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Abstract: This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft
with a gyrowheel (GW), which can combine attitude sensing with attitude control into one
single device to achieve a compact micro-spacecraft design. In this implementation, during the
three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates
can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles
of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing
with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach
based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model
at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional
rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms
about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is
given and simplified. According to the respective characteristics, the application schemes of the two
measurement models are analyzed from the engineering perspective. Finally, the simulation results
are presented to demonstrate the effectiveness of the proposed strategy.

Keywords: gyrowheel; micro-spacecraft angular rate sensing; real-time Lyapunov linearization;
complex quantity; static measurement; dynamic measurement

1. Introduction

Presently, more and more researchers are focusing on the related technologies of micro-spacecraft [1–3].
For micro-spacecraft, the attitude control system (ACS) is one of the major contributors to the mass,
volume, power and cost [4]. It will be of great significance for the development of micro-spacecraft if
the realization of spacecraft angular rate sensing and the output of three-dimensional control torques
can be simultaneously conducted in one instrument [5,6]. For this purpose, some innovative actuators
like a variable speed control moment gyroscope (VSCMG) [7], a tilted wheel [8,9], and so on [10],
which also have potential to realize the function of the sensors in principle, have been developed.
Due to the existence of nonlinear friction from the support structure of some actuators, it is complicated
to realize the angular rate sensing for them. However, besides that, according to the difference of
the gyro rotor support and combining the advantages of the actuator-CMG [11] with the ones of the
sensor dynamically-tuned gyroscope (DTG) [12], the integrated devices can be roughly divided into two
categories: the magnetically-suspended double-gimbal control moment gyroscope (MSDGCMG) [13] and
the integrated device-based flexible gimbal support structure represented by the gyrowheel (GW) [14].
The former one supports the rotor by active magnetic bearings (AMBs). The latter, GW, is developed
based on the principle of DTG by Bristol Aerospace Company for the Canadian Space Agency’s
SCISAT-1 Scientific in 2003 [15], and the GW rotor is supported by crossed torsion springs and a gimbal.
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The MSDGCMG implements the functions of two degrees of freedom (DOF) torque output and two-axis
angular rate sensing through working in two different operation modes [16]. However, due to the
complicated structure, high mass and large volume, the application of MSDGCMG in micro-spacecraft is
seriously restricted. Unlike MSDGCMG, the GW not only can achieve three-dimensional torque output
and two-axis angular rate sensing at the same time, but also has the advantage of being light weight and
low power, which brings the hope that the GW will have promising application prospects. Therefore, it
makes sense to develop the method of the angular rate sensing with GW as an actuator and a redundant
measurement device simultaneously.

GW and DTG have similar structures. However, DTG always operates in the fixed tuned speed,
and the spin axis of the rotor cannot tilt in radial directions theoretically. However, GW is almost one
thousand times greater than DTG in mass, moment of inertia and angular momentum [17]. To realize
torque outputs along the radial directions of the rotor, the tilt range of the spin axis of the rotor in GW
is significantly increased up to 7◦ [18]. To realize torque output along the spin direction, the operating
speed of the rotor is always kept as time varying. Obviously, GW has more complex dynamical
characteristics than DTG. Thus, it is more complicated for GW to realize the spacecraft angular rate
sensing while three-dimensional control torques are outputted.

In order to realize the angular rate sensing of the carrier by GW, Dr. Own at Carleton University
in Canada realized his work by linearizing the equations of motion of GW [19] at zero tilt angles of
the rotor. However, a higher measurement accuracy can be obtained only if the tilt angles of the rotor
spin axis are limited to a very small range. This disadvantage imposes strict restrictions on the capacity
of the GW output torque, while a higher measurement accuracy is needed. Although Jeffrey M. Hall
at Carleton University improved the measurement accuracy of the two-dimensional rate sensing
through the ground calibration for the GW [20], the accuracy loss caused by linearization at zero
tilt angles cannot be easily compensated at larger tilt angles. Moreover, before the linearization of
the equations of motion of GW, an assumption that motor spin speed was always kept constant was
made by Dr. Own, which means that the spacecraft angular rates cannot be accurately measured
while the control torques along the motor spin axis are outputted by adjusting the motor spin speed.
Liu proposed the nonlinear algebraic measurement method of the spacecraft angular rates with the GW
supported by the torsion springs through analyzing the full GW dynamics equations [21], but it is hard
to calibrate the compensable gyroscopic drift for this nonlinear algebraic measurement method [22],
which directly leads to the inaccuracy of the measurement results. Liu also proposed a dynamic
measurement method by establishing GW nonlinear state equations [23]. However, it is also difficult
to compensate the modeling errors due to the nonlinear form of the state equations.

To overcome the aforementioned drawbacks of the spacecraft angular rate sensing with
GW at present, the reminder of this paper is divided into five sections: In Section 2, the GW
is succinctly described, and then, its dynamics equations expressed by case coordinates are
developed by the Lagrange equations of the second kind. In Section 3, the GW real-time Lyapunov
linearization measurement model at arbitrary operating points is established based on Lyapunov’s
linearization theory. Especially, by the complex quantity method, the GW complex differential
equations within small tilt angles of the nominal position are derived. The small tilt measurement
model is established and simplified by ignoring the twice periodic components about the motor spin rate.
In Section 4, according to the characteristics of these two proposed measurement models, the application
schemes are analyzed from the perspectives of the static measurement and dynamic measurement.
In Section 5, simulations are performed to illustrate the validity of the proposed linearization
measurement models and their application schemes in this paper. Finally, we draw the conclusions in
Section 6.
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2. Descriptions of Gyrowheel

2.1. Gyrowheel Physical Structure

The computer-aided design diagram and simplified structure of the GW are shown in Figure 1a,b,
respectively. The GW system mainly consists of the following subassemblies: case, motor, flexible
suspension structure, flywheel rotor, torquer consisting of current coil and permanent magnet and
tilt sensor. Among them, the case is fixed on the carrier, such as spacecraft. The flexible suspension
structure is made up of gimbal, inner and outer torsion springs, as shown in Figure 1b; the gimbal is
connected to the motor shaft by a pair of inner torsion springs, and the rotor is connected with the
gimbal by a pair of outer torsion springs. The rotor driven by the brushless DC motor rotates in a high
time-varying speed. Thus, the torque along the spin direction of the rotor can be generated by adjusting
the motor speed. Two pairs of torquers perpendicular to each other can provide two-dimensional tilt
control torques to make the spin axis of the rotor tilt along the radial directions. Due to the existence
of the angular momentum, the radial control torques can be outputted based on the CMG principle.
The tilt sensors are designed to measure the tilt angles of the rotor relative to the case. The special
physical structure of GW determines that the device can realize the functions of the sensor, like DTG,
and the actuator, like VSCMG, at the same time.

