boolean”, “UnitOfMeasurement”: “Status”,
 “AllowedValues”: [{“Value”: true, “Description”: “turn on”},{“Value”: false, “Description”: “turn
off”}]}},
 {“ParameterID”: “bri”,”Description”: “This parameter is used to adjust brightness of the smart light bulb”,
 “Use”: “Optional”,”CorrespondingTemplate”: “,\”bri\”: {bri}”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “brightness degrees”,
 “AllowedValues”: [{“Max”: 254, “Min”: 1, “Description”: “This is a scale from the minimum
brightness the light is capable of, 1, to the maximum capable brightness, 254.” }]}}
],
 “HTTPProtocols”: {
 “HTTPMethod”: “PUT”,
 “AbsoluteResourcePath”: “http://example.com/lightbulb1”,
 “MessageDataType”: “application/json”,
 “MessageBody”: “{\”on\”: {on},\”bri\”: {bri}}”
 },
 “Actuator”: {“_link”: “/Actuator”}
}

Figure 6. An example of a tasking capability description for a smart light bulb.

Figure 6. An example of a tasking capability description for a smart light bulb.

The above example shows the case of having input values in the MessageBody. However, with the
defined tasking capability description and the keyword replacement procedure, input values can be
automatically placed in other HTTP components (i.e., resource path, querystring, headers, or fragment).
Users or manufacturers only need to put the placeholder in the correct place in the template, and the
service can automatically locate the placeholders and compose a complete HTTP request. This solution
is intuitive and simple enough to accommodate various device protocols and could consequently
realize the interoperability of IoT tasking capability.

Sensors 2016, 16, 1395 15 of 23
Sensors 2016, 16, 1395 15 of 23

{

 “TaskingCapability”: {“ID”: 3},

 “Input”: [

 {“ParameterID”: “bri”,”Value”: 255},

 {“ParameterID”: “on”,”Value”: true}

],

 “Status”: “Waiting to be sent”,

 “Time”: “2016-02-26T15:40:00+0800”
}

{

 “TaskingCapability”: {“ID”: 3},

 “Input”: [

 {“ParameterID”: “on”,”Value”: false}

],

 “Status”: “Waiting to be sent”,

 “Time”: “2016-02-26T15:42:00+0800”
}

(a) (b)
HTTP PUT http://example.com/lightbulb1

MessageBody
{“on”: true, “bri”: 255}

HTTP PUT http://example.com/lightbulb1
MessageBody

{“on”: false}
(c) (d)

Figure 7. (a) A Task with two input parameters; (b) A Task with one input parameters; (c) The device
request corresponds to the two-input-parameters Task; (d) The device request corresponds to the
one-input-parameter Task.

The above example shows the case of having input values in the MessageBody. However, with
the defined tasking capability description and the keyword replacement procedure, input values can
be automatically placed in other HTTP components (i.e., resource path, querystring, headers, or
fragment). Users or manufacturers only need to put the placeholder in the correct place in the
template, and the service can automatically locate the placeholders and compose a complete HTTP
request. This solution is intuitive and simple enough to accommodate various device protocols and
could consequently realize the interoperability of IoT tasking capability.

4. Results

The main focus of this study is to propose a uniform service description for describing
heterogeneous IoT device protocols and design a web service interface for users to control different
IoT devices following a single protocol. To demonstrate the contribution of this study, we first apply
the proposed tasking capability description on three existing IoT devices, which are the Philips Hue,
Belkin WeMo Switch, and a Panasonic IP camera. Secondly, we use the Extended SensorThings API
to create two physical mashup applications to demonstrate the potential usage of the proposed
solution.

4.1. The Tasking Capability Descriptions for Existing IoT Products

As shown in Figure 8, the Philips Hue is a smart device that can be remotely controlled to
change the colors, brightness, and saturation of light bulbs. While the Philips Hue is one of the
popular IoT devices, users need to use their applications or follow their proprietary protocol to
control the device. If our proposed tasking capability description can describe the service protocol to
control Hue light bulbs, users can control them with the same protocol as other describable IoT
devices.

Figure 8. The Philips Hue.

Figure 7. (a) A Task with two input parameters; (b) A Task with one input parameters; (c) The device
request corresponds to the two-input-parameters Task; (d) The device request corresponds to the
one-input-parameter Task.

4. Results

The main focus of this study is to propose a uniform service description for describing
heterogeneous IoT device protocols and design a web service interface for users to control different
IoT devices following a single protocol. To demonstrate the contribution of this study, we first apply
the proposed tasking capability description on three existing IoT devices, which are the Philips Hue,
Belkin WeMo Switch, and a Panasonic IP camera. Secondly, we use the Extended SensorThings API to
create two physical mashup applications to demonstrate the potential usage of the proposed solution.

4.1. The Tasking Capability Descriptions for Existing IoT Products

As shown in Figure 8, the Philips Hue is a smart device that can be remotely controlled to change
the colors, brightness, and saturation of light bulbs. While the Philips Hue is one of the popular IoT
devices, users need to use their applications or follow their proprietary protocol to control the device.
If our proposed tasking capability description can describe the service protocol to control Hue light
bulbs, users can control them with the same protocol as other describable IoT devices.

Sensors 2016, 16, 1395 15 of 23

{

 “TaskingCapability”: {“ID”: 3},

 “Input”: [

 {“ParameterID”: “bri”,”Value”: 255},

 {“ParameterID”: “on”,”Value”: true}

],

 “Status”: “Waiting to be sent”,

 “Time”: “2016-02-26T15:40:00+0800”
}

{

 “TaskingCapability”: {“ID”: 3},

 “Input”: [

 {“ParameterID”: “on”,”Value”: false}

],

 “Status”: “Waiting to be sent”,

 “Time”: “2016-02-26T15:42:00+0800”
}

(a) (b)
HTTP PUT http://example.com/lightbulb1

MessageBody
{“on”: true, “bri”: 255}

HTTP PUT http://example.com/lightbulb1
MessageBody

{“on”: false}
(c) (d)

Figure 7. (a) A Task with two input parameters; (b) A Task with one input parameters; (c) The device
request corresponds to the two-input-parameters Task; (d) The device request corresponds to the
one-input-parameter Task.

