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Abstract: The last decade has witnessed an increased interest in physical systems controlled over
wireless networks (networked control systems). These systems allow the computation of control
signals via processors that are not attached to the physical systems, and the feedback loops are closed
over wireless networks. The contribution of this paper is to design and analyze event-triggered
decentralized and distributed adaptive control architectures for uncertain networked large-scale
modular systems; that is, systems consist of physically-interconnected modules controlled over
wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability
while reducing wireless network utilization and achieving a given system performance in the presence
of system uncertainties that can result from modeling and degraded modes of operation of the
modules and their interconnections between each other. In addition to the theoretical findings
including rigorous system stability and the boundedness analysis of the closed-loop dynamical
system, as well as the characterization of the effect of user-defined event-triggering thresholds and
the design parameters of the proposed adaptive architectures on the overall system performance,
an illustrative numerical example is further provided to demonstrate the efficacy of the proposed
decentralized and distributed control approaches.

Keywords: large-scale modular systems; networked control systems; uncertain dynamical systems;
event-triggered control; decentralized control; distributed control; system stability and performance

1. Introduction

The design and implementation of decentralized and distributed architectures for controlling
complex, large-scale systems is a nontrivial control engineering task involving the consideration
of components interacting with the physical processes to be controlled. In particular, large-scale
systems are characterized by a large number of highly coupled components exchanging matter, energy
or information and have become ubiquitous given the recent advances in embedded sensor and
computation technologies. Examples of such systems include, but are not limited to, multi-vehicle
systems, communication systems, power systems, process control systems and water systems (see, for
example, [1–6] and the references therein). This paper concentrates on an important class of large-scale
systems; namely, large-scale modular systems that consist of physically-interconnected and generally
heterogeneous modules.
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1.1. Motivation and Literature Review

Two sweeping generalizations can be made about large-scale modular systems. The first is that
their complex structure and large-scale nature yield to inaccurate mathematical module models, since it
is a challenge to precisely model each module of a large-scale system and the interconnections between
these modules. As a consequence, the discrepancies between the modules and their mathematical
models, that is system uncertainties, result in the degradation of overall system stability and the
performance of the large-scale modular systems. To this end, adaptive control methodologies [7–13]
offer an important capability for this class of dynamical systems to learn and suppress the effect of
system uncertainties resulting from modeling and degraded modes of operation, and hence, they offer
system stability and desirable closed-loop system performance in the presence of system uncertainties
without excessively relying on mathematical models.

The second generalization about large-scale modular systems is that these systems are often
controlled over wireless networks, and hence, the communication costs between the modules and their
remote processors increase proportionally with the increase in the number of modules and often the
interconnection between these modules. To this end, event-triggered control methodologies [14–16]
offer new control execution paradigms that relax the fixed periodic demand of computational resources
and allow for the aperiodic exchange of sensor and actuator information with the remote processor to
reduce overall communication cost over a wireless network. Note that adaptive control methodologies
and event-triggered control methodologies are often studied separately in the literature, where it is of
practical importance to theoretically integrate these two approaches to guarantee system stability and
the desirable closed-loop system performance of uncertain large-scale modular systems with reduced
communication costs over wireless networks, which is the main focus of this paper.

More specifically, the authors of [6,17–23] proposed decentralized and distributed adaptive control
architectures for large-scale systems; however, these approaches do not make any attempts to reduce
the overall communication cost over wireless networks using, for example, event-triggered control
methodologies. In addition, the authors of [24–30] present decentralized and distributed control
architectures with event triggering; however, these approaches do not consider adaptive control
architectures and assume perfect models of the processes to be controlled; hence, they are not practical
for large-scale modular systems with significant system uncertainties. Only the authors of [31–36]
present event-triggered adaptive control approaches for uncertain dynamical systems. In particular,
the authors of [31,32] consider data transmission from a physical system to the controller, but not
vice versa, while developing their adaptive control approaches to deal with system uncertainties.
On the other hand, the adaptive control architectures of the authors in [33–36] consider two-way
data transmission over wireless networks; that is, from a physical system to the controller and from
the controller to this physical system. However, none of these approaches can be directly applied
to large-scale modular systems. This is due to the fact that large-scale modular systems require
decentralized and distributed architectures, and direct application of the results in [31–36] to this
class of systems can result in centralized architectures, which is not practically desired due to the
large-scale nature of modular systems. To summarize, there do not exist resilient adaptive control
architectures for large-scale systems in the literature to deal with system uncertainties while reducing
the communication costs between the models and their remote processors.

1.2. Contribution

The contribution of this paper is to design and analyze event-triggered decentralized and
distributed adaptive control architectures for uncertain large-scale systems controlled over wireless
networks. Specifically, the proposed decentralized and distributed adaptive architectures of this
paper guarantee overall system stability while reducing wireless network utilization and achieving a
given system performance in the presence of system uncertainties that can result from modeling and
degraded modes of operation of the modules and their interconnections between each other. From
a theoretical viewpoint, the proposed event-triggered adaptive architectures here can be viewed
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as a significant generalization of our prior work documented in [35,36] to large-scale modular
systems, which consider a state emulator-based adaptive control methodology with robustness
against high-frequency oscillations in the controller response [10,13,37–42]. In this generalization,
we also adopt necessary tools and methods from [6,23] on decentralized and distributed adaptive
controller construction for large-scale modular systems. In addition to the theoretical findings
including rigorous system stability and boundedness analysis of the closed-loop dynamical system
and the characterization of the effect of user-defined event-triggering thresholds, as well as the design
parameters of the proposed adaptive architectures on the overall system performance, an illustrative
numerical example is further provided to demonstrate the efficacy of the proposed decentralized and
distributed control approaches.

1.3. Organization

The contents of the paper are as follows. In Section 2, we consider an event-triggered decentralized
adaptive control approach for large-scale modular systems, where the considered approach assumes
that physically-interconnected modules cannot communicate with each other for exchanging
their state information. Specifically, Theorem 1 and Corollaries 1–4 show the main results of
Section 2 subject to some structural conditions on the parameters of the large-scale modular systems
and the proposed event-triggered decentralized control architecture (see Assumptions 4 and 5).
In Section 3, we consider an event-triggered distributed adaptive control approach in Theorem 2 and
Corollaries 5–7 for getting rid of such structural conditions, where the considered approach assumes
that physically-interconnected modules can locally communicate with each other for exchanging their
state information. Finally, the illustrative numerical example is presented in Section 4, and conclusions
are summarized in Section 5.

1.4. Notation

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers;
Rn denotes the set of n × 1 real column vectors; Rn×m denotes the set of n × m real matrices; R+

denotes the set of positive real numbers; Rn×n
+ denotes the set of n× n positive-definite real matrices;

Sn×n denotes the set of n× n symmetric real matrices; Dn×n denotes the set of n× n real matrices
with diagonal scalar entries; (·)T denotes transpose; (·)−1 denotes inverse; tr(·) denotes the trace
operator; diag(a) denotes the diagonal matrix with the vector a on its diagonal; and “,” denotes
equality by definition. In addition, we write λmin(A) (respectively, λmax(A)) for the minimum and
respectively maximum eigenvalue of the Hermitian matrix A, ‖ · ‖ for the Euclidean norm and ‖ · ‖F

for the Frobenius matrix norm. Furthermore, we use “∨” for the “or” logic operator and “(·)” for the
“not” logic operator.

