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Abstract: Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs)
and the heavy load of cluster heads in clustering routing algorithms, this paper proposes a dynamic
layered dual-cluster routing algorithm based on Krill Herd optimization in UWSNs. Cluster size is
first decided by the distance between the cluster head nodes and sink node, and a dynamic layered
mechanism is established to avoid the repeated selection of the same cluster head nodes. Using
Krill Herd optimization algorithm selects the optimal and second optimal cluster heads, and its
Lagrange model directs nodes to a high likelihood area. It ultimately realizes the functions of data
collection and data transition. The simulation results show that the proposed algorithm can effectively
decrease cluster energy consumption, balance the network energy consumption, and prolong the
network lifetime.
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1. Introduction

Underwater wireless sensor networks (UWSNs) are network monitoring systems which consist of
sensor nodes. They can achieve acoustic communication and computation in underwater environment.
UWSNs have been used in the fields of water environment monitoring, strategic surveillance, and
underwater exploration. Thus, they gain increasing attention from governments and research
institutions in various countries. There is no doubt that the UWSNs become a popular research
topic today [1]. Sensor nodes use their own battery to provide limited energy. When they stop working
and run out of energy, network topology is affected. As such, energy saving becomes a key issue in the
research of UWSNs.

The design of routing algorithm whose function is to balance energy consumption and prolong
the lifetime of networks in UWSNs also becomes a necessity.

Traditional routing algorithms can be divided into plane routing algorithms and clustering routing
algorithms [2–4]. The latter is widely preferred than the former because of its satisfactory performance
in terms of energy saving [5]. As early as 2000, Heinzelman et al. proposed low-energy adaptive
clustering hierarchy (LEACH) algorithm. The cluster heads of LEACH transport data to the base
station in a single hop communication manner. This leads to a large amount of information to nodes
from the base station, so nodes face “premature death” due to running out of energy. Shang et al.
proposed the distributed clustering routing algorithm. The algorithm makes the cluster heads generate
further rationalization, but a large amount of information exchange leads to the loss of extra energy.

As a computing technology that can quickly and efficiently solve complex problems, swarm
intelligence has been applied to UWSNs clustering routing algorithm [6]. Swarm intelligence has
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various techniques, such as the cat swarm optimization algorithm (CSO), the fish swarm algorithm,
the ant colony algorithm (ACO), and the particle swarm optimization (PSO) algorithm, among
others [7–11]. In general, swarm intelligence is easy to understand, has low complexity and strong
commonality. Zhang et al. [7] proposed a clustering routing algorithm based on type-2 fuzzy logic
and ACO. In particular, the type-2 fuzzy logic was used to solve the network uncertainty and
balance the energy load. ACO was adopted to select the candidate cluster head to reduce the energy
consumption. The algorithm presented by these researchers can prolong the network survival time.
ACO is constructed solution path by a number of ants together. All of the ants improve the quality of
the solution through the legacy and exchange of information in the solution path, and then it achieves
the goals of optimization. As a general stochastic optimization method, ant colony algorithm has
already been used successfully in a series of combinatorial optimization problems. It also achieved
perfect results. However, because the algorithm is a typical probability algorithm, the parameters
set in the algorithm is usually determined by experimental methods. This leads to the optimization
of the performance that is closely related to people’s experience. Thus, it is difficult to optimize the
algorithm performance.

Kong et al. [8] developed an energy-aware routing algorithm based on cat swarm optimization
(CSO). The design of the proposed algorithm was based on a ladder diffusion algorithm to avoid
the generation of circle routes but to provide backup routes. In addition, CSO was integrated to
effectively provide improved efficiency and reduce the execution time for finding the routing path.
The cat swarm algorithm uses the combination rate of the search mode and tracking mode to solve
complex optimization problems. The convergence speed of the cat swarm algorithm remains to be
further improved.