The above example shows the case of having input values in the MessageBody. However, with
the defined tasking capability description and the keyword replacement procedure, input values can
be automatically placed in other HTTP components (i.e., resource path, querystring, headers, or
fragment). Users or manufacturers only need to put the placeholder in the correct place in the
template, and the service can automatically locate the placeholders and compose a complete HTTP
request. This solution is intuitive and simple enough to accommodate various device protocols and
could consequently realize the interoperability of IoT tasking capability.

4. Results

The main focus of this study is to propose a uniform service description for describing
heterogeneous IoT device protocols and design a web service interface for users to control different
IoT devices following a single protocol. To demonstrate the contribution of this study, we first apply
the proposed tasking capability description on three existing IoT devices, which are the Philips Hue,
Belkin WeMo Switch, and a Panasonic IP camera. Secondly, we use the Extended SensorThings API
to create two physical mashup applications to demonstrate the potential usage of the proposed
solution.

4.1. The Tasking Capability Descriptions for Existing IoT Products

As shown in Figure 8, the Philips Hue is a smart device that can be remotely controlled to
change the colors, brightness, and saturation of light bulbs. While the Philips Hue is one of the
popular IoT devices, users need to use their applications or follow their proprietary protocol to
control the device. If our proposed tasking capability description can describe the service protocol to
control Hue light bulbs, users can control them with the same protocol as other describable IoT
devices.

Figure 8. The Philips Hue. Figure 8. The Philips Hue.

Therefore, based on the Application Programming Interface (API) of Hue (http://www.
developers.meethue.com/), we create the Hue tasking capability description as shown in Figure 9.
A TaskingCapability of Hue links to a Thing, which could be a lamp. Description shows users that
this tasking capability can be used to control Hue. Parameters record the acceptable parameters and
feasible values so that users can know how to control Hue through the Extended SensorThings API.
As shown in Figure 9, “on” can be used to turn on or off the Hue, “bri” is for adjusting the brightness,

http://www.developers.meethue.com/
http://www.developers.meethue.com/

Sensors 2016, 16, 1395 16 of 23

“hue” helps users change the color of Hue and “sat” can be used to adjust the saturation of Hue.
The AllowedValues can be represented with Range and/or Value.

Sensors 2016, 16, 1395 16 of 23

Therefore, based on the Application Programming Interface (API) of Hue
(http://www.developers.meethue.com/), we create the Hue tasking capability description as shown
in Figure 9. A TaskingCapability of Hue links to a Thing, which could be a lamp. Description shows
users that this tasking capability can be used to control Hue. Parameters record the acceptable
parameters and feasible values so that users can know how to control Hue through the Extended
SensorThings API. As shown in Figure 9, “on” can be used to turn on or off the Hue, “bri” is for
adjusting the brightness, “hue” helps users change the color of Hue and “sat” can be used to adjust
the saturation of Hue. The AllowedValues can be represented with Range and/or Value.

{
 “Thing”: {“_link”: “/Thing”},
 “Description”: “This capability description can control Philips Hue”,
 “Parameters”: [
 {“ParameterID”: “on”,”Description”: “This parameter is used to turn on or off Philips Hue”,”Use”:
“Mandatory”,
 “Definition”: {
 “InputType”: “Boolean”,”UnitOfMeasurement”: “Status”,
 “AllowedValues”: [
 {“Value”: true, “Description”: “turn on”},{“Value”: false, “Description”: “turn off”}]}},
 {“ParameterID”: “bri”,”Description”: “This parameter is used to adjust brightness of the Philips
Hue”,”Use”: “Optional”,”CorrespondingTemplate”: “\”bri\”: {bri},”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “brightness degrees”,
 “AllowedValues”: [
 {“Max”: 254, “Min”: 1, “Description”: “This is a scale from the minimum brightness the light is
capable of, 1, to the maximum capable brightness, 254.” }]}},
 {“ParameterID”: “hue”,”Description”: “This parameter is used to change the color of the Philips
Hue”,”Use”: “Optional”,”CorrespondingTemplate”: “\”hue\”: {hue}”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “color”,
 “AllowedValues”: [
 {“Max”: 65535, “Min”: 0, “Description”: “This is a wrapping value between 0 and 65535. Both 0 and
65535 are red, 25500 is green and 46920 is blue.” }]}},
 {“ParameterID”: “sat”,”Description”: “This parameter is used to adjust the saturation of the Philips
Hue”,”Use”: “Optional”,”CorrespondingTemplate”: “\”sat\”: {sat},”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “Saturation”,
 “AllowedValues”: [
 {“Max”: 254, “Min”: 0, “Description”: “254 is the most saturated (colored) and 0 is the least saturated
(white).” }]}}
],
 “HTTPProtocol”: {
 “HTTPMethod”: “PUT”,
 “AbsoluteResourcePath”: “http://example.com/api20a43e54177bba0f3bf9687c59cbb77/lights/2/state”,
 “MessageDataType”: “application/json”,
 “MessageBody”: “{\”on\”: {on},\”bri\”: {bri},\”sat\”: {sat},\”hue\”: {hue}}”
 },
 “Actuator”: {“_link”: “/Actuator”}
}

Figure 9. The tasking capability description of Philips Hue.

In order to describe the communication protocols of different IoT devices, HTTPProtocol can
record the HTTP protocol. According to Figure 9, Hue accepts the HTTP PUT requests.
AbsoluteResourcePath records the web service entry to control this Philips Hue, and MessageBody
records the template that will be used to compose device requests. As mentioned in Section 3.3, this
research designs the keyword “{ParameterID}” as the placeholder, such as the {on}, {bri}, {sat}, and

Figure 9. The tasking capability description of Philips Hue.