We adopt graphs [43] to encode physical interactions and communications between modules.
In particular, an undirected graph G is defined by VG = {1, · · · , N} of nodes and a set EG ∈ VG × VG
of edges. If (i, j) ∈ EG , then the nodes i and j are neighbors, and the neighboring relation is indicated
with i ∼ j. The degree of a node is given by the number of its neighbors, where di denotes the degree
of node i. Lastly, the adjacency matrix of a graph G, A(G) ∈ RN×N , is given by:

[A(G)]ij ,
{

1, if (i, j) ∈ EG
0, otherwise

(1)

2. Event-Triggered Decentralized Adaptive Control

In this section, we introduce an event-triggered decentralized adaptive control architecture,
where it is assumed that physically-interconnected modules cannot communicate with each other.
For organizational purposes, this section is broken up into two subsections. Specifically, we first briefly
overview a standard decentralized adaptive control architecture without event-triggering and then
present the proposed event-triggered decentralized adaptive control approach, which includes rigorous
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stability and performance analyses with no Zeno behavior and generalizations to the state emulator
case for suppressing the effect of possible high-frequency oscillations in the controller response.

2.1. Overview of a Standard Decentralized Adaptive Control Architecture without Event-Triggering

Consider an uncertain large-scale modular system S consisting of N interconnected modules Si,
i ∈ VG , given by:

Si : ẋi(t) = Aixi(t) + Bi

[
Λiui(t) + ∆i (xi(t)) + ∑

i∼j
δij(xj(t))

]
, xi(0) = xi0 (2)

where xi(t) ∈ Rni is the state of Si, ui(t) ∈ Rmi is the control input applied to Si, Ai ∈ Rni×ni ,
Bi(t) ∈ Rni×mi are known matrices and the pair (Ai, Bi) is controllable. In addition, Λi ∈ Rmi×mi

+ ∩Dmi×mi

is an unknown module control effectiveness matrix; ∆i : Rni → Rmi represents matched module
bounded uncertainties; and δij : Rnj → Rmi represents matched unknown physical interconnections
with respect to module j, j ∈ VG , such that (i, j) ∈ EG .

Assumption 1. The unknown module uncertainty is parameterized as:

∆i(xi(t)) = WT
oiβi(xi(t)), xi ∈ Rni (3)

where Woi ∈ Rgi×mi is an unknown weight matrix, which satisfies ‖Woi‖F ≤ ω∗i , ω∗i ∈ R+, and βi(xi(t)) :
Rni → Rgi is a known Lipschitz continuous basis function vector satisfying:

‖βi(x1i)− βi(x2i)‖ ≤ Lβi‖x1i − x2i‖ (4)

with Lβi ∈ R+.

Assumption 2. The function δij(xj(t)) in Equation (2) satisfies:

‖δij(xj(t))‖ ≤ αij‖xj(t)‖, αij > 0, xj ∈ Rnj (5)

Next, consider the reference model Sri capturing a desired closed-loop performance for module i,
i ∈ VG given by:

Sri : ẋri(t) = Arixri(t) + Brici(t), xri(0) = xri0 (6)

where xri(t) ∈ Rni is the reference state vector of Sri, ci(t) ∈ Rmi is a given bounded command of Sri,
Ari ∈ Rni×ni is the reference system matrix and Bri ∈ Rni×mi is the command input matrix.

Assumption 3. There exist K1i ∈ Rmi×ni and K2i ∈ Rmi×mi , such that Ari = Ai − BiK1i and Bri = BiK2i
hold with Ari being Hurwitz.

Using Assumptions 1 and 3, Equation (2) can be equivalently written as:

ẋi(t) = Arixi(t) + Brici(t) + BiΛi

[
ui(t) + WT

i σi (xi(t), ci(t))
]
+ Bi ∑

i∼j
δij(xj(t)) (7)

where Wi ,
[
Λ−1

i WT
oi , Λ−1

i KT
1i , Λ−1

i KT
2i

]T
∈ R(gi+ni+mi)×mi is the unknown weight matrix and

σi
(

xi(t), ci(t)
)

,
[
βT

i (xi(t)) , xT
i (t) , cT

i (t)
]T ∈ Rgi+ni+mi . Motivated from the structure of the

uncertain terms appearing in Equation (7), let the decentralized adaptive feedback controller of
Si, i ∈ VG , be given by:

Ci : ui(t) , −Ŵi(t)Tσi (xi(t), ci(t)) (8)
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where Ŵi(t) is an estimate of Wi satisfying the update law:

˙̂Wi(t) , γiProjm
[
Ŵi(t) , σi (xi(t), ci(t)) (xi(t)− xri(t))

T PiBi

]
, Ŵi(0) = Ŵi0 (9)

where Projm denotes the projection operator defined for matrices [10,35,44,45], γi ∈ R+ being the
learning rate and Pi ∈ Rni×ni

+ ∩ Sni×ni being a solution of the Lyapunov equation:

0 = AT
riPi + Pi Ari + Ri (10)

with Ri ∈ Rni×ni
+ ∩ Sni×ni . Now, letting:

ei(t) , xi(t)− xri(t) (11)

W̃i(t) , Ŵi(t)−Wi (12)

and using Equations (6) and (7), the module-level closed-loop error dynamics are given by:

ėi(t) = Ariei(t)− BiΛiW̃T
i (t)σi (xi(t), ci(t)) + Bi ∑

i∼j
δij(xj(t)), ei(t) = ei0 (13)

2.2. Proposed Event-Triggered Decentralized Adaptive Control Architecture

We now present the proposed event-triggered decentralized adaptive control architecture for
large-scale modular systems, which reduces wireless network utilization and allows a desirable
command tracking performance during the two-way data exchange between the module Si, i ∈ VG ,
and its local controller Ci, over a wireless network. For this objective, we utilize event-triggering
control theory to schedule the data exchange dependent on errors exceeding user-defined thresholds.
Specifically, the module sends its state signal to its local adaptive controller only when a predefined
event occurs. The ki-th time instants of the state transmission of the module are represented by the
monotonic sequence

{
ski

}∞
ki=1, where ski

∈ R+. The local controller uses this triggered module state
signal to compute the control signal using adaptive control architecture. In addition, the local controller
sends the updated feedback control input to the module only when another predefined event occurs.
The ji-th time instants of the feedback control transmission are then represented by the monotonic
sequence

{
rji
}∞

ji=1, where rji ∈ R+. As depicted in Figure 1, each module state signal and its local
control input are held by a zero-order-hold operator (ZOH) until the next triggering event for the
corresponding signal takes place. The delay in sampling, data transmission and computation is not
considered in this paper. Consider the uncertain dynamical module i given by:

Si : ẋi(t) = Aixi(t) + Bi

[
Λiusi(t) + ∆i (xi(t)) + ∑

i∼j
δij(xj(t))

]
, xi(0) = xi0 (14)

where usi(t) ∈ Rmi is the sampled control input vector. Using Assumptions 1 and 3, Equation (14) can
be equivalently written as:

ẋi(t) = Arixi(t) + Brici(t) + BiΛi

[
usi(t) + WT

i σi (xi(t), xsi(t), ci(t))
]
+ Bi ∑

i∼j
δij(xj(t))

+BiΛi(usi(t)− ui(t)) + BiK1i(xsi(t)− xi(t)) (15)

where xsi(t) ∈ Rni is the sampled state vector, σi (xi(t), xsi(t), ci(t)) ,
[
βT

i (xi(t)) , xT
si(t) , cT

i (t)
]T ∈ Rgi+ni+mi .