Xie et al. [9] introduced a new dual-cluster heads clustering routing algorithm based on PSO
(DC-PSO). This algorithm can share the energy consumption of cluster heads by setting the cluster
routing algorithm. However, a great amount of data transmission is produced when the clusters are
near the base station. This leads to the premature death of the cluster head nodes. Therefore, the
algorithm cannot fundamentally solve the “hot spots”. It is obvious that different swarm intelligence
algorithms have their unique advantages [12]. Compared with traditional intelligent algorithms,
the later developed algorithms perform better. In general, selecting and improving a new swarm
intelligence algorithm has practical research significance. Our goal is to effectively solve the problem
of clustering routing quickly.

To improve the utilization of network energy, this paper proposes dynamic layered dual-cluster
heads routing algorithm based on Krill Herd (KH) optimization in UWSNs. When the distance between
sink nodes is minimal, a huge amount of energy is consumed. In this case, the underwater network
sets the non-uniform clusters according to the size of the clusters and the distance between nodes
and the sink node. It can reduce the premature death of the upper nodes. The dynamic hierarchical
mechanism is introduced. It can reduce the cluster head nodes that are repeatedly selected by the
same node. Meanwhile, the network energy consumption is balanced. Finally, the core of the KH
optimization is used to choose the master cluster head nodes and vice cluster head nodes. It solves the
problem that the cluster head nodes are under heavy load, and effectively prolongs the survival time
of cluster nodes.

2. Models and Definitions

2.1. Network Model

Sensor nodes are assumed to be randomly distributed in a 3D underwater monitoring space, and
the sink node is placed in the water. Owing to the existence of various underwater network models,
this study also considers other assumptions to achieve network function. These assumptions are
as follows:
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1. Each node has a unique ID number, and data are received successfully as soon as the information
is passed to the sink node.

2. Each node except for the sink node has abilities of communication and mobility.
3. The nodes collect data cyclically. The sink receives information all the time.

2.2. Underwater Acoustic Energy Consumption Model

UWSNs vary from terrestrial wireless sensor network because they adopt a unique manner of
underwater acoustic communication. Therefore, considerable research has looked into the energy
consumption model to adapt the underwater environments. To develop an underwater acoustic energy
consumption model, the underwater acoustic signal attenuation model A(d) is expressed as follows:

A(d) = dq·ad (1)

where q is the diffusion factor, and it usually sets 1.5.

10log a( f ) =
0.11× f 2

1 + f 2 +
44× f 2

4100 + f 2 + 2.75× 10−4 × f 2 + 0.003 (2)

where Equation (2) represents a = 10a( f )/10. In this case, a is determined by the absorption coefficient
a( f ) in dB/m and f is the carrier frequency in kHz.

The information transmission distance between a node and the other node is far from d meters.
The node energy consumption is depicted as follows:

E = Esend + Erec + Eint (3)

Esend = lP0 A(d) (4)

Erec = lPr (5)

Eint = lEda (6)

where Esend, Erec and Eint are the energy consumption of the transmitting data, received data, and
data fusion respectively. Pr normally sets as a constant, it is the energy consumption of each unit. l
is the data packet, and P0 is the minimum power required for the underwater node to receive unit
information, and Eda is the energy consumption which compresses every package.

3. Problem and Algorithm Description

3.1. Problem Description

The clustering routing algorithm in UWSNs generally forwards data from the cluster nodes to
each cluster head node. The data are sent to the sink node through the manner of single or multiple
hops, thereby leading to a higher energy consumption of the cluster head node than other nodes in
the cluster. This discrepancy in consumption amount causes the unbalanced energy consumption
of the network. It also leads to the premature death of cluster head nodes. To solve this problem,
Xie et al. [9] proposed DC-PSO. Although dual-cluster head and cluster multiple-hop routing methods
can effectively reduce the energy consumption of cluster heads, they fail to fundamentally solve the
problem of “hot zones”.