In order to describe the communication protocols of different IoT devices, HTTPProtocol can record
the HTTP protocol. According to Figure 9, Hue accepts the HTTP PUT requests. AbsoluteResourcePath
records the web service entry to control this Philips Hue, and MessageBody records the template
that will be used to compose device requests. As mentioned in Section 3.3, this research designs
the keyword “{ParameterID}” as the placeholder, such as the {on}, {bri}, {sat}, and {hue}, which will
be replaced with users’ input values. Finally, the TaskingCapability links to an Actuator that enables
this capability.

Sensors 2016, 16, 1395 17 of 23

As shown in Figure 10, the Belkin WeMo InsightSwitch is a smart plug connecting to the Internet
via WIFI. Users can connect some appliances like a dehumidifier and further remotely control this
smart plug to turn on/off those connected appliances.

Sensors 2016, 16, 1395 17 of 23

{hue}, which will be replaced with users’ input values. Finally, the TaskingCapability links to an
Actuator that enables this capability.

As shown in Figure 10, the Belkin WeMo InsightSwitch is a smart plug connecting to the
Internet via WIFI. Users can connect some appliances like a dehumidifier and further remotely
control this smart plug to turn on/off those connected appliances.

Figure 10. The Belkin WeMo InsightSwitch.

As shown in Figure 11, this description explains the Belkin WeMo InsightSwitch tasking
capability. According to the WeMo InsightSwitch API, there is only one acceptable parameter called
“BinaryState”, which allows users to turn on or off this WeMo smart plug. Figure 11 shows that
value “1” and value “0” stand for “turn on” and “turn off”, respectively. From the HTTPProtocol,
the Extended SensorThings API can understand the components for composing a device request.
For example, the WeMo InsightSwitch requires some information in HTTP headers. In addition, the
MessageBody stores the template of the XML document for device requests, where the {BinaryState}
is the keyword placeholder for users’ input values.

{
 “Thing”: {“/link”: “/Thing”},
 “Description”: “The Belkin WeMo InsightSwitch is a smart plug that can help user turn on/off remotely “,
 “Parameters”: [
 {“ParameterID”: “BinaryState”,”Description”: “This parameter is used to turn on or off the
WeMo”,”Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “Status”,
 “AllowedValues”: [
 {“Value”: 1, “Description”: “Value 1 is used to turn WeMo on”},
 {“Value”: 0, “Description”: “Value 0 is used to turn WeMo off”}]}}
],
 “HTTPProtocol”: [
 {
 “HTTPMethod”: “POST”,
 “Headers”: [
 {“Key”: “Content-Type”,”Value”: “text/xml; charset=\”utf-8\”“},
 {“Key”: “Accept”,”Value”: ““},
 {“Key”: “SOAPACTION”,”Value”: “\”urn:Belkin:service:basicevent:1#SetBinaryState\”“}
],
 “AbsoluteResourcePath”: “http://example.com/upnp/control/basicevent1”,
 “MessageDataType”: “application/xml”,
 “MessageBody”: “<?xml version=\”1.0\” encoding=\”utf-8\”?><s:Envelope
xmlns:s=\”http://schemas.xmlsoap.org/soap/envelope/\”
s:encodingStyle=\”http://schemas.xmlsoap.org/soap/encoding/\”><s:Body><u:SetBinaryState
xmlns:u=\”urn:Belkin:service:basicevent:1\”><BinaryState>{BinaryState}</BinaryState></u:SetBinaryState
></s:Body></s:Envelope>“}
],
 “Actuator”: {“/link”: “/Actuator”}
}

Figure 11. The tasking capability description of Belkin WeMo.

Figure 10. The Belkin WeMo InsightSwitch.

As shown in Figure 11, this description explains the Belkin WeMo InsightSwitch tasking capability.
According to the WeMo InsightSwitch API, there is only one acceptable parameter called “BinaryState”,
which allows users to turn on or off this WeMo smart plug. Figure 11 shows that value “1” and
value “0” stand for “turn on” and “turn off”, respectively. From the HTTPProtocol, the Extended
SensorThings API can understand the components for composing a device request. For example,
the WeMo InsightSwitch requires some information in HTTP headers. In addition, the MessageBody
stores the template of the XML document for device requests, where the {BinaryState} is the keyword
placeholder for users’ input values.

Sensors 2016, 16, 1395 17 of 23

{hue}, which will be replaced with users’ input values. Finally, the TaskingCapability links to an
Actuator that enables this capability.

As shown in Figure 10, the Belkin WeMo InsightSwitch is a smart plug connecting to the
Internet via WIFI. Users can connect some appliances like a dehumidifier and further remotely
control this smart plug to turn on/off those connected appliances.

Figure 10. The Belkin WeMo InsightSwitch.

As shown in Figure 11, this description explains the Belkin WeMo InsightSwitch tasking
capability. According to the WeMo InsightSwitch API, there is only one acceptable parameter called
“BinaryState”, which allows users to turn on or off this WeMo smart plug. Figure 11 shows that
value “1” and value “0” stand for “turn on” and “turn off”, respectively. From the HTTPProtocol,
the Extended SensorThings API can understand the components for composing a device request.
For example, the WeMo InsightSwitch requires some information in HTTP headers. In addition, the
MessageBody stores the template of the XML document for device requests, where the {BinaryState}
is the keyword placeholder for users’ input values.

