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Abstract: This paper investigates the transportation and vehicular modes classification by using big
data from smartphone sensors. The three types of sensors used in this paper include the accelerometer,
magnetometer, and gyroscope. This study proposes improved features and uses three machine
learning algorithms including decision trees, K-nearest neighbor, and support vector machine to
classify the user’s transportation and vehicular modes. In the experiments, we discussed and
compared the performance from different perspectives including the accuracy for both modes, the
executive time, and the model size. Results show that the proposed features enhance the accuracy, in
which the support vector machine provides the best performance in classification accuracy whereas it
consumes the largest prediction time. This paper also investigates the vehicle classification mode and
compares the results with that of the transportation modes.
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1. Introduction

In recent years, smartphones are becoming more and more popular. Each phone typically contains
a variety of sensors, such as a GPS (Global Positioning System) sensor, a magnetometer, and a gyroscope
sensor, etc. Therefore, it is easy to get a large amount of sensor data from smartphones. This paper
utilizes the information from such sensors to detect different types of transportation modes. Classifying
a person’s transportation mode plays a crucial rule in performing context-aware applications. Using
sensors embedded in smartphones has been recognized as a good approach.

Much literature has studied this issue. For example, Elhoushi et al. [1] proposed an algorithm
for indoor motion detection such as walking, sitting, standing, etc. They used the accelerometer triad,
the gyroscope triad, the magnetometer triad, and the barometer information as the input sensors.
Hemminki et al. [2] proposed an algorithm to use smartphones to detect five transportation modes,
including bus, train, metro, tram and car. They used kinematic motion classifiers to distinguish
whether users were walking or not. Once the motorized transportation was detected, the motorized
classifier could classify the current transportation activity. Sasank et al. [3] used GPS and accelerometer
data as the input data. After filtering out the noise, they built an instance-based decision tree as the
classifier and used a discrete hidden Markov model to make the final decision. Ben et al. [4] collected
the accelerometer data. They used the magnitudes of the 250 FFT (Fast Fourier Transform) components
and the statistics of the signal as features and used genetic data analysis and SVM (Support Vector

Sensors 2016, 16, 1324; doi:10.3390/s16081324 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1324 2 of 15

Machine) to classify the data. Yu et al. [5] used the accelerometer, magnetometer, and gyroscope as
the input data and derived similar features. Transportation mode classification can be divided into
two categories, location-based [6–8] and sensor-based approaches [9,10]. The former relies on the
GPS data or wireless network information [11–13]. Unfortunately, the location-based methods suffer
from high power consumption and may not work in some environments [14,15]. Yu et al. [5] suggests
that GPS and Wi-Fi consume significant power of 30 mA and 10.5 mA, respectively, which is not
suitable for handheld devices. This paper belongs to the second category, sensor-based approaches,
which do not rely on GPS and do not assume unlimited power and resources [16,17]. To address
the practical issues, this study proposes a low-dimensional feature and evaluates the memory usage
(model size), response time (processing time and signal overlap), and general accuracy. Compared
with other studies of transportation mode classification, the main contribution of this paper is two-fold.
First, in additional to accuracy, we further address some practical issues of resource consumption.
Second, we use large-scale big sensor data (over 1000 h) with more attributes (10 modes) to evaluate
the performance.

In this paper, three types of low-power-consumption sensors include the accelerometer,
magnetometer, and gyroscope. This paper has extracted the features from the time series of those sensor
measurements by integrating them into the time domain and frequency domain. The experimental
results are shown in the two modes of classification: transportation and vehicle mode classification
based on three machine learning algorithms such as decision trees (DT), k-nearest neighbor (KNN), and
support vector machine (SVM). To address the practical issues, this study proposes a low-dimensional
feature and evaluates the memory usage (model size), response time (processing time and signal
overlap), and general accuracy. This is the first key difference as compared to other similar studies,
which focus on accuracy and use hundreds of features [1,14,17]. The results show that the accuracy of
the proposed feature improves the performance. In the transportation mode classification tasks, SVM
shows the best performance in accuracy compared to DT and KNN. For vehicle mode classification
tasks, KNN outperforms SVM and DT.