Considering the problems cited in the preceding paragraph, this study sets clusters according to
the distance between the cluster and base station. If the distance is large, the numbers of cluster are
smaller. The purpose is to share the cluster head nodes’ energy. In addition, the dynamic hierarchical
mechanism is to avoid that the same node that is repeatedly selected as the cluster head. Krill swarm
optimization is then applied to the master cluster heads and vice-cluster heads in the selection
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process. In sum, this paper proposes a dynamic layered dual-cluster heads routing algorithm based on
KH optimization.

3.2. Krill Swarm Optimization Algorithm

Gandomi and Alavi proposed a KH optimization algorithm in the “Communications in Nonlinear
Science and Numerical Simulation”; that is, a new bio-inspired optimization algorithm based on the
simulation of the herding behavior of krill individuals [13]. In this algorithm, the krill moves to its
location oriented with a high likelihood region using Lagrangian model, which mainly considers
the distance from the food and from the highest density of the krill swarm. The movement of krill
individuals includes three main actions: the movement induced by other krill individuals (Ni), foraging
activity (Fi), and random diffusion (Di). These moving actions interact iteratively and update their
location until the global optimal solution is obtained.

1. The following Lagrangian model is generalized to an n-dimensional decision space:

dxi
dt

= Ni + Di + Fi (7)

2. Movement Induced by Other Krill Individuals

Krill individuals try to maintain a high density and move due to their mutual effects. For an
individual krill, this movement can be defined as follows:

Nnew
i = Nmaxdi + wnNold

i (8)

di = dlocal
i + dtarget

i (9)

where Nmax is the maximum induced speed which set to 0.01 (ms−1), di is estimated from the local
swarm density (local effect), wn is the inertia weight of the motion which is distributed in the range
[0, 1], Nold

i is the last induced motion, dlocal
i is the local effect provided by the neighbors, and dtarget

i is
the target direction effect provided by the best krill individual.

The effect of the neighbors can be assumed as attractive and repulsive tendency between the
individuals for a local search. In this study, the effect of the neighbors on individual krill movement
individual is determined with the following equations:

dlocal
i =

NN

∑
j=1

Ki,jXi,j (10)

Xi,j =
Xj − Xi

‖Xj − Xi‖+ ε
(11)

Ki,j =
Kj − Ki

Kworst − Kbest (12)

To avoid singularities, a small positive number ε is added to the denominator. NN is the number
of the neighbors, Ki represents the fitness or the objective function value of the i-th krill individual, Kj
is the fitness of j-th (j = 1, 2, . . . , NN), Kbest and Kworst are the best fitness and the worst fitness values
of the krill individuals respectively, and X represents the related positions.

According to the actual behavior of krill, the neighbors can be found by other krill individual
once the sensing distance is determined. The expression for this condition is as follows:

ds,i =
1

5N

N

∑
j=1
‖Xj − Xi‖ (13)
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where ds,i is the sensing distance for the i-th krill individual, and N is the number of krill individuals.
If the distance of two krill individuals is less than the defined sensing distance, then they are neighbors.

Considering the effect of the individual krill with the best fitness, the following equation can
be obtained:

dtarget
i = CbestKi,bestXi,best (14)

Cbest = 2(rand +
I

Imax
) (15)

where Cbest is the effective coefficient of the krill individual with the best fitness, rand is the random
values between 0 and 1 which is for enhancing exploration, I is the actual iteration number, and Imax is
the maximum number of iterations.

3. Foraging Motion

The foraging motion of the krill individuals is formulated in terms of two main effective
parameters. The first one is the food location. The second is the previous experience about the
food location. These parameters are depicted below.

Fi = v f βi + w f Fold
i (16)

where Fold
i is the old foraging motion.