{
 “Thing”: {“/link”: “/Thing”},
 “Description”: “The Belkin WeMo InsightSwitch is a smart plug that can help user turn on/off remotely “,
 “Parameters”: [
 {“ParameterID”: “BinaryState”,”Description”: “This parameter is used to turn on or off the
WeMo”,”Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “Status”,
 “AllowedValues”: [
 {“Value”: 1, “Description”: “Value 1 is used to turn WeMo on”},
 {“Value”: 0, “Description”: “Value 0 is used to turn WeMo off”}]}}
],
 “HTTPProtocol”: [
 {
 “HTTPMethod”: “POST”,
 “Headers”: [
 {“Key”: “Content-Type”,”Value”: “text/xml; charset=\”utf-8\”“},
 {“Key”: “Accept”,”Value”: ““},
 {“Key”: “SOAPACTION”,”Value”: “\”urn:Belkin:service:basicevent:1#SetBinaryState\”“}
],
 “AbsoluteResourcePath”: “http://example.com/upnp/control/basicevent1”,
 “MessageDataType”: “application/xml”,
 “MessageBody”: “<?xml version=\”1.0\” encoding=\”utf-8\”?><s:Envelope
xmlns:s=\”http://schemas.xmlsoap.org/soap/envelope/\”
s:encodingStyle=\”http://schemas.xmlsoap.org/soap/encoding/\”><s:Body><u:SetBinaryState
xmlns:u=\”urn:Belkin:service:basicevent:1\”><BinaryState>{BinaryState}</BinaryState></u:SetBinaryState
></s:Body></s:Envelope>“}
],
 “Actuator”: {“/link”: “/Actuator”}
}

Figure 11. The tasking capability description of Belkin WeMo.
Figure 11. The tasking capability description of Belkin WeMo.

The third IoT product we examined is the Panasonic IP camera as shown in Figure 12. IP cameras
are common IoT devices, which allow users to remotely monitor features of interest in real time via

Sensors 2016, 16, 1395 18 of 23

the Internet. Therefore, the proposed solution should also support IP camera tasking capabilities.
As shown in Figure 13, Description and Parameters provide information for users to understand how
to task this IP camera. While the request template is also recorded in the HTTPProtocol, but different
from the previous two IoT products, the request is an HTTP GET request, and the parameters are
specified in query options (i.e., the {pan} and {tilt}).

Sensors 2016, 16, 1395 18 of 23

The third IoT product we examined is the Panasonic IP camera as shown in Figure 12. IP
cameras are common IoT devices, which allow users to remotely monitor features of interest in real
time via the Internet. Therefore, the proposed solution should also support IP camera tasking
capabilities. As shown in Figure 13, Description and Parameters provide information for users to
understand how to task this IP camera. While the request template is also recorded in the
HTTPProtocol, but different from the previous two IoT products, the request is an HTTP GET
request, and the parameters are specified in query options (i.e., the {pan} and {tilt}).

Figure 12. The Panasonic IP camera

{
 “Thing”: {“_link”: “/Thing”},
 “Description”: “This tasking capability can help users control the Panasonic IP camera”,
 “Parameters”: [
 {“ParameterID”: “pan”,”Description”: “The pan is used on horizontal rotation”,”Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “none”,
 “AllowedValues”: [
 {“Max”: 5, “Min”: -5, “Description”: “Positive number means turn right horizontally and negative
number means turn left horizontally.” }]}},
 {“ParameterID”: “tilt”,”Description”: “The tilt is used on vertical rotation”,”Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “none”,
 “AllowedValues”: [
 {“Max”: 4, “Min”: -4, “Description”: “Positive number means vertical decline and negative number
means vertical rise.” }]}}
],
 “HTTPProtocol”: {
 “HTTPMethod”: “GET”,
 “AbsoluteResourcePath”: “http://example.com/cgi-bin/camctrl”,
 “QueryString”: “pan={pan}&tilt={tilt}”,
 “Authentication”: {“Type”: “HTTP Basic”,”Username”: “admin”,”Password”: “12345”}
 },
 “Actuator”: {“_link”: “/Actuator”}
}

Figure 13. The tasking capability description of Panasonic IP camera.

In addition, the Panasonic IP camera supports authentication for privacy and security
purposes. In order to automatically compose device requests, the authentication standard type,
username and password are specified in the HTTPProtocol as well. This use case indicates that our
proposed solution can record variable device protocols as the manufacturers of IoT devices wants.

4.2. The Task for Controlling IoT Products

According to these tasking capability descriptions, users can understand every detail of
different tasking capabilities from different IoT devices and know how to use those acceptable
parameters to create a Task entity to control these devices. Similar to other entities in SensorThings
API, by creating tasking capability entities in an Extended SensorThings API, users can get a unique

Figure 12. The Panasonic IP camera

Sensors 2016, 16, 1395 18 of 23

The third IoT product we examined is the Panasonic IP camera as shown in Figure 12. IP
cameras are common IoT devices, which allow users to remotely monitor features of interest in real
time via the Internet. Therefore, the proposed solution should also support IP camera tasking
capabilities. As shown in Figure 13, Description and Parameters provide information for users to
understand how to task this IP camera. While the request template is also recorded in the
HTTPProtocol, but different from the previous two IoT products, the request is an HTTP GET
request, and the parameters are specified in query options (i.e., the {pan} and {tilt}).

Figure 12. The Panasonic IP camera

{
 “Thing”: {“_link”: “/Thing”},
 “Description”: “This tasking capability can help users control the Panasonic IP camera”,
 “Parameters”: [
 {“ParameterID”: “pan”,”Description”: “The pan is used on horizontal rotation”,”Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “none”,
 “AllowedValues”: [
 {“Max”: 5, “Min”: -5, “Description”: “Positive number means turn right horizontally and negative
number means turn left horizontally.” }]}},
 {“ParameterID”: “tilt”,”Description”: “The tilt is used on vertical rotation”,”Use”: “Mandatory”,
 “Definition”: {
 “InputType”: “Integer”,”UnitOfMeasurement”: “none”,
 “AllowedValues”: [
 {“Max”: 4, “Min”: -4, “Description”: “Positive number means vertical decline and negative number
means vertical rise.” }]}}
],
 “HTTPProtocol”: {
 “HTTPMethod”: “GET”,
 “AbsoluteResourcePath”: “http://example.com/cgi-bin/camctrl”,
 “QueryString”: “pan={pan}&tilt={tilt}”,
 “Authentication”: {“Type”: “HTTP Basic”,”Username”: “admin”,”Password”: “12345”}
 },
 “Actuator”: {“_link”: “/Actuator”}
}

Figure 13. The tasking capability description of Panasonic IP camera.