Tilt Angle Sensors

Motor Shaft

Current Coil

Embedded Drive
and Control Circuit

Rotor

Case

SuspensionFlexible

(a) (b)

Figure 1. Gyrowheel physical structure. (a) Schematic diagram of a gyrowheel system; (b) simplified
gyrowheel structure diagram.

2.2. Equations of Motion for an Idealized Gyrowheel

Four body frames and three generalized coordinates are given in Figure 1b for deriving GW
dynamics equations using Lagrange’s method. The four body frames are the case frame (F0:O-xcyczc),
the motor body frame (F1:O-xmymzm), the gimbal body frame (F2:O-xgygzg) and the rotor body
frame (F3:O-xryrzr), respectively. The coordinates (θx, θy, θz) are the defined generalized coordinates,
where θx and θy represent the rotation angles of the inner and outer torsion springs, respectively, and θz

represents the spin angle of the motor shaft. The relationship between these four body frames and the
generalized coordinates can be further expressed by Figure 2.

Figure 2. Relationship between the body frames and the generalized coordinates.
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Assume that the angular velocity of the GW case fixed on the spacecraft, with respect to inertial

space in the case frame F0, is ωb=
[
ωbx ωby ωbz

]T
.

Based on the relationship in Figure 2, the angular velocity of the motor shaft ωm in the motor
body frame F1 is described as the following equation:

ωm =

 ωmx

ωmy

ωmz

 =

 0
0
θ̇z

+ (θz)z ·ωb =

 ωbxCθz + ωbySθz

−ωbxSθz + ωbyCθz

θ̇z + ωbz

 (1)

where Sθi = sin θi, Cθi = cos θi, i = x, y, z and (θi)i, i = x, y, z represents the rotation matrix of θi about
the zm-axis, xg-axis and yg-axis, respectively.

Similarly, the angular velocity of the gimbal can be obtained by rotating the motor shaft speed, θ̇z,
into the gimbal body frame and adding the rate about the x-axis, so we have:

ωg =

 ωgx

ωgy

ωgz

 =

 θ̇x

0
0

+ (θx)x ·ωm =

 θ̇x + ωbxCθz + ωbySθz

−ωbxCθx Sθz + ωbyCθx Cθz + (θ̇z + ωbz)Sθx

ωbxSθx Sθz −ωbySθx Cθz + (θ̇z + ωbz)Cθx

 (2)

Finally, rotating the gimbal angular velocities into the rotor body frame and then adding the rate
about the y-axis, the angular velocities of the rotor are given as follows:

ωr =

 ωrx

ωry

ωrz

 =

 0
θ̇y

0

+
(
θy
)

y ·ωg

=


θ̇xCθy − θ̇zCθx Sθy +

(
CθyCθz − Sθx Sθy Sθz

)
ωbx +

(
Cθy Sθz + Sθx SθyCθz

)
ωby −Cθx Sθy ωbz

θ̇zSθx + θ̇y −Cθx Sθz ωbx + Cθx Cθz ωby + Sθx ωbz

θ̇xSθy + θ̇zCθx Cθy +
(

SθyCθz + Sθx Cθy Sθz

)
ωbx +

(
Sθy Sθz − Sθx CθyCθz

)
ωby + Cθx Cθy ωbz


(3)

According to the calculated angular rates of the above different GW bodies, the kinetic energy T
of the GW system can be expressed as the generalized rotation speed quadratic forms:

T =
1
2
( ∑

i=x,y,z
Imiω

2
mi + ∑

i=x,y,z
Igiω

2
gi + ∑

i=x,y,z
Iriω

2
ri) (4)

where Iri and Igi,i = x, y, z are the moments of inertia of the rotor and gimbal along the corresponding
axes, respectively.

Furthermore, the potential energy V is the sum of the potential energy of the inner and outer
torsion deformation, which is given by:

V = kxθ2
x + kyθ2

y (5)

Forming the Lagrangian function L = T−V and applying Lagrange’s equations over θx and θy

yield the GW dynamics equations along the transverse axes as follows:
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I1 · θ̈x = −cx θ̇x − kxθx −
1
2

I2S2θx · θ̇
2
z − I3S2θy · θ̇x θ̇y

− (I3C2θy − Iry)Cθx · θ̇yθ̇z + Tgx

+ B1 (θ)ωbx + B2 (θ)ωby + B3 (θ) ω̇bx + B4 (θ) ω̇by

+ B5 (θ)ω2
bx + B6 (θ)ω2

by + B7 (θ)ω2
by

Iry · θ̈y = −cyθ̇y − kyθy −
1
2

I3C2
θx

S2θy · θ̇
2
z +

1
2

I3S2θy · θ̇
2
x

+ (I3C2θy − Iry)Cθx · θ̇x θ̇z + Tgy

+ D1 (θ)ωbx + D2 (θ)ωby + D3 (θ) ω̇bx + D4 (θ) ω̇by

+ D5 (θ)ω2
bx + D6 (θ)ω2

by + D7 (θ)ω2
by

(6)

where I1 = Igx + IrxC2
θy
+ IrzS2

θy
, I2 = Igz − Igy − Iry + IrxS2

θy
+ IrzC2

θy
, I3 = Irz − Irx and Bi, Di,

i = 1, 2 · · · , 7 are nonlinear coefficients in terms of the spacecraft angular rates (ωbx, ωby) as follows:

B1 =
[
−IreSθxS2θy Cθz + I1Sθz + I2 cos 2x1Sθz

]
θ̇z

−
[

Ire

(
S2θy Cθz + SθxC2θy Sθz

)
− IrySθxSθz

]
θ̇y

B2 =−
[

IreSθxS2θy Sθz + I1Cθz + I2C2θy Cθz

]
θ̇z

−
[

Ire

(
S2θy Sθz − SθxC2θy Cθz

)
+ IrySθxCθz

]
θ̇y

B3 =− I1Cθz −
1
2

IreSθxS2θy Sθz

B4 =− I1Sθz +
1
2

IreSθxS2θy Cθz

B5 =
1
2

I2S2
θz

S2θx +
1
4

IreCθxS2θy S2θz

B6 =
1
2

I2C2
θz

S2θx −
1
4

IreCθxS2θy S2θz

B7 =− 1
2

I2S2θz S2θx −
1
2

IreCθxS2θy C2θz

D1 =
[

Ire

(
S2θy Cθz + Sθx C2θy Sθz

)
− IrySθx Sθz

]
θ̇x

+

[
Ire

(
Cθx C2θy Cθz −

1
2

S2θx S2θy Sθz

)
+ IryCθx Cθz

]
θ̇z

D2 =
[

Ire

(
S2θy Sθz − Sθx C2θy Cθz

)
+ IrySθx Cθz

]
θ̇x

+

[
Ire

(
1
2

S2θx S2θy Cθz + Cθx C2θy Sθz

)
+ IryCθx Sθz

]
θ̇z

D3 = IryCθx Sθz D4 = −IryCθx Cθz

D5 =
1
2

Ire

[
Sθx C2θy S2θz + S2θy

(
C2

θz
− S2

θx
S2

θz

)]
D6 = −1

2
Ire

[
Sθx C2θy S2θz − S2θy

(
S2

θz
− S2

θx
C2

θz

)]
D7 =

1
2

Ire

(
S2

θx
S2θy S2θz − 2Sθx C2θy C2θz + S2θy S2θz

)
Actually, the generalized coordinates (θx, θy) in Equation (6) represent the rotation angles of