βi = β
f ood
i + βbest

i (17)

where vf is the foraging speed which sets to 0.02 (ms−1), w f is the inertia weight of the foraging motion

which distributes in the range [0, 1], β
f ood
i is the food attractive, and βbest

i is the effect of the best fitness.
Food effect is defined in terms of its location. The center of food should first be identified. It is

followed by the formulation of food attraction. Food effect cannot be determined but can be estimated.
In this study, the virtual center of food concentration is estimated according to the fitness distribution
of the krill individuals inspired from the “center of mass”. The formula for this variable is as follows:

X f ood =
∑N

i=1
1
Ki

Xi

∑N
i=1

1
Ki

(18)

Therefore, the food attraction for the i-th krill individual can be determined using the
following equation:

β
f ood
i = C f oodKi, f oodXi, f ood (19)

C f ood = 2× (1− I
Imax

) (20)

where C f ood is the food coefficient. The effect of food on KH decreases with time.
The foraging motion of individual krill promotes global optimization, and krill individuals

normally herd around the global optima after a number of iterations. Therefore, this proceeding can be
considered an efficient global optimization strategy that can improve the globality of the KH algorithm.

The effect of the best fitness of the i-th krill individual is identified using the following equation:

βbest
i = Ki,ibestXi,ibest (21)

where Ki,ibest is the best previously visited position of the i-th krill individual.
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4. Random Diffusion

Random motion can be expressed in terms of a maximum diffusion speed and a random
directional vector. This variable can be formulated as follows:

Di = Dmax(1− I
Imax

)δ (22)

where Dmax is the maximum diffusion speed, and δ is the random directional vector whose arrays are
random values varying between −1 and 1.

5. Status Update

The status update can be formulated as follows:

X(n+1)
i = X(n)

i + (Nnew
i + Fnew

i + Dnew
i )·t (23)

where t is the time interval and should be carefully set according to actual situations, and Nnew
i is

the newest induced motion speed, Fnew
i is the newest foraging motion speed, Dnew

i is the newest
diffusion speed.

The parameters of krill swarm optimization algorithm are based on the actual simulation of krill
motion and experimental validation. Among these parameters, only the one-time interval parameters
need to be adjusted automatically. This case is one of the characteristics of the intelligent algorithm that
makes it better than other groups. In this study, we attempt to improve the krill swarm optimization
algorithm to solve the routing problem of UWSNs.

3.3. DC-KH Algorithm Description

3.3.1. Dynamic Hierarchical and Non-Uniform Clustering Stage

At first, UWSNs are initialized. Then, a random number (ζ) varying between 0 and 1 is assigned
to each node. The relationship between the size of ζ and the threshold (τ) is judged. If ζ is less than τ,
then the node candidate is the master cluster head node. Otherwise, it becomes the node in the cluster
until the end of cluster head election. To solve the problem of “hot spots”, the non-uniform clustering
of UWSNs can be realized in the latter stage by setting the competition radius [14]. It is formulated
as follows:

τ =
p[

1− pr·mod
(

1
p

)] · E(ni)

En_max
, n ∈ G (24)

Rc = [1− c(dmax − di→Bs)

dmax − dmin
]·Rmax

c (25)

where in Equation (24), p is the probability of being selected as the cluster head, r is the number of
cycles, En_max is the initial energy, E(ni) is the current energy, and G is the current cluster head node
set. In Equation (25), dmax and dmin are, respectively, the farthest and nearest distance between the
node and base station, di→Bs is the distance between candidate cluster head and base station, Rmax

c is
the maximum competitive radius, and c is a random value ranging from 0 to 1.

To avoid the nodes being repeatedly selected as cluster heads, all nodes are dynamically stratified.
The nodes are divided into H/(Rt + 1) layers, and each layer is numbered from 1. H is the depth of the
water, and d is a fixed value. After the Rt/d round again, the network is restored to the initial state of
stratification. Given that the 0-th layer node is in the range of sink nodes, the cluster cannot be formed.
In this case, the first round of the first floor is the ratio of water depth (d) and interval. At the end of
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each round, the network layer will adjust the distance (d) downwards. Equation (26) represents the
nodes in the first round of the hierarchy.