Now, let the adaptive feedback control law be given by:

Ci : ui(t) = −Ŵi(t)Tσi (xsi(t), ci(t)) (16)
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where σi (xsi(t), ci(t)) =
[
βT

i (xsi(t)) , xT
si(t) , cT

i (t)
]T∈ Rgi+ni+mi , and Ŵi(t) satisfies the weight

update law:

˙̂Wi(t) = γiProjm
[
Ŵi(t) , σi (xsi(t), ci(t)) eT

si(t)PiBi

]
, Ŵi(0) = Ŵi0 (17)

with esi(t) , xsi(t) − xri(t) ∈ Rni being the error of the triggered module state vector. Note that
using Equation (16), Equation (15) can be rewritten as:

ẋi(t) =Arixi(t) + Brici(t)− BiΛiW̃T
i (t)σi (xsi(t), ci(t))− BiΛigi(·) + Bi ∑

i∼j
δij(xj(t))

+ BiΛi(usi(t)− ui(t)) + BiK1i(xsi(t)− xi(t)) (18)

where gi(·) , WT
i [σi (xsi(t), ci(t))− σi (xi(t), xsi(t), ci(t))], and using Equations (18) and (6), we can

write the module error dynamics as:

ėi(t) =Ariei(t)− BiΛiW̃T
i (t)σi (xsi(t), ci(t))− BiΛigi(·) + Bi ∑

i∼j
δij(xj(t)) + BiΛi(usi(t)− ui(t))

+ BiK1i(xsi(t)− xi(t)) (19)

The proposed event-triggered decentralized adaptive control algorithm is based on the two-way
data exchange structure depicted in Figure 1, where the local controller generates ui(t) and the
uncertain dynamical module is driven by the sampled version of its local control signal usi(t)
depending on an event-triggering mechanism. Similarly, the local controller utilizes xsi(t) that
represents the sampled version of the uncertain dynamical module state xi(t) depending on an
event-triggering mechanism. For this purpose, let εxi ∈ R+ be a given, user-defined sensing threshold
to allow for data transmission from the uncertain dynamical system to the controller. In addition,
let εui ∈ R+ be a given, user-defined actuation threshold to allow for data transmission from the local
controller to the uncertain dynamical module. Similar in fashion to [33,35], we now define three logic
rules for scheduling the two-way data exchange:

E1i : ‖xsi(t)− xi(t)‖ ≤ εxi (20)

E2i : ‖usi(t)− ui(t)‖ ≤ εui (21)

E3i : The controller receives xsi(t) (22)

Specifically, when the inequality in Equation (20) is violated at the ski
moment of the ki-th time

instant, the uncertain module triggers the measured state signal information, such that xsi(t) is sent
to its local controller. Likewise, when Equation (21) is violated or the local controller receives a new
transmitted module state from the uncertain dynamical system (i.e., when E2i ∨ E3i is true), then the
local controller sends a new control input usi(t) to the uncertain dynamical module at the rji moment
of the ji-th time instant.

We now analyze the system stability and performance of the proposed event-triggered decentralized
adaptive control algorithm introduced in this section using the error dynamics given by Equation (19),
as well as the data exchange rules E1i, E2i, and E3i respectively given by Equations (20)–(22).
For organizational purposes, the rest of this section, is divided into four subsections. Specifically,
we analyze the uniform ultimate boundedness of the resulting closed-loop dynamical system in
Section 2.2.1, compute the ultimate bound and highlight the effect of user-defined thresholds and the
adaptive controller design parameters on this ultimate bound in Section 2.2.2, show that the proposed
architecture does not yield to a Zeno behavior in Section 2.2.3 and generalize the decentralized
event-triggered adaptive control algorithm using a state emulator-based framework in Section 2.2.4.
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Event Triggering Mechanism

ZOH

ZOH

Uncertain Large-Scale Module

Adaptive Controller

Figure 1. Event-triggered adaptive control for large-scale modular systems.

2.2.1. Stability Analysis and Uniform Ultimate Boundedness

We now present the first result of this paper, where the following assumption is needed.

Assumption 4. D1i , λmin(Ri)− 2λmax(Pi)‖Bi‖F ∑i∼j αij −∑i∼j λmax(Pj)‖Bj‖Fαji is positive by suitable
selection of the design parameters.

Theorem 1. Consider the uncertain large-scale modular system S consisting of N interconnected modules Si
described by Equation (14) subject to Assumptions 1–4. Consider, in addition, the reference model given by
Equation (6), and the module feedback control law given by Equations (16) and (17). Moreover, let the data
transmission from the uncertain dynamical module to the local controller occur when E1i is true and the data
transmission from the controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then, the
closed-loop solution (ei(t), W̃i(t)) is uniformly ultimately bounded for all i = 1, 2, ..., N.

Proof. Since the data transmission from the uncertain modules to their local controllers and from the
local controllers to the uncertain modules occur when E1i and E2i ∨ E3i are true, respectively, note
that ‖xsi(t)− xi(t)‖ ≤ εxi and ‖usi(t)− ui(t)‖ ≤ εui hold. Consider now the Lyapunov-like function
given by:

Vi(ei, W̃i) = eT
i Piei + γ−1

i tr
(
(W̃iΛ

1
2
i )

T(W̃iΛ
1
2
i )

)
(23)

Note that Vi(0, 0) = 0 and Vi(ei, W̃i) > 0 for all (ei, W̃i) 6= (0, 0). The time-derivative of Equation (23)
is given by:
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V̇i(ei(t), W̃i(t))

= 2eT
i (t)Pėi(t) + 2γ−1

i tr
(

W̃T
i (t)

˙̃Wi(t)Λi

)
≤ 2eT

i (t)Pi

(
Ariei(t)− BiΛiW̃T

i (t)σi (xsi(t), ci(t))− BiΛigi(·) + Bi ∑
i∼j

δij(xj(t))

+BiΛi(usi(t)− ui(t)) + BiK1i(xsi(t)− xi(t))

)
+ 2tr

(
W̃T

i (t)Λiσi (xsi(t), ci(t)) eT
si(t)PiBi

)
≤ −eT

i (t)Riei(t)− 2eT
i (t)PiBiΛigi(·) + 2eT

i (t)PiBi ∑
i∼j

δij(xj(t)) + 2eT
i (t)PiBiΛi(usi(t)− ui(t))