the inner and outer torsion springs, which cannot be indirectly measured. Therefore, another set of
coordinates (φx, φy) named “case coordinates” should be defined in the case frame F0, and the case
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coordinates (φx, φy) physically represent the tilt angles of the rotor along the Oxc-axis and Oyc-axis,
which can be measured by the tilt sensors of GW. Then, the relationships between the generalized
coordinates and the case coordinates should be established. The detailed derivation will not be shown
in this paper, and the relationships given in the development of DTG are as follows:

θx = φxCθz + φySθz

θy = −φxSθz + φyCθz

(7)

The variables (θ̇x, θ̇y) and (θ̈x, θ̈y) in Equation (6) can be calculated by taking the first and second
derivatives of Equation (7), then we have:

θ̇x = φ̇xCθz − φx θ̇zSθz + φ̇ySθz + φyθ̇zCθz

θ̇y = −φ̇xSθz − φx θ̇zCθz + φ̇yCθz − φyθ̇zSθz

(8)

θ̈x =φ̈xCθz − φ̇x θ̇zSθz − (φ̇x θ̇z + φx θ̈z)Sθz − φx θ̇2
z Cθz

+ φ̈ySθz + φ̇yθ̇zCθz + (φ̇yθ̇z + φyθ̈z)Cθz − φyθ̇2
z Sθz

θ̈y =− φ̈xSθz − φ̇x θ̇zCθz − (φ̇x θ̇z + φx θ̈z)Cθz + φx θ̇2
z Sθz

+ φ̈yCθz − φ̇yθ̇zSθz − (φ̇yθ̇z + φyθ̈z)Sθz − φyθ̇2
z Cθz

(9)

At this point, assume the rotor transverse inertias are equal to each other and set as the value Irt.
Similarly, the gimbal transverse inertias are also equal to each other and set as the values Igt, that is,

Irx = Iry = Irt

Igx = Igy = Igt
(10)

Additionally, the inertia of the moments of the rotor and gimbal along the spin axis are re-assigned
the variable names Irs and Igs to more clearly distinguish between spin (sub-subscript “s”) and transverse
(sub-subscript “t”).

Taking Equations (7)–(9) into Equation (6) and rearranging the results, the motion of the equations
of GW expressed by the case coordinates (φx, φy) are yielded as follows:

Mc (x) ẍ + Cc (x) ẋ = Qc (x) Tc + Fc (x, ẋ) + Fω (x, ẋ, ωb, ω̇b) (11)

where:

x =
[
φx φy

]T
Tc =

[
Tcx Tcy

]T

Mc (x) =

[
I1Cθz I1Sθz

−IrtSθz IrtCθz

]
Cc (x) =

[
cxCθz cxSθz

−cySθz cyCθz

]

Qc (x) =

[
Cθz Sθz

−Sθz Cθx Cθz Cθx

]
Fc (x, ẋ) =

[
fc1 (x, ẋ)
fc2 (x, ẋ)

]

Fω (x, ẋ, ωb, ω̇b) =

[
fω1 (x, ẋ, ωb, ω̇b)

fω2 (x, ẋ, ωb, ω̇b)

]

fc1 (x, ẋ) = −Mc1 · θ̈z − Kc11 · φx − Kc12 · φy − Cc11 · φ̇x − Cc12 · φ̇y −
1
2

I2S2θx θ̇2
z − IreS2θy θ̇x θ̇y

fc2 (x, ẋ) = −Mc2 · θ̈z − Kc21 · φx − Kc22 · φy − Cc21 · φ̇x − Cc22 · φ̇y −
1
2

IreC2
θx

S2θy θ̇2
z +

1
2

IreS2θy θ̇2
x

fω1 (x, ẋ, ωb, ω̇b) = M1 (x, ẋ) · ω̇bx + M2 (x, ẋ) · ω̇by + M3 (x, ẋ) ·ωbx + M4 (x, ẋ) ·ωby

fω2 (x, ẋ, ωb, ω̇b) = N1 (x, ẋ) · ω̇bx + N2 (x, ẋ) · ω̇by + N3 (x, ẋ) ·ωbx + N4 (x, ẋ) ·ωby
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where:

Mc1 = I1 ·
(
φyCθz − φxSθz

)
+

1
2

IreCθx S2θy

Mc2 = −Irt
(
φxCθz+φySθz − Sθx

)
Kc11 = −I1θ̇2

z Cθz − cx θ̇zSθz + kxCθz − I4θ̇zCθz

Kc12 = −I1θ̇2
z Sθz + cx θ̇zCθz + kxSθz − I4θ̇zSθz

Kc21 = Irtθ̇
2
z Sθz − cyθ̇zCθz − kySθz + I4θ̇zSθz

Kc22 = −Irtθ̇
2
z Cθz − cyθ̇zSθz + kyCθz − I4θ̇zCθz

Cc11 = −2I1θ̇zSθz − I4Sθz Cc12 = 2I1θ̇zCθz + I4Cθz

Cc21 = −2Irtθ̇zCθz − I4Cθz Cc22 = −2Irtθ̇zSθz − I4Sθz

I4 =
(

Ire cos
(
2θy
)
− Irt

)
θ̇zcosθx

Mi (x, ẋ) , Ni (x, ẋ) , i = 1, · · · , 4 are equal to the corresponding expressions Bi, Di, i = 1, · · · , 4;
however, the variables θj, θ̇j, j = x, y in Bi, Di are substituted with Equations (7)–(9).

3. Modeling of Angular Rate Sensing with a Gyrowheel

3.1. Measurement Model at Arbitrary Operating Position Based on Real-Time Lyapunov Linearization

Suppose that a physical system can be generally expressed by the following nonlinear autonomous
system equation:

ẋ = f (x)+g (x) u (12)

where x = [x1, x2, · · · , xn]
T ∈ <n×1 is the state vector, u = [u1, u2, · · · , um]

T ∈ <m×1 is the control
input vector and f (x) ∈ <n×1 and g(x) ∈ <n×1 are vector functions of states.