In addition, the Panasonic IP camera supports authentication for privacy and security
purposes. In order to automatically compose device requests, the authentication standard type,
username and password are specified in the HTTPProtocol as well. This use case indicates that our
proposed solution can record variable device protocols as the manufacturers of IoT devices wants.

4.2. The Task for Controlling IoT Products

According to these tasking capability descriptions, users can understand every detail of
different tasking capabilities from different IoT devices and know how to use those acceptable
parameters to create a Task entity to control these devices. Similar to other entities in SensorThings
API, by creating tasking capability entities in an Extended SensorThings API, users can get a unique

Figure 13. The tasking capability description of Panasonic IP camera.

In addition, the Panasonic IP camera supports authentication for privacy and security purposes.
In order to automatically compose device requests, the authentication standard type, username and
password are specified in the HTTPProtocol as well. This use case indicates that our proposed solution
can record variable device protocols as the manufacturers of IoT devices wants.

4.2. The Task for Controlling IoT Products

According to these tasking capability descriptions, users can understand every detail of different
tasking capabilities from different IoT devices and know how to use those acceptable parameters to
create a Task entity to control these devices. Similar to other entities in SensorThings API, by creating
tasking capability entities in an Extended SensorThings API, users can get a unique ID for each

Sensors 2016, 16, 1395 19 of 23

TaskingCapability. A user can use the TaskingCapability ID to specify which tasking capability of which
devices in the Task entity.

In order to control those IoT devices, users can send a Task to the Extended SensorThings API by
setting the acceptable input values. Figure 14 shows an example of a Task entity for controlling a Philips
Hue. As shown in Figure 14, TaskingCapabilitiy records those IDs for controlling the specific IoT devices.
Input records the user’s command values. The example task sets “on” is true to turn on the Philips Hue,
change the color to red by “hue”, set the high brightness to with “bri” and 250 and adjust the lower
saturation by “sat”. The Time is the time that the user wants to control the IoT device. According to the
example, at 26 February 2016 15:40, the Extended SensorThings API will send the device request to the
IoT devices. Status describes the status of this Task, while the Task is sent successfully, status would
tell us “Task is sent successfully”.

Sensors 2016, 16, 1395 19 of 23

ID for each TaskingCapability. A user can use the TaskingCapability ID to specify which tasking
capability of which devices in the Task entity.

In order to control those IoT devices, users can send a Task to the Extended SensorThings API
by setting the acceptable input values. Figure 14 shows an example of a Task entity for controlling a
Philips Hue. As shown in Figure 14, TaskingCapabilitiy records those IDs for controlling the specific
IoT devices. Input records the user’s command values. The example task sets “on” is true to turn on
the Philips Hue, change the color to red by “hue”, set the high brightness to with “bri” and 250 and
adjust the lower saturation by “sat”. The Time is the time that the user wants to control the IoT
device. According to the example, at 26 February 2016 15:40, the Extended SensorThings API will
send the device request to the IoT devices. Status describes the status of this Task, while the Task is
sent successfully, status would tell us “Task is sent successfully”.

{
 “TaskingCapability”:{“ID”:3},
 “Input”:[
 {“ParameterID”:”bri”,”Value”:250},
 {“ParameterID”:”on”,”Value”:true},
 {“ParameterID”:”hue”,”Value”:2000},
 {“ParameterID”:”sat”,”Value”:100}
],
 “Status”:”Task is sent successfully.”,
 “Time”:”2016-02-26T15:40:00+0800”,
 “ResponseDataType”:”application/json”,
 “Response”:
 “[{\”success\”: {\”/lights/2/state/on\”: true}},

{\”success\”: {\”/lights/2/state/hue\”: 2000}},
{\”success\”: {\”/lights/2/state/bri\”: 250}},
{\”success\”: {\”/lights/2/state/sat\”: 100}}]”

}

Figure 14. A Task entity example for controlling Philips Hue.

When an Extended SensorThings API receives the Task entity, the Extended SensorThings API
will parse the task to retrieve the executing time, input parameters and values, and the
corresponding TaskingCapability ID. Then the Extended SensorThings API will compose a device
request by replacing keyword placeholders in the template with user’s input values. Finally, the
Extended SensorThings API service sends the device request at the specified time. While IoT devices
receive the device requests, some IoT devices would return responses to the service. In this case,
optional properties ResponseDataType and Response record the data type of response and response
itself, respectively. Users can retrieve this information from the Task entity.

4.3. Physical Mashup Applications

The previous section shows that the proposed tasking capability description can describe
different IoT device protocols. In order to further demonstrate that the Extended SensorThings API
can handle both IoT sensing and tasking capabilities, this study implements two physical mashup
examples based on the Extended SensorThings API. To capture sensor observations, this study
connects the open-sourced Arduino microcontroller with sensors and communication modules.
According to the SensorThings API standard, Arduino sensor nodes can send observations of
different environmental properties to an Extended SensorThings API service.

In general, Figure 15 shows the high-level IoT architecture using the Extended SensorThings
API. While IoT devices have sensors and actuators, the Extended SensorThings API has
corresponding sensing and tasking capabilities to support them. Sensors can continuously upload
observations to a service, and actuators and their tasking capabilities can be registered to a service.
In this case, users or physical mashup applications can retrieve observations from different sensors

Figure 14. A Task entity example for controlling Philips Hue.