+2eT
i (t)PiBiK1i(xsi(t)− xi(t)) + 2tr

(
W̃T

i (t)Λiσi (xsi(t), ci(t)) (xsi(t)− xi(t))TPiBi

)
≤ −λmin(Ri)‖ei(t)‖2 + 2‖ei(t)‖λmax(Pi)‖Bi‖F‖Λi‖F‖gi(·)‖+ ‖2ei(t)PiBi ∑

i∼j
δij(xj(t))‖

+2‖ei(t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2‖ei(t)‖λmax(Pi)‖Bi‖F‖K1i‖Fεxi + 2‖W̃i(t)‖F‖Λi‖F (24)

·‖σi (xsi(t), ci(t)) ‖εxiλmax(Pi)‖Bi‖F

It follows from Assumption 1 that an upper bound for ‖gi(·)‖ in Equation (24) can be given by:

‖gi(·)‖ =
∥∥∥WT

i [σi (xsi(t), ci(t))− σi (xi(t), xsi(t), ci(t))]
∥∥∥

≤ ‖Λ−1
i ‖Fω∗i Lβi︸ ︷︷ ︸

Kgi

‖xsi(t)− xi(t)‖ ≤ Kgiεxi (25)

where Kgi ∈ R+. In addition, one can compute an upper bound for ‖σi (xsi(t), ci(t)) ‖ in
Equation (24) as:

‖σi (xsi(t), ci(t)) ‖ ≤ ‖βi(xsi(t))‖+ ‖xsi(t)‖+ ‖ci(t)‖
≤ Lβi‖xsi(t)‖+ ‖xsi(t)‖+ ‖ci(t)‖
= (Lβi + 1)εxi + (Lβi + 1)‖ei(t)‖+ (Lβi + 1)x∗ri + ‖ci(t)‖ (26)

where ‖xri(t)‖ ≤ x∗ri. Then, using the bounds given by Equations (25) and (26) in Equation (24), one
can write:

V̇i(ei(t), W̃i(t))

≤ −λmin(Ri)‖ei(t)‖2 +
(

2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)

·‖Bi‖F‖K1i‖Fεxi + 2‖W̃i(t)‖F‖Λi‖F(Lβi + 1)λmax(Pi)‖Bi‖Fεxi

)
‖ei(t)‖+ 2‖W̃i(t)‖F‖Λi‖F

·
(
(Lβi + 1)εxi + (Lβi + 1)x∗ri + ‖ci(t)‖

)
λmax(Pi)‖Bi‖Fεxi + ‖2ei(t)PiBi ∑

i∼j
δij(xj(t))‖

= −c1i‖ei(t)‖2 + c2i‖ei(t)‖+ c3i + ‖2ei(t)PiBiδij(xj(t))‖ (27)

where c1i , λmin(Ri), c2i , 2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)‖Bi‖F‖K1i‖F · εxi

+ 2w̃∗i ‖Λi‖F(Lβi + 1)λmax(Pi)‖Bi‖Fεxi and c3i , 2w̃∗i ‖Λi‖F
(
(Lβi + 1)εxi + (Lβi + 1)x∗ri + ‖ci(t)‖

)
λmax(Pi)‖Bi‖Fεxi

with ||W̃i(t)||F ≤ w̃∗i due to utilizing the projection operator in the weight update law given by
Equation (9).

Since xj(t) = ej(t) + xrj(t) with ‖xrj(t)‖ ≤ x∗rj, it follows from Assumption 2 that:
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‖∑
i∼j

δij(xj(t))‖ ≤∑
i∼j

αij

[
‖ej(t)‖+ x∗rj

]
(28)

Furthermore, using Equation (28) in the last term of Equation (27) results in:

‖2ei(t)PiBiδij(xj(t))‖ ≤ 2λmax(Pi)‖ei(t)‖‖Bi‖F‖∑
i∼j

δij(xj(t))‖

≤ 2λmax(Pi)‖ei(t)‖‖Bi‖F ∑
i∼j

αij

[
‖ej(t)‖+ x∗rj

]
≤ λmax(Pi)‖Bi‖F ∑

i∼j
αij

[
2‖ei(t)‖‖ej(t)‖+ 2‖ei(t)‖x∗rj

]
≤ λmax(Pi)‖Bi‖F ∑

i∼j
αij

[
2‖ei(t)‖2 + ‖ej(t)‖2 + x∗rj

2
]

(29)

where Young’s inequality [46] is considered in the scalar form of 2xy ≤ νx2 + y2/ν, where x, y ∈ R and
ν > 0, and applied to terms ‖ei(t)‖‖ej(t)‖ and ‖ei(t)‖x∗rj with ν = 1. Hence, Equation (27) becomes:

V̇i(ei(t), W̃i(t)) ≤ −
[

c1i − 2λmax(Pi)‖Bi‖F ∑
i∼j

αij︸ ︷︷ ︸
d1i

]
‖ei(t)‖2 + λmax(Pi)‖Bi‖F︸ ︷︷ ︸

fi

∑
i∼j

αij‖ej(t)‖2

+ c2i‖ei(t)‖+ ϕi (30)

where ϕi , c3i + λmax(Pi)‖Bi‖F ∑i∼j αijx∗rj
2.

Introducing:

V(·) =
N

∑
i=1
Vi(ei(t), W̃i(t)) (31)

for the uncertain system S results in:

V̇(·) ≤
N

∑
i=1

[
− d1i‖ei(t)‖2 + fi ∑

i∼j
αij‖ej(t)‖2 + c2i‖ei(t)‖+ ϕi

]
=

N

∑
i=1

[
−
(

d1i −∑
i∼j

f jαji︸ ︷︷ ︸
D1i

)
‖ei(t)‖2 + c2i‖ei(t)‖+ ϕi

]
(32)

where D1i > 0 is defined in Assumption 4. Letting ea(t) ,
[
‖e1(t)‖, . . . , ‖eN(t)‖

]T, D1 , diag
([

D11, . . . ,
D1N

])
, C2 , diag

([
c21, . . . , c2N

])
and ϕa , ∑N

i=1 ϕi, Equation (32) can equivalently be written as:

V̇(·) ≤ −eT
a (t)D1ea(t) + C2ea(t) + ϕa

≤ −λmin(D1)‖ea(t)‖2 + λmax(C2)‖ea(t)‖+ ϕa (33)

When ‖ea(t)‖ > ψ, this renders V̇(·) < 0, where ψ ,
λmax(C2)

2
√

λmin(D1)
+

√
λ2

max(C2)
4λmin(D1)

+ϕa
√

λmin(D1)
. Hence, ei(t) and W̃i(t)

are uniformly ultimate bounded for all i = 1, 2, ... , N.
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2.2.2. Computation of the Ultimate Bound for System Performance Assessment

For revealing the effect of user-defined thresholds and the event-triggered feedback
adaptive controller design parameters to the system performance, the next corollary presents
a computation of the ultimate bound for the system S . For this purpose, we define the
following, Pmin , diag ([λmin(P1), . . . , λmin(PN)]), Pmax , diag

([
λmax(P1), . . . , λmax(PN)

])
,

γa , diag
([

γ−1
1 , . . . , γ−1

N

])
, Λa , diag ([‖Λ1‖F, . . . , ‖ΛN‖F]), W̃a(t) ,

[
‖W̃1(t)‖F, . . . , ‖W̃N(t)‖F

]T.