Assume xd(t) ∈ <n×1 is a given reference trajectory whose corresponding reference input is ud,
then we have:

ẋd = f (xd) + g(xd)ud (13)

Taking Lyapunov’s linearization [24,25] around the operating points (xd, ud), then it yields:

ẋ = ẋd + A (xd) (x− xd) + B (xd) (u− ud) (14)

where A (xd) =
d f
dx

∣∣∣
x=xd

, B (xd) = g (xd).

For the GW system, let xd, ẋd, ẍd, ωbd, ω̇bd be the operating points, which are given by:

xT
d =

[
φxd
φyd

]
, ẋT

d =

[
0
0

]
, ẍT

d =

[
0
0

]
, ωT

bd =

[
0
0

]
, ω̇T

bd =

[
0
0

]
(15)

According to Lyapunov’s linearization theory expressed by Equations (13) and (14), the linearized
dynamics equations of the GW are given by:
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∂ (Mc (x) ẍ)
∂ẍ

∣∣∣∣∣
x=xd

(ẍ− ẍd) +
∂ (Mc (x) ẍ)

∂x

∣∣∣∣∣
x=xd

(x− xd)

+
∂ (Cc (x) ẋ)

∂ẋ

∣∣∣∣∣
x=xd

(ẋ− ẋd) =

(
∂Fc

∂x

) ∣∣∣∣∣x=xd

ẋ=ẋd

(x− xd)

+

(
∂Fc

∂ẋ

) ∣∣∣∣∣x=xd

ẋ=ẋd

(ẋ− ẋd) +

(
∂Fω

∂ωb

) ∣∣∣∣∣x=xd

ẋ=ẋd

(ωb −ωbd)

+

(
∂Fω

∂ω̇b

) ∣∣∣∣∣
x=xd,ẋ=ẋd

(ω̇b − ω̇bd)

+ Qc(xd) · (Tc − Tcd) + Fh.o.t (x, ẋ, ωbd, ω̇bd)

(16)

where:

∂ (Mc (x) ẍ)
∂ẍ

∣∣∣∣∣
x=xd

=

[
I1Cθz I1Sθz

−IrtSθz IrtCθz

]
x=xd

Qc (xd) =

[
Cθz Sθz

−Sθz Cθx Cθz Cθx

]
x=xd

∂ (Mc (x) ẍ)
∂x

∣∣∣∣∣
x=xd

=

[
−IreS2θy Sθz

(
Cθz φ̈x + Sθz φ̈y

)
IreS2θy Cθz

(
Cθz φ̈x + Sθz φ̈y

)
0 0

]
x=xd

(
∂Fc

∂x

) ∣∣∣∣∣
x=xd,ẋ=ẋd

=

 ∂ fc1
∂φx

∂ fc1
∂φy

∂ fc2
∂φx

∂ fc2
∂φy


x=xd,ẋ=ẋd

(
∂Fc

∂ẋ

) ∣∣∣∣∣
x=xd,ẋ=ẋd

=

 ∂ fc1
∂φ̇x

∂ fc1
∂φ̇y

∂ fc2
∂φ̇x

∂ fc2
∂φ̇y


x=xd,ẋ=ẋd(

∂Fω

∂ωb

) ∣∣∣∣∣
x=xd,ẋ=ẋd

=

 ∂ fc1
∂ωbx

∂ fc1
∂ωby

∂ fc2
∂ωbx

∂ fc2
∂ωby


x=xd,ẋ=ẋd

(
∂Fω

∂ω̇b

) ∣∣∣∣∣
x=xd,ẋ=ẋd

=

 ∂ fc1
∂ω̇bx

∂ fc1
∂ω̇by

∂ fc2
∂ω̇bx

∂ fc2
∂ω̇by


x=xd,ẋ=ẋd

Fh.o.t (x, ẋ, ωbd, ω̇bd) are the high order terms and will be ignored in the following. For brevity,
the elements of the Jacobian matrices of the vectors Fc, Fω over the vectors x, ẋ, ωb, ω̇b, such as
∂ fci
∂φj

, ∂ fci
∂φ̇j

, ∂ fci
∂ωbj

, ∂ fci
∂ω̇bj

, i = 1, 2, j = x, y, are also ignored here.

For the equilibrium points of the control input torque vector Tcd, the following constraint
condition holds:

Mc(xd)ẍd + Cc(xd)ẋd = Qc(xd)Tcd + Fc(xd, ẋd) + Fω(xd, ẋd, ωb, ω̇b) (17)

Substituting Equation (15) into Equation (17), we have the constraint relationship between the
operating state xd and the nominal control input torque Tcd as follows:

Tcd = −Q−1
c (xd) · (Fc(xd, 0) + Fω(xd, 0, 0, 0)) (18)
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Finally, combining Equation (16) with Equation (15) and rearranging the results, the yielded GW
Lyapunov linearized equations are given by:

B
′
c (xd)

[
ω̇bx
ω̇by

]
+ D

′
c (xd)

[
ωbx
ωby

]
= M

′
c (xd)

[
φ̈x

φ̈y

]
+ C

′
c (xd)

[
φ̇x

φ̇y

]

+ K
′
c (xd)

[
φx − φxd
φy − φyd

]
−Qc (xd)

[
Tcx − Tcxd
Tcy − Tcyd

] (19)

where:

M
′
c (xd) =

[
I1Cθz + χ1(xd) I1Sθz + χ2(xd)

−IrtSθz IrtCθz

]
x=xd

C
′
c (xd) =

 cxCθz −
∂ fc1(x,ẋ)

∂φ̇x
cxSθz −

∂ fc1(x,ẋ)
∂φ̇y

−cySθz −
∂ fc2(x,ẋ)

∂φ̇x
cyCθz −

∂ fc2(x,ẋ)
∂φ̇y


x=xd,ẋ=ẋd

K
′
c (xd) =

 ∂ fc1(x,ẋ)
∂φx

∂ fc1(x,ẋ)
∂φy

∂ fc2(x,ẋ)
∂φx

∂ fc2(x,ẋ)
∂φy


x=xd,ẋ=ẋd

B
′
c (xd) =

[
M1 (x, ẋ) M2 (x, ẋ)
N1 (x, ẋ) N2 (x, ẋ)

]
x=xd,ẋ=ẋd

D
′
c (xd) =

[
M3 (x, ẋ) M4 (x, ẋ)
N3 (x, ẋ) N4 (x, ẋ)

]
x=xd,ẋ=ẋd

χ1(xd) = IreS2θy ·
(
−1

2
S2θz(φx − φxd)− C2

θz
(φy − φyd)

)
χ2(xd) = IreS2θy ·

(
−S2

2θz
(φx − φxd) +

1
2

S2
2θz

(φy − φyd)

)
When the operating points xd are given by the tilt control commands, which are supplied by ACS,

the real-time Lyapunov’s linearization of the GW measurement equations can be realized in theory.