When an Extended SensorThings API receives the Task entity, the Extended SensorThings API
will parse the task to retrieve the executing time, input parameters and values, and the corresponding
TaskingCapability ID. Then the Extended SensorThings API will compose a device request by replacing
keyword placeholders in the template with user’s input values. Finally, the Extended SensorThings
API service sends the device request at the specified time. While IoT devices receive the device
requests, some IoT devices would return responses to the service. In this case, optional properties
ResponseDataType and Response record the data type of response and response itself, respectively.
Users can retrieve this information from the Task entity.

4.3. Physical Mashup Applications

The previous section shows that the proposed tasking capability description can describe different
IoT device protocols. In order to further demonstrate that the Extended SensorThings API can handle
both IoT sensing and tasking capabilities, this study implements two physical mashup examples
based on the Extended SensorThings API. To capture sensor observations, this study connects the
open-sourced Arduino microcontroller with sensors and communication modules. According to the
SensorThings API standard, Arduino sensor nodes can send observations of different environmental
properties to an Extended SensorThings API service.

In general, Figure 15 shows the high-level IoT architecture using the Extended SensorThings API.
While IoT devices have sensors and actuators, the Extended SensorThings API has corresponding
sensing and tasking capabilities to support them. Sensors can continuously upload observations to a

Sensors 2016, 16, 1395 20 of 23

service, and actuators and their tasking capabilities can be registered to a service. In this case, users or
physical mashup applications can retrieve observations from different sensors and control different
actuators through a coherent web service protocol. This paper uses two simple use cases as examples
to demonstrate the contributions of the Extended SensorThings API.

Sensors 2016, 16, 1395 20 of 23

and control different actuators through a coherent web service protocol. This paper uses two simple
use cases as examples to demonstrate the contributions of the Extended SensorThings API.

Figure 15. The high-level IoT architecture using the Extended SensorThings API.

4.3.1. Use Case 1—Automatic Dehumidifier

People turn on dehumidifiers when they feel uncomfortable because of high relative humidity.
In order to make the process more automatic and efficient, we can apply the Extended
SensorThings API to collect relative humidity data from a sensor and automatically control a
traditional dehumidifier via the WeMo Switch when the humidity exceeds a predefined threshold.
Although there have been similar products integrating a humidity sensor in a dehumidifier, we
simply want to demonstrate that without buying a more expensive product, similar functionality
can be achieved by simply connecting sensing and tasking capabilities from different connected
devices.

Figure 16 shows the prototype of an automatic dehumidifier. For the sensing capability, this
study uses the DHT11 as the humidity sensor to measure the relative humidity and connects the
DHT11 with Arduino YUN to upload observations to an Extended SensorThings API service every
30 min. From the data model perspective, we assigned the “room” as a Thing, the DHT11 as the
Sensor, and “relative air humidity” as the ObservedProperty. Users and applications can then retrieve
the time-series Observations from the service.

Figure 16. The prototype of an automatic dehumidifier.

Regarding the tasking capability, we connected a traditional dehumidifier to the WeMo Switch.
While the integrated system is considered as another Thing, the WeMo Switch is the Actuator, and
its TaskingCapability is similar to the example shown in Figure 11. By connecting the WeMo Switch
with the dehumidifier, users can remotely turn on/off the machine.

Figure 15. The high-level IoT architecture using the Extended SensorThings API.

4.3.1. Use Case 1—Automatic Dehumidifier

People turn on dehumidifiers when they feel uncomfortable because of high relative humidity.
In order to make the process more automatic and efficient, we can apply the Extended SensorThings
API to collect relative humidity data from a sensor and automatically control a traditional dehumidifier
via the WeMo Switch when the humidity exceeds a predefined threshold. Although there have been
similar products integrating a humidity sensor in a dehumidifier, we simply want to demonstrate that
without buying a more expensive product, similar functionality can be achieved by simply connecting
sensing and tasking capabilities from different connected devices.

Figure 16 shows the prototype of an automatic dehumidifier. For the sensing capability, this study
uses the DHT11 as the humidity sensor to measure the relative humidity and connects the DHT11
with Arduino YUN to upload observations to an Extended SensorThings API service every 30 min.
From the data model perspective, we assigned the “room” as a Thing, the DHT11 as the Sensor, and
“relative air humidity” as the ObservedProperty. Users and applications can then retrieve the time-series
Observations from the service.

Sensors 2016, 16, 1395 20 of 23

and control different actuators through a coherent web service protocol. This paper uses two simple
use cases as examples to demonstrate the contributions of the Extended SensorThings API.

Figure 15. The high-level IoT architecture using the Extended SensorThings API.

4.3.1. Use Case 1—Automatic Dehumidifier

People turn on dehumidifiers when they feel uncomfortable because of high relative humidity.
In order to make the process more automatic and efficient, we can apply the Extended
SensorThings API to collect relative humidity data from a sensor and automatically control a
traditional dehumidifier via the WeMo Switch when the humidity exceeds a predefined threshold.
Although there have been similar products integrating a humidity sensor in a dehumidifier, we
simply want to demonstrate that without buying a more expensive product, similar functionality
can be achieved by simply connecting sensing and tasking capabilities from different connected
devices.

Figure 16 shows the prototype of an automatic dehumidifier. For the sensing capability, this
study uses the DHT11 as the humidity sensor to measure the relative humidity and connects the
DHT11 with Arduino YUN to upload observations to an Extended SensorThings API service every
30 min. From the data model perspective, we assigned the “room” as a Thing, the DHT11 as the
Sensor, and “relative air humidity” as the ObservedProperty. Users and applications can then retrieve
the time-series Observations from the service.

Figure 16. The prototype of an automatic dehumidifier.

Regarding the tasking capability, we connected a traditional dehumidifier to the WeMo Switch.
While the integrated system is considered as another Thing, the WeMo Switch is the Actuator, and
its TaskingCapability is similar to the example shown in Figure 11. By connecting the WeMo Switch
with the dehumidifier, users can remotely turn on/off the machine.