Lni = [
hi + d·mod(n− 1, d/d)

d
] (26)

Figure 1 is a sketch map of the node dynamic hierarchical and non-uniform clustering. The figure
shows that suitable cluster heads are selected by dynamic hierarchical and non-uniform clustering.
Thus, it solves the problem of premature death of cluster head nodes and the network “hot spots”.
In addition, the network energy consumption can be balanced, and the survival time of UWSNs can
be prolonged.
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3.3.2. KH Main Cluster Head and Vice-Cluster Head Selection Phase

When the dynamic layer and non-uniform clustering stage is completed, the master cluster heads
and vice-cluster heads are selected with the improved KH algorithm. First of all, a threshold is set.
Once the radius of the cluster is less than this threshold, the candidate cluster head becomes the
cluster head. On the contrary, the two cluster heads are selected in the first phase according to the
KH algorithm.

1. Fitness Function

The performance of cluster head in the cluster routing algorithm depends on the choice of the
fitness function. To prolong the survival time of the master cluster head, the condition that the energy
loss of the main cluster head is significantly more than that of the ordinary node should be considered.
The selection of the location of the master cluster head should be considered as well to collect the
information of other nodes in cluster. The distance between the two nodes is hoped to reach the
minimum. To select the optimal cluster head, the formula of the adaptive function shown below
is adopted:

f = ε× f1 + (1− ε) f2 (27)

f1 = E(H)/
m

∑
i=1

E(ni) (28)

f2 = (m− 1)/
m

∑
i=1

di→H (29)

where f1 is the ratio of cluster head node to total energy, the reciprocal of f2 is the average distance
between the two, m is the total number of nodes in a cluster, E(ni) is the energy of the ni node in the
cluster, and di→H is the distance from the main cluster head to node N.
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According to the main cluster head fitness function, the values of ε for controlling the proportions
of f1 and f2 should be adjusted so that the maximum value of f is the optimal cluster head. The
sub-cluster head should then be selected according to the principle of distance from the base station
mainly to achieve two purposes: the distance from the base station should be near and must have high
energy. The fitness function can be denoted as follows:

g = λg1 + (1− λ)g2 (30)

g1 = E(H)/
m

∑
i=1

E(ni) (31)

g2 = dH→BS/
m

∑
i=1

di→BS (32)

where g1 is the ratio of cluster head node to total energy, and dH→BS is the distance between the
vice-cluster head and base station. ∑m

i=1 di→BS is the sum of the distances between all nodes in cluster
and base station; and g2 is the ratio between the two nodes. The method is consistent with the master
cluster head selection method. Once g is the largest among all variables, the optimal pair is selected as
the optimal sub-cluster head.

2. Dual-Cluster Head Selection

To select the master cluster heads and vice cluster heads, Krill Herd optimization algorithm is
improved. Given that the node deployment environment is three-dimensional, underwater, its location
is determined using three components in x, y, and z on the coordinate axis. Therefore, Equation (23) is
represented by the group of Equations from (33) to (35):

X(n+1)
ix = X(n)

ix + [Fnew
i + Nnew

i + Dnew
i ]·t (33)

X(n+1)
iy = X(n)

iy + [Fnew
i + Nnew

i + Dnew
i ]·t (34)

X(n+1)
iz = X(n)

iz + [Fnew
i + Nnew

i + Dnew
i ]·t (35)

Considering that the nodes in the water are distributed discretely, the calculated value of the
above formula cannot be mapped directly onto the location of the actual node. Thus, the following
adjustments are made to the cluster node location:

pi =
√
(pix)

2 + (piy)
2 + (piy)

2 (36)

pk = min(p1, p2, . . . , pn−1, pn) (37)

xid(n) ≈ pk (38)

where pix, piy, and pizare the absolute values of the components of x, y, and z in the cluster, respectively,
pk is the position that mostly fits the actual situation, and xi(n) is the adjusted node position.