The novelty of this paper is summarized as follows: (1) we investigate both the transportation
(still, walk, run, bike, vehicle) and vehicular (motorcycle, car, bus, metro, train and high speed rail)
mode classification. To the authors’ best knowledge, this is the first work investigating these complex
attributes. Most existing works focus on simple user behaviors such as walking, running, jumping, etc.
(2) We study suitable features for both modes under limited power and resources. Most existing works
focus on accuracy only using unlimited features. For example, Elhoushi et al. [1] used 334 features while
Figo et al. [18] studied various time domain and frequency domain features. To our best knowledge, the
most related work to this study is Reference [5], which discussed the power consumption of different
sensors and summarized seven features into low-power transportation mode detection. This study
selects Reference [5] as a benchmark. In fact, the aim of this study is not to propose new statistic
features, which have been well investigated. Instead, we try to select and combine useful features
from existing works under the power and dimension constraints for both transportation and vehicular
mode classification tasks.

The rest of this paper is organized as follows. Section 2 describes the research method, including
the database, feature extraction, and classifier learning. Section 3 shows the experimental results, and
Section 4 summarizes the conclusion.

2. Research Method

2.1. Database

The data were provided by HTC company, and were collected since 2012 over two years, involving
224 volunteers and totally contained 8311 h of 100 GB [5]. The data used in this study was a part of
the raw data in [5], roughly 20 GB, which HTC makes them public for the academic use. The pool of
participants sufficiently covered different genders (60% male), builds, and ages (20 to 63 years old).
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The transportation state includes 10 modes, still, walk, run, bike, motorcycle, car, bus, metro, train
and high speed rail (HSR). Compared to other similar studies which use small-scale data (several or
dozens hours) [1,19], such big data makes the results of this paper more convincing and general.

The database for five transportation modes is indicated by Table 1. This paper classifies the
vehicular modes (i.e., motorcycle, car, bus, metro, train, and HSR) as a single mode: on a vehicle. Then,
these data would be separated into training and testing data for the performance evaluation.

Table 1. Database description based on Reference [5].

Transportation Mode Collection Time (h)

Still 158
Walking 141
Running 79
Biking 98

On a Vehicle

Motorcycle 163
Car 208
Bus 75

Metro 132
Train 89
HSR 106

In this paper, we attempt to visualize the big data and the corresponding features from different
perspectives. Figures 1 and 2 show the distribution of the raw data and averaged data, respectively,
from three x-axis of sensors in the transportation mode. The raw data is randomly selected 10 s, while
the averaged data is obtained by computing the absolute value of the 1000 min average from the large
dataset. These figures show that the long-term statistic is different from that of the raw data, verifying
the importance of the temporal processing in the features.

Similarly, Figures 3 and 4 show the vehicular cases. These figures show that the measurements are
not discriminate as that in Figures 1 and 2. This demonstrates the difficulty of vehicle mode detection.
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2.2. Feature Extraction

With database from Section 2.1, this paper can integrate these data into diversified features. In this
paper, 512 samples are integrated into a frame, and a moving window with 75% overlap is used to
generate the next frame. In this setup, the monitoring period of each frame is 17.06 s. The 75% overlap
means that we reused the 17.06× 75% = 12.8 s data as the next frame to smooth the data continuity and
to reduce the system delay. Then, these frames would be transformed into various features. Because
we select Reference [5] as a baseline, the seven features used in Reference [5] are listed below:

(1) Average of the accelerometer’s magnitude.
(2) Standard deviation of the accelerometer’s magnitude.
(3) The highest FFT value of the accelerometer.
(4) The ratio between the highest and the second-highest FFT value of the accelerometer.
(5) Standard deviation of the magnetometer’s magnitude.
(6) Standard deviation of the gyroscope’s value.
(7) Average of the gyroscope’s value.

Next, Figures 5 and 6 show the pairwise comparison of the traditional features in transportation
and vehicular modes, respectively. These figures can identify the ability of each feature. For example,
Figure 5 shows that the fourth feature outperforms the fifth one in transportation mode classification.
Figures 5 and 6 again show that the vehicular mode classification is more difficult than that in
transportation mode. It motivates us to use more features. To improve accuracy for both transportation
and vehicular modes, we select and combine useful features from existing works. However, due to the
constrained power and resources, the modification and dimension should be minor.