3.2. Measurement Model within Small Tilt Angles Based on Complex Quantity Transform

Specially, when the operating points xd are further considered to be set as zero tilt angles, that is,

xT
d =

[
φxd
φyd

]
=

[
0
0

]
, we have:

[
ItCθz ItSθz

−IrtSθz IrtCθz

] [
φ̈x

φ̈y

]
+

[
φd11 φd12
φd21 φd22

] [
φ̇x

φ̇y

]
−
[

φ11 φ12

φ21 φ22

] [
φx

φy

]
=

[
Cθz Sθz

−Sθz Cθz

] [
Tcx

Tcy

]

+

[
−ItCθz −ItSθz

IrtSθz −IrtCθz

] [
ω̇bx
ω̇by

]
+

[
Isθ̇zSθz −Isθ̇zCθz

Irsθ̇zCθz Irsθ̇zSθz

] [
ωbx
ωby

] (20)

where:

It = Irt + Igt Is = Irs + Igs

φd11 = cxCθz −
(

Irs + 2Igt
)

θ̇zSθz φd12 = cxSθz +
(

Irs + 2Igt
)

θ̇zCθz

φd21 = −cySθz − Irsθ̇zCθz φd22 = cyCθz − Irsθ̇zSθz

φ11 =
(

Igt + Irs
)

θ̈zSθz + cx θ̇zSθz − kxCθz +
(
2Igt − Igs

)
θ̇2

z Cθz

φ12 = −
(

Irs + Igt
)

θ̈zCθz − cx θ̇zCθz − kxSθz +
(
2Igt − Igs

)
θ̇2

z Sθz

φ21 = Irtθ̈zCθz + cyθ̇zCθz + kySθz φ22 = Irtθ̈zSθz + cyθ̇zSθz − kyCθz
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Since the two-axis tilt angles of the rotor (φx, φy), the two-axis tilt control torques (Tcx, Tcy) and
the defined two-axis spacecraft angular rates (ωbx, ωby) are perpendicular to each other, respectively, to
represent the equation set Equation (20) in the form of one single complex equation [26], the following
complex quantities are defined by:

φ = φx + jφy Tc = Tcx + jTcy ω = ωbx + jωby (21)

Then, the case-fixed tilt angles, control torques and spacecraft angular rates are expressed, in terms
of the newly-defined complex variables and their complex conjugates, as follows:{

φx = 1
2 (φ̄ + φ)

φy = j
2 (φ̄− φ)

{
Tcx = 1

2 (T̄c + Tc)

Tcy = j
2 (T̄c − Tc)

{
ωbx = 1

2 (ω̄b + ωb)

ωby = j
2 (ω̄b −ωb)

(22)

The first row of Equation (20) is added to j =
√
−1 times the second row of Equation (20),

then substituting Equation (22) into the result and considering the relationship “ejθz = cos θz + j sin θ′′z ,
the following single differential equation with complex coefficients is yielded:(

Irt +
1
2

Igt

)
φ̈e−jθz +

1
2

Igt ¨̄φejθz +
(
cg − j

(
Irs + Igt

)
θ̇z
)

φ̇e−jθz + jIgtθ̇z ˙̄φejθz

+

[
Kx + Ky

2
−
(

Igt −
1
2

Igs

)
θ̇2

z − j
(

cgθ̇z +
Igt + Irt + Irs

2
θ̈z

)]
φe−jθz

+

[
Kx − Ky

2
−
(

Igt −
1
2

Igs

)
θ̇2

z − j
Irt − Igt − Irs

2
θ̈z

]
φ̄ejθz

= −
(

Irt +
1
2

Igt

)
ω̇be−jθz − 1

2
Igt ˙̄ωbejθz + j

(
Irs +

1
2

Igs

)
θ̇zωbe−jθz − j

1
2

Igsθ̇zω̄bejθz + Tce−jθz

(23)

Rearranging Equation (23), we have:

e−jθz



φ̈ +

(
2cg

2Irt + Igt
− j
(

2Irs

2Irt + Igt
+

2Igt

2Irt + Igt

)
θ̇z

)
φ̇

+

Kx + Ky − 2
(

Igt − 1
2 Igs

)
θ̇2

z

2Irt + Igt
− j
(

2cg

2Irt + Igt
θ̇z +

Igt + Irt + Irs

2Irt + Igt
θ̈z

) φ

+ ω̇b − j
(

2Irs

2Irt + Igt
+

Igs

2Irt + Igt

)
θ̇zωb

+ ej2θz



Igt

2Irt + Igt
¨̄φ + j

2Igt

2Irt + Igt
θ̇z ˙̄φ

+

Kx − Ky − 2
(

Igt − 1
2 Igs

)
θ̇2

z

2Irt + Igt
− j

Irt − Igt − Irs

2Irt + Igt
θ̈z

 φ̄

+
Igt

2Irt + Igt
˙̄ωb + j

Igs

2Irt + Igt
θ̇zω̄b





= e−jθz · Tc

Irt +
1
2 Igt

(24)

For conciseness, the following quantities are defined by:

c
′
g =

cg

2Irt + Igt
ωn =

2Irs

2Irt + Igt
θ̇z γ =

Igt

2Irt + Igt
γ2 =

Igs

2Irt + Igt

α =
Kx + Ky − 2

(
Igt − 1

2 Igs

)
θ̇2

z

2Irt + Igt
β =

Kx − Ky − 2
(

Igt − 1
2 Igs

)
θ̇2

z

2Irt + Igt

I
′
rt = Irt +

1
2

Igt Jp =
Igt + Irt + Irs

2Irt + Igt
Jm =

Irt − Igt − Irs

2Irt + Igt
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and taking the newly-defined quantities into Equation (24) yields:

e−jθz


φ̈ +

(
2c
′
g − j

(
ωn + 2γθ̇z

))
φ̇

+
[
α− j

(
2C
′
gθ̇z + Jpθ̈z

)]
φ + ω̇b − j

(
ωn+γ2θ̇z

)
ωb

+ ej2θz
{

γ ¨̄φ + j2γθ̇z ˙̄φ +
(
β− jJmθ̈z

)
φ̄ + γ ˙̄ωb + jγ2θ̇zω̄b

}
 =

Tc

I ′rt
· e−jθz (25)