Having reached this point, we can confirm that a dynamic layered dual-cluster routing algorithm
based on Krill Herd optimization in UWSNs is accomplished. These steps are enumerated as follows:

Step 1: Initialization of krill. Each individual krill random location in 3D space should be determined,
followed by the adjustment of the position and its mapping onto the node distribution in
water. This step is accomplished with Equations (36)–(38).

Step 2: Calculation of the fitness value. The current position of krill is calculated within the clusters
krill individual extremum and the maximum adaptation values. The krill location is the krill
swarm global extremum. Equations (27)–(29) are used for this step.
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Step 3: Update and adjust the position. Equations (36)–(38) are employed to adjust the existing
position of krill.

Step 4: The updated adaptation value is calculated, and the global and local extremums are updated
with Equations (27)–(29).

Step 5: Steps 3 and 4 should be repeated prior to reaching the maximum number of iterations.
Step 6: The global extremum is selected as the master cluster head.
Step 7: Using the vice cluster head, the value function Equation (30) is fitted to Equation (32).

The preceding step is repeated to remove the vice-cluster head.

3.3.3. Single and Multi-Hop Transmission

The vice-cluster head is mainly responsible for transmitting the information of the main cluster
head to the sink node through the manner of single hop or multiple hops. In the initial stage, the
vice-cluster head broadcasts its own ID number, the remaining energy, and so on. If A receives the
message of B, and it selects A as the vice cluster head, then B sends L bit data to the sink node.
Equation (3) is used to calculate the energy consumption model. To ensure the communication
overhead and energy of the next hop node, the weight of the sub cluster head is calculated with
Equation (39).

W(i) = ∂·
[E(Hj)

E(Hi)

]
+ (1− ∂)·[d4

i→BS/(d2
i→j + d2

j→BS)] (39)

where ∂ is determined according to actual situation. If W(i) is greater than 1, then the vice-cluster head
is selected as the maximum next hop node. The vice-cluster head then directly sends the data to the
sink node.

4. Simulation

In the experiment, the UWSN’s node deployment process is simulated using MATLAB
(Natick, MA, USA) based on the background of Xixi Wetland water environment monitoring. During
the simulation, the target water area (length × width × depth) is set to (150 × 150 × 150) m3. At the
initial time, 200 nodes are randomly distributed in the monitored water area, and the position of the
sink node is (75, 75, 75). In the MATLAB simulation environment, the performance of the DC-KH
algorithm is verified. Table 1 shows the parameters used in the simulation experiment.

Table 1. Simulation parameters.

Parameter Value

Initial energy (J) 0.5
Data packet 4000

Control packet 100
Iteration 5 TDMA

Moving speed δ (m/s) 1
Energy diffusion factor k 1.5

Communication radius Rt 30
α 0.3
β 0.5

f (kHz) 10
τ 0.4
ε 0.6

Dmax (m/s) 0.005
t (s) 8
Imax 10

Figure 2 shows the DC-PSO and DC-KH algorithms with the number of rounds for increasing
the cluster head node energy consumption changes. The graph particularly shows that, in each
round of operation, the DC-KH algorithm cluster head consumption is always less than the DC-PSO
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algorithm. The reason is the fact that the DC-KH algorithm uses non-uniform clustering and the
dynamic hierarchical mechanism based on the krill swarm optimization algorithm to select the master
cluster heads and vice cluster heads. It avoids the repeated selection of nodes as the cluster head, and
it improves the early energy utilization rate. Compared with the DC-PSO algorithm, the reasonable
selection of the vice-cluster head decreases the partial burden of the master cluster head. In addition, a
suitable multi hops routing path is selected by considering the communication overhead and energy
consumption of the sub-cluster head. This process can help reduce the energy consumption of the
cluster head effectively. In sum, the DC-KH algorithm cluster head energy consumption is lower
than DC-PSO.
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Data packet 4000 
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Iteration 5 TDMA 
Moving speed δ (m/s) 1 

Energy diffusion factor k 1.5 
Communication radius Rt 30 
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Figure 2. Energy consumption comparison chart of cluster head.