Corollary 1. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (14) subject to Assumptions 1–4. Consider, in addition, the reference model given by Equation (6),
and the module feedback control law given by Equations (16) and (17). Moreover, let the data transmission
from the uncertain modules to their local controllers occur when E1i is true and the data transmission from the
controllers to the uncertain modules occur when E2i ∨ E3i is true. Then, the ultimate bound of the system error
between the uncertain dynamical system and the reference model is given by:

||ea(t)|| ≤ Φ̃λ
− 1

2
min(Pmin), t ≥ T (34)

where:

Φ̃ ,
[
λmax(Pmax)ψ

2 + λmax(γa)λmax(Λa)‖W̃a(t)‖2] 1
2 (35)

Proof. It follows from the proof of Theorem 1 that V̇(ea(t), W̃a(t)) ≤ 0 outside the compact set
given by:

S , {ea(t) : ‖ea(t)‖ ≤ ψ} (36)

That is, since V(ea(t), W̃a(t)) cannot grow outside S , the evolution of V(ea(t), W̃a(t)) is upper
bounded by:

V(ea(t), W̃a(t)) ≤ max
ea(t)∈S

V(ea(t), W̃a(t))

= λmax(Pmax)ψ
2 + λmax(γa)λmax(Λa)‖W̃a(t)‖2

= Φ̃2 (37)

It follows from eT
a Pminea ≤ V(ea, W̃a) that ‖ea(t)‖2 ≤ Φ̃2

λmin(Pmin)
, and Equation (34) is immediate.

2.2.3. Computation of the Event-Triggered Inter-Sample Time Lower Bound

We now show that the proposed event-triggered decentralized adaptive control architecture does
not yield to a Zeno behavior, which implies that it does not require a continuous two-way data exchange
and reduces wireless network utilization. For the following corollary presenting the result of this
subsection, we consider rki

qi ∈
(
ski

, ski+1
)

to be the qi-th time instant when E2i is violated over
(
ski

, ski+1
)
,

and since
{

ski

}∞
ki=1 is a subsequence of

{
rji
}∞

ji=1, it follows that
{

rji
}∞

ji=1 =
{

ski

}∞
ki=1

⋃{
rki

qi

}∞,mki

ki=1,qi=1
,

where mki
∈ N is the number of violation times of E2i over

(
ski

, ski+1
)
.

Corollary 2. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (14) subject to Assumptions 1–4. Consider, in addition, the reference model given by Equation (6),
and the module feedback control law given by Equations (16) and (17). Moreover, let the data transmission from
the uncertain dynamical module to the local controller occur when E1i is true and the data transmission from the
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controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then, there exist positive scalars
αxi ,

εxi
Φ1i

and αui ,
εui
Φ2i

such that:

ski+1 − ski
> αxi, ∀ki ∈ N (38)

rki
qi+1 − rki

qi > αui, ∀qi ∈
{

0, ..., mki

}
, ∀ki ∈ N (39)

Proof. The time derivative of ‖xsi(t)− xi(t)‖ over t ∈
(
ski

, ski+1
)
, ∀ki ∈ N, is given by:

d
dt
‖xsi(t)− xi(t)‖ ≤ ‖ẋsi(t)− ẋi(t)‖ = ‖ẋi(t)‖

≤ ‖Ari‖F [‖ei(t)‖+ x∗ri] + ‖Bri‖F‖ci(t)‖+ ‖Bi‖F‖Λi‖Fw̃∗i
[

Lβi
(
εxi + ‖ei(t)‖

+x∗ri
)
+ ‖K1i‖F (εxi + ‖ei(t)‖+ x∗ri) + ‖K2i‖F‖ci(t)‖

]
+ ‖Bi‖F‖Λi‖FKgiεxi

+‖Bi‖F ∑
i∼j

αij

(
‖ej(t)‖+ x∗rj

)
+ ‖Bi‖F‖Λi‖Fεui + ‖Bi‖F‖K1i‖Fεxi (40)

Since the closed-loop dynamical system is uniformly ultimately bounded by Theorem 1, there exists
an upper bound to Equation (40). Letting Φ1i denote this upper bound and with the initial condition
satisfying limt→s+ki

‖xsi(t)− xi(t)‖ = 0, it follows from Equation (40) that:

‖xsi(t)− xi(t)‖ ≤ Φ1i(t− ski
), ∀t ∈ (ski

, ski+1) (41)

Therefore, when E1i is true, then limt→s−ki+1
‖xsi(t)− xi(t)‖ = εxi, and it then follows from Equation (41)

that ski+1 − ski
≥ αxi.

Similarly, the time derivative of ‖usi(t)− ui(t)‖ over t ∈
(

rki
qi , rki

qi+1

)
, ∀qi ∈ N, is given by:

d
dt
‖usi(t)− ui(t)‖ ≤ ‖u̇si(t)− u̇i(t)‖ = ‖u̇i(t)‖

=
∥∥∥ ˙̂WT

i (t)σi (xsi(t), ci(t)) + ŴT
i (t)σ̇i (xsi(t), ci(t))

∥∥∥
≤ γi ‖Bi‖F λmax(Pi) ‖esi(t)‖ ‖σi (xsi(t), ci(t))‖2 + ‖Λ−1

i ‖F‖K2i‖F‖ċi(t)‖

≤ γi ‖Bi‖F λmax(Pi) (‖ei(t)‖+ εxi)
[

Lβi(εxi + ‖ei(t)‖+ x∗ri) + ‖K1i‖F(εxi

+ ‖ei(t)‖+ x∗ri) + ‖K2i‖F‖ci(t)‖
]2

+ ‖Λ−1
i ‖F‖K2i‖F‖ċi(t)‖ (42)

Once again, since the closed-loop dynamical system is uniformly ultimately bounded by Theorem 1,
there exists an upper bound to Equation (42). Letting Φ2i denote this upper bound, and with the initial
condition satisfying lim

t→r
ki+
qi

‖usi(t)− ui(t)‖ = 0, it follows from Equation (42) that:

‖usi(t)− ui(t)‖ ≤ Φ2i(t− rki
qi ), ∀t ∈

(
rki

qi , rki
qi+1

)
(43)

Therefore, when Ē2i ∨ E3i is true, then lim
t→r

ki−
qi+1
‖usi(t)− ui(t)‖ = εui, and it then follows from

Equation (43) that rki
qi+1 − rki

qi ≥ αui.