Eliminating the factor e−jθz in Equation (25), we obtain the more concise form of the GW
linearization equations at zero tilt angles given by:

φ̈ +
(

2c
′
g − j

(
ωn + 2γθ̇z

))
φ̇ +

[
α− j

(
2c
′
gθ̇z + Jpθ̈z

)]
φ + ω̇b − j

(
ωn+γ2θ̇z

)
ωb

+ ej2θz
[
γ ¨̄φ + j2γθ̇z ˙̄φ +

(
β− jJmθ̈z

)
φ̄ + γ ˙̄ωb + jγ2θ̇zω̄b

]
=

Tc

I ′rt

(26)

Finally, substituting Equation (21) into Equation (26), substituting e2θz with C2θz + jS2θz and
restoring the results expressed by the complex quantity into real-value equations, we obtain the GW
linearization equations at zero tilt angles represented in the real-value form:[

1 + γC2θz γS2θz

γS2θz 1− γC2θz

] [
φ̈x

φ̈y

]
+

[
2c
′
g − 2γθ̇zS2θz

(
ωn + 2γθ̇z

)
+ 2γθ̇zC2θz

−
(
ωn + 2γθ̇z

)
+ 2γθ̇zC2θz 2c

′
g + 2γθ̇zS2θz

] [
φ̇x

φ̇y

]

+

[
α + βC2θz 2c

′
gθ̇z + βS2θz +

(
Jp − JmC2θz + JmS2θz

)
θ̈z

−2c
′
gθ̇z + βS2θz −

(
Jp + JmC2θz − JmS2θz

)
θ̈z α− βC2θz

] [
φx

φy

]

+

[
1 + γC2θz γS2θz

γS2θz 1− γC2θz

] [
ω̇bx
ω̇by

]
+

[
−γ2θ̇zS2θz

(
ωn+γ2θ̇z

)
+ γ2θ̇zC2θz

−
(
ωn+γ2θ̇z

)
+ γ2θ̇zC2θz γ2θ̇zS2θz

] [
ωbx
ωby

]
=

1
I ′rt

[
Tcx

Tcy

] (27)

From the left side of Equation (27), each element of the coefficient matrices contains the twice
periodic components about the motor spin speed θ̇z. Since the periodic terms have no effects on the
measurement accuracy of the spacecraft angular rates (ωbx, ωby) and ignoring the periodic terms will
save the unnecessary sensor for measuring the motor rotation angle θz, therefore, the periodic terms
are ignored with the model simplifying to the following form:[

φ̈x

φ̈y

]
+

[
2c
′
g

(
ωn + 2γθ̇z

)
−
(
ωn + 2γθ̇z

)
2c
′
g

] [
φ̇x

φ̇y

]
+

 α
(

2c
′
gθ̇z + Jpθ̈z

)
−
(

2c
′
gθ̇z + Jpθ̈z

)
α

[φx

φy

]

+

[
ω̇bx
ω̇by

]
+

[
0

(
ωn+γ2θ̇z

)
−
(
ωn+γ2θ̇z

)
0

] [
ωbx
ωby

]
=

1
I ′rt

[
Tcx

Tcy

] (28)

4. Analysis of the Measurement Schemes of Spacecraft Angular Rates with the GW

In order to analyze the proposed measurement equations, the following two definitions are given:

Definition 1. If the tilt angle of the GW rotor works at a certain tilt position and remains unchanged as the
spacecraft angular rates are measured with the GW, we call this situation “Static Measurement”.

Definition 2. In contrast to Definition 1, when the tilt angular velocity of the GW rotor is nonzero as the
spacecraft angular rates are measured with the GW, we call this situation “Dynamic Measurement”.

From the derived measurement Equations (20) and (28), three pieces of valuable information are
summarized as follows:

(1) Compared to Equation (20), the forms of linearization Equation (28) at zero tilt angles are obviously
more concise. More importantly, after ignoring the twice periodic components in Equation (27),
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there exist no terms about motor rotation angle θz in Equation (28), which means that it is more
convenient for the spacecraft angular rate sensing, since the special sensor for measuring the
motor rotation angle in real time is no longer needed in this kind of situation.

(2) Equation (28) is obtained by substituting the operating points at zero tilt angles into Equation (20),
which are suitable for the arbitrary operating state of the rotor. Therefore, combining the
analysis (1), in the smaller tilt range of the rotor, Equation (28) is utilized to realize the spacecraft
angular rate sensing with GW. However, when the tilt angles of the rotor become larger,
the measurement accuracy with Equation (28) cannot meet the indicator requirement without any
error compensation. The applications of the real-time linearization measurement Equation (20)
and small tilt measurement Equation (28) are analyzed in the following figure.

In Figure 3, considering GW in the application scenario of static measurement, when the rotor
works at large tilt angles, the measurement errors due to the linearization at zero tilt angles are
significantly correlated to the tilt angles of the rotor, which can be modeled and compensated in the
measurement Equation (28) by the methods of polynomial fitting, B-spline functions or table lookups
based on the calibration data. Since the rotor needs to keep still for realizing the spacecraft angular
rate sensing in this situation, the radial control torques cannot be supplied by the GW, which means
that with Equation (28) as the measurement equations of the GW, it has two kinds of working modes:
the radial torque outputs mode and the spacecraft angular sensing mode, and these two modes cannot
be realized at the same time, we can name the two working modes as “time-sharing multiplexing′′.
As previously mentioned, the greatest advantages of this scheme are that there is no need to set
the rotary transformer for measuring the motor rotation angle θz, and the regular errors like the
linearization at zero tilt angles can be more easily calibrated by ground experiments. However, this
scheme has an obvious drawback that GW cannot realize the radial torque outputs and angular rate
sense simultaneously, so that the application of GW is limited in the area of spacecraft.

GW 

Measurement 

Schemes

Zero Tilt Linearization

Measurement Equations (28)

Real-Time Linearization 

Measurement EQuations (20)

Static Measurement

Dynamic Measurement

Time-Sharing Torque Outputs

 and Angular Rate Sensing

Simultaneous Torque Outputs

 and Angular Rate Sensing

Measurement Models Application Scenarios Application Schemes

Figure 3. Measurement schemes of spacecraft angular rates with GW in different working modes.