Figures 3 and 4, respectively illustrate the DC-PSO and DC-KH algorithms in the master cluster
head and vice-cluster head energy consumption changes with the increase in the number of rounds.
The graphs particularly show that regardless of the number of changes, the energy consumption of the
master cluster heads and vice-cluster heads of the DC-KH algorithm is less than that of the DC-PSO
algorithm. Krill swarm optimization method is adopted in the DC-KH algorithm to select the suitable
master cluster heads and vice-cluster heads. The master cluster head collects the data. The vice cluster
head reduces the energy burden of the master cluster head. Then, it transmits information to the sink
node through a single hop or multi hops. The krill swarm optimization method using the Lagrange
model can make the node orient to a high likelihood region. It is conducive to the choice of the master
cluster heads and vice-cluster heads. Additionally, it reduces the energy consumption of master cluster
heads and vice-cluster heads.
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Figure 5 shows the number of nodes for increasing the number of changes in the network in
the DC-PSO and DC-KH algorithms. In this paper, the life cycle is defined as the time from the
network operation to the node failure “death.” As shown in the figure, the life cycle of the DC-KH
algorithm is longer than that of the DC-PSO algorithm. The reason is that the node in a different
network running round number is selected as the optimal candidate cluster head repeatedly in
DC-PSO. It leads to the rapid energy consumption of cluster head nodes, so nodes are susceptible
to premature death. To compensate for this shortcoming, the DC-KH algorithm uses a dynamic
hierarchical mechanism. Nodes are circularly selected as the cluster head. This procedure not only
balances the energy consumption of the network nodes, but effectively prolongs the survival time of
the network as well.
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Figure 5. Comparison of the number of survival nodes.

Figure 6 demonstrates the DC-KH and DC-PSO algorithms in the network total energy
consumption with the change of the number of rounds. The graph shows that the total energy
consumption of the DC-PSO algorithm is always higher than that of the DC-KH algorithm.
The proposed DC-KH is based on DC-PSO using non-uniform clustering and a dynamic hierarchical
mechanism, which collaboratively addresses the network “hot spots”. In addition, the appropriate
master cluster heads and vice-cluster heads are selected through the krill group optimization selection
principle. The integration of the above three procedures makes the total energy consumption of the
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network DC-KH algorithm to be significantly less than that of the DC-PSO algorithm, and it prolongs
the network running time of the algorithm.

Figure 7 shows the network survival cycle in the DC-KH and DC-PSO algorithms with the increase
of the number of nodes. Network lifetime is an important basis for measuring the effectiveness of an
algorithm [15]. In this paper, network lifetime is defined as the number of rounds that can satisfy the
network coverage rate Cor (Cth ≤ Cor ≤ 100%). Cth is the coverage threshold. When the coverage rate
is lower than the threshold value, the network can hardly complete the normal monitoring function
and the end of the life cycle. The graph shows that the DC-KH algorithm is always higher than the
DC-PSO algorithm in terms of network lifetime, because the dynamic hierarchical mechanism of
DC-KH balances the cluster head energy consumption and prolongs the network lifetime.Sensors 2016, 16, 1379  12 of 13 
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5. Summary

A node’s premature death causes a burden on cluster heads in UWSNs and energy is unbalanced
caused by network “hot spots”. To solve these problems, this study proposes a dynamic layered
dual-cluster heads routing algorithm based on Krill Herd optimization in UWSNs. It uses non-uniform
clustering, a dynamic hierarchical mechanism, and Krill Herd optimization method to choose the
master cluster heads and vice-cluster heads. The developed algorithm can effectively solve the specified
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problems, it also prolongs the network life cycle. Considering the different sizes of clusters, future
works should develop and implement different cluster head setting mechanisms.
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