The aim of this study is not to propose a new statistic feature, which has been well investigated.
Instead, we try to select and combine useful features from existing works under the power and
dimension constrain for both transportation and vehicular modes classification tasks. In fact, we
have tried thousands subset combinations heuristically in the experiments of this study, and reported
the best one as the proposed feature. Next, this paper fetched six notable features based on the
above-mentioned features and Liu et al. [20], and then figured out other eight features. This paper
combines these 14 features to classify training and testing data to evaluate the accuracy. Note that
among the proposed features, the first four features were proposed by [5], and the fifth and sixth were
derived from [20]. The proposed features are described as followed:

(1) Average of the accelerometer’s magnitude.
(2) Standard deviation of the accelerometer’s magnitude.
(3) The highest FFT value of the accelerometer.
(4) Average of the gyroscope’s value.
(5) Acceleration in the z direction compared with gravity.
(6) Horizontal section (X-Z plane) of the accelerometer’s magnitude.
(7) Average of the X direction of acceleration.
(8) Average of the Y direction of acceleration.
(9) Average of the Z direction of acceleration.

(10) Maximum of the accelerometer’s magnitude.
(11) Average of acceleration instantly changes.
(12) Standard deviation of acceleration instantly changes.
(13) Average of the magnetometer’s value.
(14) Average of magnetic instantly changes.
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2.3. Machine Learning Algorithms

With the training data from Section 2.2, this paper then used three machine learning algorithms,
including decision tree, K-nearest neighbor, and support vector machine, to train classifier.
The following is the introduction of each algorithm.

2.3.1. Decision Tree (DT)

The DT algorithm exemplifies every possible outcome of a decision through means of categorizing
the data in each step for regression and classification. In the DT algorithm, a tree is created by a specific
algorithm, which is a supportive tool used to simplify a given set of complex data. The decision tree
consists of nodes and branches based on a rule. The nodes illustrate that a decision has been made
whilst the branches that spread to the left or right from the nodes show that the data is further being
categorized. On each occasion when a decision has been made, a new counter node is formed. This in
effect forms the ‘tree-like’ graph to help individuals visually analyze the data so that an accurate and
meaningful decision can be derived.
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A tree searches through variable to find a value of a variable which splits the data into two or
more groups. The best split minimizes the error (impurity) in the resulting subsets. To find the best
split, we have to measure the degree of impurity of the child nodes [21]. The higher the impurity, the
less skewed the class distribution will be. There are several ways to measure the impurity of the best
split. Some of the impurity measures are:

• Entropy:

H(x) = −
n

∑
i=1

pi log2 pi (1)

• Gini Impurity: impurity-based metrics which is used to measure how often an element from a set
can be labeled incorrectly. It can be measured as:

Gini Impurity = 1−∑
i

p2
i (2)

Classi f ication Error = 1−max(pi) (3)

In Equations (1)–(3), pi is the probability mass function of the i-th sample. Compared to other
classification algorithms, decision trees are simple to understand, easy to interpret and robust against
skewed distributions but a small change can alter the results drastically. One more problem with the
decision tree is that they can overfit easily [22].

2.3.2. K-Nearest Neighbor (KNN)

The KNN algorithm is a non-parametric method used for classification or regression, and the
output solely depends on which of the two are being used. For the output in classification an object is
usually classified by the majority of the votes received by its neighbors and for the output in regression
the object is based on the property value. KNN is a lazy learning algorithm which does not use training
data and classifies the new instances based on similarity measure (i.e., distance measure). It classifies
the unlabeled instance to the most common node amongst its nearest neighbors based on the distance.
Since there is no prior knowledge available in KNN, the decision rule of KNN is dependent on the
distance metrics. A simple case of KNN is shown in Figure 7, where a new instance is classified based
on the value of K.