Whereas in the state of dynamic measurement, since the measurement errors are not only relevant
to the tilt angles of the rotor, but also to the tilt angular velocities and accelerations, it is difficult for
Equation (28) to compensate the linearization errors by polynomial fitting or B-spline functions due
to the huge workload. Therefore, in the case of dynamic measurement, the real-time Lyapunov’s
linearization measurement Equation (20) need to be applied to sense the spacecraft angular rates, which
can avoid the errors of the small tilt linearization Equation (28) at larger tilt angles. Most important
of all, gyroscopic moments can be generated at the same time because of the existence of the angular
momentum and the tilt angular velocity of the rotor in dynamic measurement. However, the prices
are that a rotary transformer must be assembled in the GW system to measure the motor rotation
angle θz, and the real-time disturbance estimation methods like [27,28] should be further developed
to compensate regular mechanical errors for Equation (20), which will not be discussed in detail in
this paper.

(3) Since the effects of the motor spin acceleration are considered in Equation (28), while the motor
spin speed is being changed to control the spacecraft attitude along the spin axis, the angular rate
sensing can be more accurately realized by Equation (28) in small tilt ranges.
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5. Simulations

5.1. Simulation Platform

To demonstrate the effectiveness of the proposed angular rate measurement approach,
a simulation platform as in Figure 4 is built. The simulation platform is divided into two layers:
the torque output layer and the measurement layer. The former contains the motor control loop, the
X-axis and the Y-axis tilt control loops. The variables θ̇zd, φxd, φyd are the command inputs of the GW
control loops. The variables θ̇z, φx, φy are the corresponding measurable outputs of the above three
control loops, respectively. The variables Tcz, Tcx, Tcy are control torques of the above three control
loops, where Tcz is used to control the motor rotation speed, and the torques Tcx, Tcy make the rotor tilt
along radial directions. The variables Tz, Tx, Ty acting on the spacecraft block are the three-axis control
torques generated by the GW system. The sensor block includes the X-axis, Y-axis tilt angle sensors,
the currents of torquer coils, motor rotation speed and angle sensors, which can directly measure the
variables φx, φy, Tcx, Tcy, θz, θ̇z, respectively.

Flywheel Speed 

Regulator  

Flywheel X-axis

Tilt Controller 

Brushless DC Motor

X-axis Torquer Flywheel

Rotor  

Gyrowheel

Dynamics 

Motor

 Rotor Sensors

X/Y-axis Tilt 

Angle Sensors

-

-

-

Flywheel Y-axis

Tilt Controller 
Y-axis Torquer

Gyroscopic Moment

X/Y-Coil 

Current Sensors

-

+

+

-

+

+

+ +

-

Spacecraft Kinematic 

And Dynamic 

,bx by 
Notch Filter

,x yi i

xd

yd

' ',bx by 

z

x

y

, ,x y zT T T

cxT

cyT

czT

Gyrowheel Three-axis Control Block

Sensor Block

Real-Time Linearization 
Operating Point Inputs

Zero Tilt Linearization 

Measurement Equations

Regular Error 

Compensation Components

Real-Time Lyapunov  Linearization 

Measurement Equations

Sensor Block

Toruque 

Output 

Layer

Measurement

Layer

zd

Function Layer Divider

Disturbance 

Estimation

Figure 4. Simulation platform of spacecraft angular rate sensing based on the gyrowheel system.

The measurement layer is designed to realize the angular rate sense of the spacecraft
with the proposed measurement methods, which contains the real-time Lyapunov linearization
Equation (20) and the small tilt linearization Equation (28). The tilt command inputs (φxd, φyd) as the
desired operating points are utilized to realize the real-time Lyapunov linearization measurement.
The outputs of the sensor block are input to both measurement equations. As previously mentioned,
the disturbance estimation (refer to [27,28]) should be studied further for Equation (20) in engineering.
The regular error compensation is investigated for Equation (28) for compensating the errors due to
zero tilt angle linearization.



Sensors 2016, 16, 1321 14 of 19

The spacecraft angular rates ω
′
bx, ω

′
by can be obtained from the proposed measurement equations;

however, unlike the zero position linearization Equation (28), the twice periodic components are hardly
separated and ignored from the real-time Lyapunov linearization Equation (20). Therefore, if the
angular rates are sensed by Equation (20), the twice periodic components in the results should be
filtered out by the notch filters G(s), which can be designed as follow:

G(s) =
s2 + 2πas + (2π f )2

s2 + 2πbs + (2π f )2

where f is the center frequency of the notch filter and given by f = 2 fmotor = 50 Hz; here, fmotor

represents the spin frequency of the motor; the parameters a and b are given by 0.1 and 60, respectively.
The key parameters in the simulation are given in Table 1. Besides, the initial attitude angular

velocity of the spacecraft ωb = [ωbx; ωby; ωbz] = [0.001; 0.001; 0] rad/s, and ideally, we assume there
exists no disturbance torque acting on the spacecraft, but the control torques from GW.

Table 1. Gyrowheel and spacecraft design parameter in simulation.

Parameter Name Value

Rotor transverse-axis inertia Irt 3.458× 10−3 kg ·m2

Rotor spin-axis inertia Irs 6.402× 10−3 kg ·m2

Gimbal transverse-axis inertia Igt 1.2758× 10−5 kg ·m2

Gimbal spin-axis inertia Igs 1.8047× 10−5 kg ·m2

Torsion spring stiffness kx, ky 0.092 Nm/rad
Torsion spring damping cx, cy 0 Nm/(rad/s)
Operating tilt range of rotor φx, φy 0◦ ≤ φx, φy ≤ 5◦

Spacecraft inertia Isat diag
[

50 50 50
]

kg ·m2

In the following simulation, the static and dynamic measurements are studied, respectively.
In both cases, the proposed measurement Equations (20) and (28) will be analyzed.

5.2. Static Measurement Validation

Considering the situation of the static measurement, which means that there is no radial control
torque outputs in this case, the proposed measurement Equations (20) and (28) are applied to measure
the spacecraft angular rates at the operating tilt angle range. As an example, when the constant motor
speed of 157.04 rad/s is given and the X-axis tilt control commands of the rotor (φxd) are given by
0◦, 0.1◦, 0.5◦, 1◦, 1.5◦, 2◦, 2.5◦, 3◦, 3.5◦, 4◦, 4.5◦, 5◦ in turn, the change curves of the measurement errors of
Equations (20) and (28) with the tilt angles are shown in Figure 5.

From Figure 5, we find:
1. The measurement accuracy decreases with the increase of the tilt angle for both the real-time

linearization equation and the zero position linearization equation; however, due to the linearization
operating points at zero tilt angles, the measurement accuracy of the latter deteriorates more seriously
than the former.

2. The absolute measurement accuracy of the real-time linearization Equation (20) within operating
ranges meets the adequate accuracy requirement. Therefore, Equation (20) can be applied to the
operating state at arbitrary tilt angles, but if there is not any linearization error compensation for
Equation (28), the zero position linearization Equation (28) is more suitable for the small tilt angle of
the rotor, rather than the larger tilt angle of the rotor (for example, see Figures 6 and 7.