Figure 16. The prototype of an automatic dehumidifier.

Sensors 2016, 16, 1395 21 of 23

Regarding the tasking capability, we connected a traditional dehumidifier to the WeMo Switch.
While the integrated system is considered as another Thing, the WeMo Switch is the Actuator, and its
TaskingCapability is similar to the example shown in Figure 11. By connecting the WeMo Switch with
the dehumidifier, users can remotely turn on/off the machine.

After registering both the sensor node and dehumidifier to an Extended SensorThings API service,
an application can first periodically retrieve humidity readings from the service. When the humidity
exceeds the predefined maximum or minimum thresholds, the application will automatically turn
on or off the dehumidifier by creating a corresponding Task entity in the Extended SensorThings
API service.

4.3.2. Use Case 2—A Smart Office Lighting System

In daily life, many office lighting systems consume unnecessary energy when no one is present,
or people often forget to turn off the lights when they leave the office. To address this issue, this study
implements a simple application that uses an ultrasonic distance sensor to monitor the distance
changing in a hallway and automatically adjusts the Philips Hue light bulbs, as shown in Figure 17.

Sensors 2016, 16, 1395 21 of 23

After registering both the sensor node and dehumidifier to an Extended SensorThings API
service, an application can first periodically retrieve humidity readings from the service. When the
humidity exceeds the predefined maximum or minimum thresholds, the application will
automatically turn on or off the dehumidifier by creating a corresponding Task entity in the
Extended SensorThings API service.

4.3.2. Use Case 2—A Smart Office Lighting System

In daily life, many office lighting systems consume unnecessary energy when no one is present,
or people often forget to turn off the lights when they leave the office. To address this issue, this
study implements a simple application that uses an ultrasonic distance sensor to monitor the
distance changing in a hallway and automatically adjusts the Philips Hue light bulbs, as shown in
Figure 17.

Figure 17. The prototype of a smart office light system.

This study deploys an ultrasonic distance sensor on the wall and connects the sensor to an
Arduino YUN. The sensor produces measurements at a high frequency (i.e., five readings per
second). Once the reading changes (e.g., when someone passes by), the Arduino YUN will upload an
Observation entity to an Extended SensorThings API automatically. Then, similar to the previous
application, an application can periodically retrieve readings from the service and automatically
turn on/off the Philips Hue light bulbs.

In general, this study modeled the “office” as a Thing, the “ultrasonic distance sensor” as the
Sensor, and “distance” as the ObservedProperty. Then the Philips Hue was considered as another
Thing and Actuator, whose TaskingCapability is similar to the Figure 9.

5. Conclusions and Future Work

This paper proposes an interoperable solution for realizing the IoT tasking capability. While
large heterogeneities exist in the current IoT device communication protocols, to control different
devices, users/applications need to use or implement various customized connectors. To address this
issue, this research proposes a data model and JSON-based description of IoT tasking capability.
While the tasking capability can be used to describe the functionalities and communication protocols
of IoT devices, we design and implement a web service that can understand the tasking capability
and translate users’ input tasks into device requests. In this case, users can control heterogeneous
IoT devices via a coherent web service interface.

In addition, the proposed tasking capability was designed to integrate with the OGC
SensorThings API to handle both IoT sensing and tasking capabilities in a single web service, which
is called the Extended SensorThings API. To demonstrate the contribution of this study, we first
applied the proposed tasking capability on three existing IoT products and successfully modeled
their device protocols. Furthermore, this study implements two simple applications using the
Extended SensorThings API. These applications retrieve sensor observations periodically from the

Figure 17. The prototype of a smart office light system.

This study deploys an ultrasonic distance sensor on the wall and connects the sensor to an
Arduino YUN. The sensor produces measurements at a high frequency (i.e., five readings per second).
Once the reading changes (e.g., when someone passes by), the Arduino YUN will upload an Observation
entity to an Extended SensorThings API automatically. Then, similar to the previous application,
an application can periodically retrieve readings from the service and automatically turn on/off the
Philips Hue light bulbs.

In general, this study modeled the “office” as a Thing, the “ultrasonic distance sensor” as the
Sensor, and “distance” as the ObservedProperty. Then the Philips Hue was considered as another
Thing and Actuator, whose TaskingCapability is similar to the Figure 9.

5. Conclusions and Future Work

This paper proposes an interoperable solution for realizing the IoT tasking capability. While large
heterogeneities exist in the current IoT device communication protocols, to control different devices,
users/applications need to use or implement various customized connectors. To address this issue,
this research proposes a data model and JSON-based description of IoT tasking capability. While the
tasking capability can be used to describe the functionalities and communication protocols of IoT
devices, we design and implement a web service that can understand the tasking capability and
translate users’ input tasks into device requests. In this case, users can control heterogeneous IoT
devices via a coherent web service interface.

Sensors 2016, 16, 1395 22 of 23

In addition, the proposed tasking capability was designed to integrate with the OGC SensorThings
API to handle both IoT sensing and tasking capabilities in a single web service, which is called
the Extended SensorThings API. To demonstrate the contribution of this study, we first applied
the proposed tasking capability on three existing IoT products and successfully modeled their
device protocols. Furthermore, this study implements two simple applications using the Extended
SensorThings API. These applications retrieve sensor observations periodically from the service and
send tasks to control different IoT devices according to the observations. Overall, we believe that the
proposed solution could address the heterogeneity problem of IoT devices, and consequently realize
the Internet of Things vision.

For future work, as this paper mainly focuses on the tasking capabilities served with HTTP,
we will explore the feasibility of supporting different communication protocols such as Constrained
Application Protocol (CoAP) and formerly MQ Telemetry Transport (MQTT). If those protocols can be
described via the proposed tasking capability, the web service implementation could also be extended
to support more possible IoT device protocols. Finally, as the proposed solution could be an extension
to the OGC SensorThings API for handling the tasking capability, we plan to promote and introduce
this solution to the OGC SensorThings API Standards Working Group.