The performance is totally dependent upon the way the distances are computed. The distance
can be computed using one of the following methods:

D(x, y) =



√
∑
i
(xi − yi)

2

∑
i
|xi − yi|[

∑
i
(|xi − yi|)p

]1/p

Euclidean Distance
Minkowski Distance
Manhattan Distance

(4)

where D(x, y) is the shortest distance between any two samples. The most commonly used distance
metric is the Euclidean distance. It should also be noted down that the above mentioned three distance
metrics are only used for continuous variable. In discrete or categorical case, the Hamming distance is
used. Despite it being robust and effective for coping with large training data, the weakness lies in the
run time performance with it being considered poor for a large training set and high computational cost.
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2.3.3. Support Vector Machine (SVM)

SVM is a very popular method, capable of performing classification and regression. It offers
very promising results and can capture complex relationships without going into the difficult
transformations. SVM constructs a set of hyperplanes in high-dimensional space to separate categories
of examples. With these separated categories, people can find obvious differences of each category and
classify unknown examples into specific group more accurately. A good separation can be achieved by
hyperplanes that has largest functional margin which in return lowers the generalization error. In SVM,
a decision surface is to be find which is far from any data point. A simple scenario for support vectors
and margin is shown in Figure 8, where the support vectors are the points fall within the margin.
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To maximize the margin for a given set of training data, the following optimization problem need
to be solved:

min
w

1
2
||w||22 + C

N

∑
i=1

εi (5)

subject to yi(w
Txi + b) ≥ 1− εi, ∀xi (6)

εi ≥ 0

where yi is either 1 or −1, indicating the class to which the point xi belongs. The parameter w is the
(not necessarily normalized) normal vector to the hyperplane. The parameter C is the regularization
parameter used to prevent overfitting. The parameter b determines the offset of the hyperplane from
the origin along the normal vector w.
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3. Results

3.1. Transportation Mode Classification

This paper extracts 90,000 feature vectors of each mode and uses three machine learning
algorithms to train classification models. This paper compares the results between two sets of features:
one is the seven features based on Reference [5], and the other one is the proposed features. First,
this paper created two tables to show the performance of each algorithm. Table 2 shows the general
accuracy, prediction time, and model size of each algorithm with seven features based on Reference [5]
while Table 3 shows that with the proposed 14 features.

Table 2. General accuracy of each algorithm with seven features based on Reference [5].

Prediction Accuracy Prediction Time (µs) Model Size (KB)

DT 74.65% 0.55 8
KNN 77.33% 107 22,145
SVM 81.60% 7120 9858

Table 3. General accuracy of each algorithm with the proposed 14 features.

Prediction Accuracy Prediction Time (µs) Model Size (KB)

DT 79.59% 0.69 32.7
KNN 86.86% 4702.48 45,568
SVM 86.94% 9715.80 44,032

In these tables, the general accuracy means the ratio of the correct results to the total testing
numbers, the prediction time means how long it would it take for each prediction with the unit of
microseconds (i.e., 10−6 s), and the model size means the size of each model with the unit of megabits
(MB). The results show that DT reports the lowest prediction time and the smallest model size. On the
other hand, SVM provides the best performance in accuracy whereas it incurs the largest prediction
time. More importantly, the table shows that the proposed features significantly enhance the accuracy
in the three machine learning algorithms. Specifically, DT improves from 74.65% to 79.59%, KNN
improves from 77.33% to 86.86%, and SVM improves from 81.60% to 86.94%. While using the proposed
features, KNN shows a comparable performance to SVM and a slightly larger model size.

Next, Figure 3 more clearly compares the two different feature sets on accuracy, showing that when
the number of features changes from seven to 14, the accuracy obviously improves. The improvement
is the most significant with the KNN method. Based on Figure 9, we can see that SVM has the best
performance in general accuracy. Nevertheless, from the other operating points of view, KNN would
be also a good choice because of its comparable accuracy and lower prediction time.