Corollary 2 shows that the inter-sample times for the module state vector and decentralized
feedback control vector are bounded away from zero, and hence, the proposed event-triggered
adaptive control approach does not yield to a Zeno behavior. As discussed earlier, this implies that the
proposed event-triggered decentralized adaptive control methodology does not require a continuous
two-way data exchange, and it reduces wireless network utilization.
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2.2.4. Generalizations to the Event-Triggered Decentralized Adaptive Control with State Emulator

We now generalize our framework to a state emulator-based design, since this framework has the
capability to suppress possible high-frequency oscillation in the control signal of the uncertain module
Si [10,13,37–42]. Consider the (modified) reference system, so-called the state emulator of Si, given by:

˙̂xi(t) = Ari x̂i(t) + Brici(t) + Li (xsi(t)− x̂i(t)) , x̂i(0) = x̂i0 (44)

where Li ∈ Rni×ni
+ ∩Dni×ni is the state emulator gain. Letting êi(t) , x̂i(t)− xri(t) ∈ Rni , the reference

model error dynamics capturing the difference between the ideal reference model in Equation (6) and
the state emulator-based (modified) reference model in Equation (44) is given by:

˙̂ei(t) = Ari êi(t) + Li (xsi(t)− x̂i(t)) (45)

In addition, letting x̃i(t) , xi(t)− x̂i(t) ∈ Rni to denote the system state error vector, the (state
emulator-based) system error dynamics follows from Equations (18) and (44) as:

˙̃xi(t) = ALi x̃i(t)− BiΛiW̃T
i (t)σi (xsi(t), ci(t))− BiΛigi(·) + Biδij(xj(t)) + BiΛi(usi(t)− ui(t))

+(BiK1i − Li)(xsi(t)− xi(t)), x̃i(0) = x̃i0 (46)

where ALi , Ari − Li ∈ Rni×ni is Hurwitz by a suitable selection of the state emulator gain Li
(e.g., ALi is Hurwitz with Li = κi I, κi ∈ R+, since Ari is Hurwitz). To maintain system stability, we
utilize the adaptive controller given by Equation (16) with the update law described by:

˙̂Wi(t) , γiProjm
[
Ŵi(t) , σi (xsi(t), ci(t)) (xsi(t)− x̂i(t))TPiBi

]
, Ŵi(0) = Ŵi0 (47)

where Pi ∈ Rni×ni∩Sni×ni
+ is the unique solution of the algebraic Riccati equation:

0 = AT
LiPi + Pi ALi − PiBiR−1

i BT
i Pi + Qi (48)

with Ri ∈ Rmi×mi
+ ∩ Sni×ni and Qi ∈ Rni×ni

+ ∩ Sni×ni .
Note from [10,42] that the state emulator-based adaptive control framework achieves stringent

transient and steady-state system performance specifications by judiciously choosing the learning rate
γi and the state emulator gain Li without causing high-frequency oscillations in the controller response,
unlike standard model reference adaptive controllers overviewed earlier in this section. We also note
that if one selects Li = 0, then the results of this paper hold for standard model reference adaptive
controllers, and hence, there is no loss in generality in using a state emulator-based adaptive control
framework for the main results of this paper.

Consider a parameter-dependent Riccati equation [23,47] given by:

0 = AT
ri P̃i + P̃i Ari + Q̃i (49)

Q̃i = µi P̃iLiLT
i P̃i + Q̃oi, (50)

where P̃i ∈ Rni×ni
+ is a unique solution with Q̃oi ∈ Rni×ni

+ and µi > 0.

Remark 1 [23]. Let 0 < µi < µ̄i define the largest set within which there is a positive-definite solution for P̃i.
Since P̃i > 0 for µi = 0 and P̃i > 0 depends continuously on µi, the existence of P̃i(µi) > 0 for 0 < µi < µ̄i
is assured.

The next lemma shows that for µi < µ̄i, Equations (49) and (50) can reliably be solved for P̃i > 0
using the Potter approach given in [48]. This also implies that µ̄i can be determined by searching for
the boundary value, µ̄i. We employ notation ric(·) and dom(·) as defined in [48].
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Lemma 1 [23,48]. Let P̃i > 0 satisfy the parameter dependent Riccati equation given by Equations (49) and (50),
and let the modified Hamiltonian be given by:

Hi =

[
Ari µiLiLT

i
−Q̃oi −AT

ri

]
(51)

Then, for all 0 < µi < µ̄i, Hi ∈ dom(ric) and P̃i = ric(Hi).

Assumption 5. D1i , λmin(Qi) − λmin(R−1
i )λ2

max(Pi)‖Bi‖2
F −

li
µi
− 3λmax(Pi)‖Bi‖F ∑i∼j αij −

∑i∼j λmax(Pj)‖Bj‖Fαji and D2i , liλmin(Q̃oi) − ∑i∼j λmax(Pj)‖Bj‖Fαji, li > 0, are positive by suitable
selection of the design parameters.

Corollary 3. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (14) subject to Assumptions 1–3 and 5. Consider in addition, the ideal reference model given
by Equation (6), the state emulator given by Equation (44) and the module feedback control law given by
Equations (16) and (47). Moreover, let the data transmission from the uncertain dynamical module to the local
controller occur when E1i is true and the data transmission from the controller to the uncertain dynamical
system occur when E2i ∨ E3i is true. Then, the closed-loop solution (x̃i(t), W̃i(t), êi(t)) is uniformly ultimately
bounded for all i = 1, 2, ..., N.

Proof. Consider the Lyapunov-like function given by:

Vi(x̃i, W̃i, êi) = x̃T
i Pi x̃i + γ−1

i tr(W̃iΛ
1
2
i )

T(W̃iΛ
1
2
i ) + li êT

i P̃i êi (52)

where li > 0 and P̃i > 0 satisfies the parameter dependent Riccati equation in Equations (49) and (50).
Note that Vi(0, 0, 0) = 0 and Vi(x̃i, W̃i, êi) > 0 for all (x̃i, W̃i, êi) 6= (0, 0, 0). The time-derivative of
Equation (52) is given by:

V̇i(x̃i(t), W̃i(t), êi(t))

= 2x̃T
i (t)Pi ˙̃xi(t) + 2γ−1

i tr(W̃i(t)Λ
1
2
i )

T( ˙̃Wi(t)Λ
1
2
i ) + 2li êT

i (t)P̃i ˙̂ei(t)

≤ 2x̃T
i (t)Pi

[
ALi x̃i(t)− BiΛiW̃T

i (t)σi (xsi(t), ci(t))− BiΛigi(·) + Biδij(xj(t)) + BiΛi
(
usi(t)− ui(t)

)
+(BiK1i − Li)(xsi(t)− xi(t))

]
+ 2trW̃T

i (t)σi (xsi(t), ci(t)) (xsi(t)− x̂i(t))TPiBiΛi

+2li êT
i (t)P̃i

[
Ari êi(t) + Li (xsi(t)− x̂i(t))

]
≤ −x̃T

i (t)Qi x̃i(t) + x̃T
i (t)PiBiR−1

i BT
i Pi x̃i(t)− 2x̃T

i (t)PiBiΛigi(·) + 2x̃T
i (t)PiBiδij(xj(t))

+2x̃T
i (t)PiBiΛi

(
usi(t)− ui(t)

)
+ 2x̃T

i (t)Pi(BiK1i − Li)(xsi(t)− xi(t)) + 2trW̃i(t)T (53)

·σi (xsi(t), ci(t)) (xsi(t)− xi(t))TPiBiΛi − li êT
i (t)Q̃oi êi(t)− li êT

i (t)µi P̃iLiLT
i P̃i êi(t)

+2li êT
i (t)P̃iLi(xsi(t)− xi(t)) + 2li êT

i (t)P̃iLi x̃i(t)