Acknowledgments: We sincerely thank Ministry of Science and Technology in Taiwan for supporting and funding
us to conduct this research.

Author Contributions: Chih-Yuan Huang conceived the research direction; Chih-Yuan Huang and
Cheng-Hung Wu designed the system; Cheng-Hung Wu develped and evaluated the system; Chih-Yuan Huang
and Cheng-Hung Wu analyzed the result and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Weiser, M. The computer for the 21st century. Sci. Am. 1991, 265, 94–104. [CrossRef]
2. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.

[CrossRef]
3. Ashton, K. That ‘Internet of Things’ thing. RFiD J. 2009, 22, 97–114.
4. ITU Telecommunication Standardization Sector. Overview of Internet of Things; ITU-T: Geneva,

Switzerland, 2012.
5. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IOT): A vision, architectural elements,

and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
6. Guinard, D.; Trifa, V.; Wilde, E. A resource oriented architecture for the web of things. In Proceedings of the

Internet of Things (IOT), Tokyo, Japan, 29 November–1 December 2010; pp. 1–8.
7. Bormann, C.; Ersue, M.; Keranen, A. Terminology for Constrained-Node Networks; Internet Engineering Task

Force (IETF), RFC: Vijfhuizen, Holland, 2014; Volume 7228.
8. Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of Things: Vision, applications and research

challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]
9. Zorzi, M.; Gluhak, A.; Lange, S.; Bassi, A. From today’s intranet of things to a future Internet of Things:

A wireless-and mobility-related view. IEEE Wirel. Commun. 2010, 17, 44–51. [CrossRef]
10. Liang, S.; Huang, C.Y.; Khalafbeigi, T. OGC® SensorThings API; Open Geospatial Consortium: Wayland, MA,

USA, 2016.
11. Cox, S. Observations and measurements. In Open Geospatial Consortium Best Practices Document;

Open Geospatial Consortium: Wayland, MA, USA, 2006.
12. Bröring, A.; Maué, P.; Janowicz, K.; Nüst, D.; Malewski, C. Semantically-enabled sensor plug & play for the

sensor web. Sensors 2011, 11, 7568–7605. [PubMed]
13. Lea, R. HyperCat: An IOT Interoperability Specification; 2013. Available online: http://eprints.lancs.ac.uk/

69124/1/Interoperability_Action_Plan_1v1_spec_only.pdf (accessed on 30 August 2016).
14. Kim, J.; Lee, J.-W. Openiot: An open service framework for the Internet of Things. In Proceeedings of the

IEEE World Forum on Internet of Things (WF-IOT), Seoul, Korea, 6–8 March 2014; pp. 89–93.

http://dx.doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1109/MWC.2010.5675777
http://www.ncbi.nlm.nih.gov/pubmed/22164033
http://eprints.lancs.ac.uk/69124/1/Interoperability_Action_Plan_1v1_spec_only.pdf
http://eprints.lancs.ac.uk/69124/1/Interoperability_Action_Plan_1v1_spec_only.pdf

Sensors 2016, 16, 1395 23 of 23

15. Bröring, A.; Stasch, C.; Echterhoff, J. OGC® Sensor Observation Service Interface Standard; Open Geospatial
Consortium Interface Standard: Wayland, MA, USA, 2012.

16. Simonis, I.; Echterhoff, J. OGC® Sensor Planning Service Implementation Standard; Open Geospatial Consortium
Interface Standard: Wayland, MA, USA, 2011.

17. Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S. Web Services Description Language (WSDL)
1.1; 2001.

18. Kopecky, J.; Gomadam, K.; Vitvar, T. Hrests: An html microformat for describing restful web services.
In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT ’08), Sydney, Australia, 9–12 December 2008; pp. 619–625.

19. Mayer, S.; Guinard, D.; Trifa, V. Facilitating the integration and interaction of real-world services for the web
of things. In Proceedings of Urban Internet of Things—Towards Programmable Real-Time Cities (UrbanIOT),
Tokyo, Japan, 30 November–1 December, 2010.

20. Broering, A.; Below, S. Opengis® Sensor Interface Descriptors; Open Geospatial Consortium: Wayland, MA,
USA, 2010.

21. Maeda, K. Performance evaluation of object serialization libraries in XML, JSON and binary formats.
In Proceeedings of the Second International Conference on Digital Information and Communication
Technology and it’s Applications (DICTAP), Bangkok, Thailand, 16–18 May 2012; pp. 177–182.

22. Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. Hypertext Transfer
Protocol—http/1.1; RFC 2616; June 1999. Available online: https://www.rfc-editor.org/info/rfc2616 (accessed
on 28 August 2016).

23. Franks, J.; Hallam-Baker, P.; Hostetler, J.; Lawrence, S.; Leach, P.; Luotonen, A.; Stewart, L.
HTTP Authentication: Basic and Digest Access Authentication; RFC 2617; June 1999. Available online:
https://tools.ietf.org/html/rfc2617 (accessed on 28 August 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.rfc-editor.org/info/rfc2616
https://tools.ietf.org/html/rfc2617
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	The IoT Architecture
	Problems and Objectives

	Related Work
	Methodology
	The Overall Workflow of the Extended SensorThings API
	The Data Model of the Tasking Capability Description
	TaskingCapability
	Actuator
	Parameter
	HTTPProtocol
	Task

	Keyword Replacement

	Results
	The Tasking Capability Descriptions for Existing IoT Products
	The Task for Controlling IoT Products
	Physical Mashup Applications
	Use Case 1—Automatic Dehumidifier
	Use Case 2—A Smart Office Lighting System

	Conclusions and Future Work