For analyzing results more intuitively, this paper constructs the confusion matrices of each
algorithm with the proposed 14 features. In these confusion matrices (i.e., Tables 4–6), the header
columns are the actual label, and the header rows are the prediction label. For instance, if a prediction
result is the still mode, and its actual label also is the still label, then this prediction result is correct.
If a prediction result is the biking mode, but its actual label should be walking, then people can know
that the walking data was misattributed to the bicycle instead. In these confusion matrices, we can
find that in many cases, the “in vehicle” data were usually misjudged as “on bike” and “still”. Besides,
the running mode always produces the most accurate result. This is because running makes the
smartphone shaken severely, making the classification easy.
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3.2. Vehicle Mode Classification

The vehicle mode includes HSR, metro, bus, car, and train. Tables 7 and 8 compare the results
between the two feature sets; one is the seven features based on Reference [5] (Table 7), and the
other one is the proposed features (Table 8). The tables show that the proposed features significantly
enhance the accuracy in the three machine learning algorithms. These results from the vehicular
mode classification are consistent with that of transportation mode detection. Again, DT reports the
lowest prediction time and the smallest model size. The only difference is that KNN provides the
best performance in accuracy whereas it also incurs the largest model size. Figure 10 more clearly
compares the two different feature sets on accuracy, verifying that when using the proposed features,
the accuracy still clearly improves.

Figure 10. Comparison between two different numbers of features on vehicle mode detection accuracy
of three machine learning algorithms.

Table 7. General accuracy of each algorithm with seven features based on Reference [5].

Prediction Accuracy Prediction Time (µs) Model Size (KB)

DT 50.23% 0.81 28
KNN 56.74% 548 25,732
SVM 52.12% 8,362 12,637

Table 8. General accuracy of each algorithm with the proposed 14 features.

Prediction Accuracy Prediction Time (µs) Model Size (KB)

DT 60.26% 0.72 40
KNN 83.57% 9,550 106,300
SVM 78.59% 19,550 85,800

Similar to the previous transportation mode detection results, Tables 9–11 provide the confusion
matrices of each algorithm with the proposed features. The results show that among the five vehicular
modes, detecting the car mode reports the highest accuracy (89.21% using KNN). On the other hand,
the most significant errors occur while classifying the car and train (11.27% using KNN). Figure 11
compares the performance between the transportation and vehicle mode classification. This figure
shows that classifying the vehicle mode is more difficult than the transportation mode. The general
accuracy reduces from 86.94% to 78.59% and from 86.86% to 83.57%, respectively, based on SVM and
KNN. This is because the behaviors of the car-bus and the train-metro are very similar, making the
mode classification difficult.
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of Each
Mode
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Metro 6.96% 79.91% 1.63% 5.46% 6.06% 79.91%

Bus 4.31% 4.40% 68.21% 18.30% 4.77% 68.21%

Car 4.67% 2.82% 5.11% 84.42% 2.99% 84.42%

Train 6.78% 7.01% 2.99% 11.49% 71.73% 71.73%

General Accuracy 78.59%

Figures 7 and 8 show a typical case of the added features and compare them with an original
one in the transportation and vehicular modes, respectively. Figure 12a,b show the mean of the
first (average of accelerometer’s magnitude) and the fifth original features (standard deviation of
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magnetometer’s magnitude) from the large database, respectively. For fair comparison, Figure 7c,d
show the added features with same unit. Figure 13c,d show the mean of the sixth (horizontal section
(X-Z plane) of the accelerometer’s magnitude) and the 14th added features (average of magnetic instant
change), respectively. This figure shows that the added feature can provide assistance to the task due
to the different properties. More importantly, the added feature can improve the performance of the
vehicular mode detection task, as indicated in Figure 8. From this figure, we can see that the first
original features are almost the same in the five modes whereas the sixth added feature can separate
the data into two categories. These figures again verify the ability of the added features in enhancing
the accuracy in both tasks.
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4. Conclusions

This paper studies the transportation mode using big data from three smartphone sensors based
on three machine learning algorithms and two different feature vectors. From the feature perspective,
the results show that the proposed features significantly enhance the accuracy in the three machine
learning algorithms, as compared to traditional features. From the classifier perspective, SVM has
the best performance in the transportation modes’ prediction accuracy whereas it incurs the largest
prediction time. While using the proposed features to predict the transportation modes, KNN shows a
comparable performance to SVM and a slightly larger model size. This paper also investigates the
vehicle mode classification and compares the results with those of the transportation modes. In the
vehicle mode detection tasks, KNN outperforms SVM with a shorter prediction time, but contains
largest model size. The future work is to study different features and models to overcome the problem
of the misattributed results.
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