Further, considering the measurement Equation (28) without the need for sensing the motor
rotation angle θz and that the fault-tolerant performance of the measurement Equation (28) is more
excellent than Equation (20), if the measurement errors of Equation (28) can be compensated, it will be
a better choice in the time-sharing multiplexing scheme. Since the linearization errors vary regularly
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with the tilt angle according to the error curve in Figure 5, the error compensation expressions of the
measured spacecraft angular rates (ωbxe, ωbye) are established for Equation (28) based on the simulation
error data with polynomial fitting functions, which are given by:

ωbxe =− 1.447× 10−7 · φ5
xd + 1.379× 10−6 · φ4

xd − 6.801× 10−6 · φ3
xd

+ 1.080× 10−5 · φ2
xd − 8.840× 10−6 · φxd + 5.349× 10−7

ωbye =− 4.355× 10−7 · φ5
xd + 1.501× 10−6 · φ4

xd + 2.008× 10−4 · φ3
xd

+ 6.730× 10−6 · φ2
xd − 8.229× 10−6 · φxd + 8.113× 10−8

(29)
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Figure 5. The change of measurement accuracy with the tilt angle.
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Figure 6. Static measurement φxd = 0.1◦, φyd = 0◦, constant motor spin rate θ̇zd = 157.04 rad/s:
(a) X-axis angular rate sensing of the spacecraft ωbx; (b) Y-axis angular rate sensing of the spacecraft ωby.

With Equation (29) as the compensation equations of the linearization errors, that is
ωbx_new = ωbx + ωbxe, ωby_new = ωby + ωbye, then the measurement error curves with the compensated
small tilt linearization equations are also shown in Figure 5 and expressed by the green dotted line and
squire markers. From this figure, the measurement accuracy with the measurement Equation (28) after
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the polynomial compensation is improved significantly, even superior to the real-time linearization
measurement Equation (20) in this case. Therefore, when the sharing time multiplexing measurement
scheme is adopted, compared to Equation (20), the measurement Equation (28) with regular error
compensation components is an ideal method of spacecraft angular rate sensing.
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Figure 7. Static measurement φxd = 4.8◦, φyd = 0◦, constant motor spin rate θ̇zd = 157.04 rad/s:
(a) X-axis angular rate sensing of spacecraft ωbx; (b) Y-axis angular rate sensing of spacecraft ωby.

Especially, the response curves of the X-axis tilt control commands given by 0.1◦ and 4.8◦ are
shown as Figures 6 and 7, respectively. From Figure 6, when the rotor is working at the tilt angle of
0.1◦, the measurement accuracy of the zero position linearization Equations (28) with compensation
terms (ωbxe, ωbye) is improved to precede 10−7 rad/s compared to the ones without any compensation
term. At this point, the real-time Lyapunov linearization measurement can also achieve the perfect
measurement performance of the spacecraft angular rates. When the tilt angle of the rotor is increased
to 4.8◦ in Figure 7, the measurement errors of the zero position linearization Equation (28) with
compensation terms (ωbxe, ωbye) are far less than 10−6 rad/s. The real-time Lyapunov linearization
measurement accuracy can arrive at 10−6 rad/s. However, the measurement accuracy of the zero
position linearization Equation (28) without any compensation term deteriorates seriously, so that
the uncompensated zero position linearization equations are not suitable for the angular rate sensing
at the large tilt angle. However, since the motor spin angle sensor needs to be introduced to realize
the measurement of the motor spin angle when the real-time Lyapunov linearization measurement
equations are used to realize the angular rate sensing, it will make the measurement realization more
complex in the time-sharing multiplexing scheme.

Comparing Figure 6 to Figure 7, the foregoing analysis for static measurement can be validated;
the most important and useful information is given: zero tilt angle linearization Equation (28) with the
regular error compensation components is the best choice for the time-sharing multiplexing scheme
of GW.

5.3. Dynamic Measurement Validation

In this subsection, we investigate the dynamic measurement of the spacecraft angular rates with
the GW, in which case, the control command of the X-axis tilt angle φxd keeps as time varying and is
given by φxd = 4 sin(2π · 0.05t)◦, so that the Y-axis attitude angle of the spacecraft can be driven by the
gyroscopic moment from the GW. The response curves of the dynamic measurement of the spacecraft
angular rates with the GW are shown in Figure 8.

Similarly with the previous static measurement case, in Figure 8, the X-axis and Y-axis angular
rates can be sensed accurately by the real-time Lyapunov’s linearization method using GW, and the
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measurement equations linearized at zero tilt position no longer satisfy the measurement requirement.
Moreover, since the linearization errors depend on the tilt angular rate of the rotor, it is difficult
to establish the compensation polynomial equations by simulation data in dynamic measurement.
Therefore, even if in the dynamic measurement case, which means that the gyroscopic moments are
produced to control the spacecraft attitudes by tilting the rotor of GW along the radial direction,
the proposed innovative measurement Equation (20) based on real-time Lyapunov’s linearization is
also an effective way.
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Figure 8. Dynamic measurement φxd = 4 sin(2π · 0.05t)◦, φyd = 0◦, constant motor spin
rate θ̇zd = 157.04+ 20 sin(2π · 0.02t)rad/s: (a) X-axis angular rate sensing of spacecraft ωbx; (b) Y-axis
angular rate sensing of spacecraft ωby.

6. Conclusions

The GW can not only realize the function of the two-dimensional angular rate sensing, but also
the three-dimensional torque output at the same time. The angular rate sensing with GW could be an
effective supplement to the conventional ACS rate gyro configurations.

To achieve the above-mentioned goal, two principal contributions to the angular rate measurement
with GW are made in this paper:

(1) By combining the real-time Lyapunov’s linearization with the complex quantity transform,
two different measurement models of the spacecraft angular rate sensing with GW are established;
we named them as the “real-time Lyapunov linearization measurement model” and the “small
tilt measurement model”, respectively.

(2) For both established measurement models of GW, two different application schemes are proposed:
“time-sharing multiplexing of actuator and sensor” and “simultaneous realization of actuator
and sensor”. Additionally, the advantage and disadvantage of the two measurement schemes is
also presented.

Limited to the experiment conditions, simulations are performed instead of the validation
experiment with the GW prototype in this paper. By combining the ground calibration, the proposed
measurement method needs to be investigated further in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

GW Gyrowheel
ACS Attitude control system
DTG Dynamically-tuned gyroscope
VSCMG Variable-speed control moment gyroscope
CMG Control moment gyroscope
MSDGCMG Magnetically-suspended double-gimbal control moment gyroscope
AMBs Active magnetic bearings
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