Young’s inequality [46] applied to the last term in Equation (53) produces:

2li êT
i (t)P̃iLi x̃i(t) ≤ µili êT

i (t)P̃iLiLT
i P̃i êi(t) +

li
µi

x̃T
i (t)x̃i(t) (54)
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Using Equation (54) in Equation (53) yields:

V̇i(x̃i(t), W̃i(t), êi(t))

≤ −x̃T
i (t)Qi x̃i(t) + x̃T

i (t)PiBiR−1
i BT

i Pi x̃i(t)− 2x̃T
i (t)PiBiΛigi(·) + 2x̃T

i (t)PiBiδij(xj(t))

+2x̃T
i (t)PiBiΛi

(
usi(t)− ui(t)

)
+ 2x̃T

i (t)Pi(BiK1i − Li)(xsi(t)− xi(t)) + 2trW̃T
i (t)σi (xsi(t), ci(t))

·(xsi(t)− xi(t))TPiBiΛi − li êT
i (t)Q̃oi êi(t) + 2li êT

i (t)P̃iLi(xsi(t)− xi(t)) +
li
µi

x̃T
i (t)x̃i(t)

≤ −λmin(Ri)‖x̃i(t)‖2 + λmin(R−1
i )λ2

max(Pi)‖Bi‖2
F‖x̃i(t)‖2 + 2λmax(Pi)‖Bi‖F‖Λi‖F‖gi(·)‖‖x̃i(t)‖

+‖2x̃i(t)PiBiδij(xj(t))‖+ 2‖x̃i(t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2‖x̃i(t)‖λmax(Pi)
(
‖BiK1i‖F

+‖Li‖F
)
εxi + 2‖W̃i(t)‖F‖σi (xsi(t), ci(t)) ‖εxiλmax(Pi)‖Bi‖F‖Λi‖F − liλmin(Q̃oi)‖êi(t)‖2 (55)

+2li‖êi(t)‖λmax(P̃i)‖Li‖Fεxi +
li
µi
‖x̃i(t)‖2

Using Equations (25) and (26), Equation (55) can be written:

V̇i(x̃i(t), W̃i(t), êi(t))

≤ −
(

λmin(Qi)− λmin(R−1
i )λ2

max(Pi)‖Bi‖2
F −

li
µi

)
‖x̃i(t)‖2 − liλmin(Q̃oi)‖êi(t)‖2 +

(
2λmax(Pi)

· ‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)‖Bi‖F‖K1i‖Fεxi + 2‖W̃i(t)‖F‖Λi‖F

· (Lβi + 1)λmax(Pi)‖Bi‖Fεxi

)
‖x̃i(t)‖+ 2‖W̃i(t)‖F‖Λi‖F

(
(Lβi + 1)εxi + (Lβi + 1)x∗ri + ‖ci(t)‖

)
· λmax(Pi)‖Bi‖Fεxi + ‖2x̃i(t)PiBiδij(xj(t))‖+ 2liλmax(P̃i)‖Li‖Fεxi‖êi(t)‖
= −c1i‖x̃i(t)‖2 − c2i‖êi(t)‖2 + c3i‖x̃i(t)‖+ c4i‖êi(t)‖+ c5i + ‖2x̃i(t)PiBiδij(xj(t))‖ (56)

where c1i , λmin(Qi)− λmin(R−1
i )λ2

max(Pi)‖Bi‖2
F −

li
µi

, c2i , liλmin(Q̃oi), c3i , 2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi+

2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)‖Bi‖F‖K1i‖Fεxi + 2w̃∗i ‖Λi‖(Lβi + 1)λmax(Pi)‖Bi‖Fεxi, c4i , 2liλmax(P̃i)

‖Li‖Fεxi and c5i , 2w̃∗i ‖Λi‖F
(
(Lβi + 1)εxi + (Lβi + 1)x∗ri + ‖ci(t)‖

)
λmax(Pi)‖Bi‖Fεxi.

Since xj(t) = x̃j(t) + êj(t) + xrj(t), it follows from Assumption 2 that:

‖δij(xj(t))‖ ≤∑
i∼j

αij

[
‖x̃j(t)‖+ ‖êj(t)‖+ x∗rj

]
(57)

Furthermore, using Equation (57) in the last term of Equation (56) results in:

‖2x̃i(t)PiBiδij(xj(t))‖ ≤ 2λmax(Pi)‖x̃i(t)‖‖Bi‖F‖δij(xj(t))‖

≤ 2λmax(Pi)‖x̃i(t)‖‖Bi‖F ∑
i∼j

αij

[
‖x̃j(t)‖+ ‖êj(t)‖+ x∗rj

]
≤ λmax(Pi)‖Bi‖F ∑

i∼j
αij

[
2‖x̃i(t)‖‖x̃j(t)‖+ 2‖x̃i(t)‖‖êj(t)‖+ 2‖x̃i(t)‖x∗rj

]
≤ λmax(Pi)‖Bi‖F ∑

i∼j
αij

[
3‖x̃i(t)‖2 + ‖x̃j(t)‖2 + ‖êj(t)‖2 + x∗rj

2
]

(58)

where Young’s inequality [46] is considered in the scalar form of 2xy ≤ νx2 + y2/ν, with x, y ∈ R
and ν > 0, and applied to terms ‖x̃i(t)‖‖x̃j(t)‖, ‖x̃i(t)‖‖êj(t)‖ and ‖x̃i(t)‖x∗rj with ν = 1. Hence,
Equation (56) becomes:
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V̇i(x̃i(t), W̃i(t), êi(t))

≤ −
[

c1i − 3λmax(Pi)‖Bi‖F ∑
i∼j

αij︸ ︷︷ ︸
d1i

]
‖x̃i(t)‖2 − c2i‖êi(t)‖2 + c3i‖x̃i(t)‖+ c4i‖êi(t)‖

+ λmax(Pi)‖Bi‖F︸ ︷︷ ︸
fi

∑
i∼j

αij‖x̃j(t)‖2 + λmax(Pi)‖Bi‖F︸ ︷︷ ︸
fi

∑
i∼j

αij‖êj(t)‖2 + ϕi (59)

where ϕi , c5i + λmax(Pi)‖Bi‖F ∑i∼j αijx∗rj
2. Introducing:

V(·) =
N

∑
i=1
Vi(x̃i(t), W̃i(t)êi(t)) (60)

for the uncertain system S results in:

V̇(·) ≤
N

∑
i=1

[
− d1i‖x̃i(t)‖2 − c2i‖êi(t)‖2 + c3i‖x̃i(t)‖

+ c4i‖êi(t)‖+ fi ∑
i∼j

αij‖x̃j(t)‖2 + fi ∑
i∼j

αij‖êj(t)‖2 + ϕi

]
=

N

∑
i=1

[
−
(

d1i −∑
i∼j

f jαji︸ ︷︷ ︸
D1i

)
‖x̃i(t)‖2 −

(
c2i −∑

i∼j
f jαji︸ ︷︷ ︸

D2i

)
‖êi(t)‖2

+ c3i‖x̃i(t)‖+ c4i‖êi(t)‖+ ϕi

]
(61)

where D1i > 0 and D2i > 0 are defined in Assumption 5. Letting x̃a(t) ,
[
‖x̃1(t)‖, . . . , ‖x̃N(t)‖

]T,

êa(t) ,
[
‖ê1(t)‖, . . . , ‖êN(t)‖

]T, D1 , diag
([

D11, . . . , D1N
])

, D2 , diag
([

D21, . . . , D2N
])

, C3 ,
diag

([
c31, . . . , c3N

])
, C4 , diag

([
c41, . . . , c4N

])
and ϕa , ∑N

i=1 ϕi, then Equation (61) can equivalently
be written as:

V̇(·) ≤ −x̃T
a (t)D1 x̃a(t)− êT

a (t)D2 êa(t) + C3 x̃a(t) + C4 êa(t) + ϕa

≤ −λmin(D1)‖x̃a(t)‖2 − λmin(D2)‖êa(t)‖2 + λmax(C3)‖x̃a(t)‖+ λmax(C4)‖êa(t)‖+ ϕa (62)

Either ‖x̃a(t)‖ > ψ1 or ‖êa(t)‖ > ψ2 renders V̇(·) < 0, where ψ1 ,

λmax(C3)
2
√

λmin(D1)
+

√
λ2

max(C3)
4λmin(D1)

+
λ2

max(C4)
4λmin(D2)

+ϕa
√

λmin(D1)

and ψ2 ,

λmax(C4)
2
√

λmin(D2)
+

√
λ2

max(C3)
4λmin(D1)

+
λ2

max(C4)
4λmin(D2)

+ϕa
√

λmin(D2)
, and hence, x̃i(t), êi(t) and W̃i(t) are uniformly ultimate

bounded for all i = 1, 2, ... , N.

Corollary 4. Under the conditions of Corollary 3, we can show that ei(t) is bounded for all i = 1, 2, ..., N.

Proof. It readily follows from:

‖ei(t)‖ = ‖xi(t)− x̂(t) + x̂(t)− xr(t)‖
≤ ‖xi(t)− x̂(t)‖+ ‖x̂(t)− xr(t)‖
≤ ‖x̃i(t)‖+ ‖êi(t)‖ (63)

and Corollary 3 that ei(t) is bounded for all i = 1, 2, ..., N.
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Remark 2. In order to obtain the closed-loop system error ultimate bound value for Equation (63) and the no
Zeno behavior characterization, we can follow the same steps highlighted in Corollaries 1 and 2, respectively.

3. Event-Triggered Distributed Adaptive Control

We now introduce an event-triggered distributed adaptive control architecture in this section,
where it is assumed that physically-interconnected modules can locally communicate with each
other for exchanging their state information. For organizational purposes, this section is broken up
into two subsections. Specifically, we first briefly overview a standard distributed adaptive control
architecture without event-triggering and then present the proposed event-triggered decentralized
adaptive control approach, which includes rigorous stability and performance analyses with no
Zeno behavior and generalizations to the state emulator case for suppressing the effect of possible
high-frequency oscillations in the controller response. As shown, the benefit of using the proposed
distributed adaptive control architecture versus the decentralized architecture of the previous section
is that there is no need for any structural assumptions; that is, Assumptions 4 and 5, in the distributed
case to guarantee overall system stability (for applications where modules are allowed to locally
communicate with each other).

3.1. Overview of a Standard Distributed Adaptive Control Architecture without Event-Triggering

The standard distributed adaptive control architecture overviewed in this section builds
on the problem formulation stated in Section 2.1 with an important difference that the
physically-interconnected modules can locally communicate with each other for exchanging their state
information, as discussed above. For this purpose, we first replace Assumption 2 of Section 2.1 with
the following assumption.

Assumption 6. The function δij(xj(t)) in Equation (2) satisfies:

δij(xj(t)) = QT
ijφij(xj(t)) (64)

where Qij ∈ Rgi×mi is an unknown weight matrix and φij : Rnj → Rgi is a known Lipschitz continuous basis
function vector satisfying:

‖φij(x1j)− φij(x2j)‖ ≤ Lφij‖x1j − x2j‖ (65)

with Lφij ∈ R+.

Remark 3. We can equivalently represent Equation (64) as:

∑
i∼j

QT
ijφij(xj(t)) , GT

ij Fij(xj(t)) (66)

where Gij ∈ R(gi ·di)×mi is the matrix combination for the ideal weight matrices of the connected graph,
Fij(xj(t)) : Rnj → R(gi ·di) is the vector combination for basis function vectors of the connected graph and di is
the degree of the i-th agent. The right hand side of Equation (66) can be given as:

GT
ij Fij(xj(t)) = GT

i diag(Ai)Fi (67)

where Gi ∈ R(gi ·N)×mi is the matrix combination for all modules’ ideal weight matrices of the system toward Si,
Fi(xj(t)) : Rnj → R(gi ·N) is the vector combination for all basis function vectors of the system toward Si and
Ai is the i-th row of the adjacency matrix A.



Sensors 2016, 16, 1297 17 of 31

Next, using Assumptions 1, 3 and 6, Equation (2) can be equivalently written as:

ẋi(t) = Arixi(t) + Brici(t) + BiΛi

[
ui(t) + WT

i σi
(
xi(t), ci(t), xj(t)

)]
(68)

where Wi ,
[
Λ−1

i WT
oi , Λ−1

i KT
1i , Λ−1

i KT
2i , Λ−1

i GT
ij

]T
∈ R(gi+ni+mi+(gi ·di))×mi is an unknown

weight matrix and σi
(

xi(t), ci(t), xj(t)
)
,
[

βT
i (xi(t)) , xT

i (t) , cT
i (t) , FT

ij (xj(t))
]T
∈ Rgi+ni+mi+(gi ·di).

Motivated from the structure of the uncertain terms appearing in Equation (68), let the distributed
adaptive feedback controller of Si, i ∈ VG , be given by:

Ci : ui(t) = −Ŵi(t)Tσi
(
xi(t), ci(t), xj(t)

)
(69)

where Ŵi(t) is an estimate of Wi satisfying the update law:

˙̂Wi(t) = γiProjm
[
Ŵi(t) , σi

(
xi(t), ci(t), xj(t)

)
eT

i (t)PiBi

]
, Ŵi(0) = Ŵi0 (70)

where Pi ∈ Rni×ni
+ ∩ Sni×ni is a solution of the Lyapunov Equation (10). Now, from

Equations (6) and (68), the module-level closed-loop error dynamics can be given by:

ėi(t) = Ariei(t)− BiΛiW̃T
i (t)σi

(
xi(t), ci(t), xj(t)

)
, ei(t) = ei0 (71)

3.2. Proposed Event-Triggered Distributed Adaptive Control Architecture

We now present the proposed event-triggered distributed adaptive control architecture for
modular systems, where each uncertain module can exchange its state information with its
interconnected neighboring modules.

Consider the uncertain dynamical module i given by:

Si : ẋi(t) = Aixi(t) + Bi
[
Λiusi(t) + ∆i (xi(t)) + δij(xsj(t))

]
, xi(0) = xi0 (72)

where ‖δij(xsj(t))‖ ≤ ∑i∼j QT
ijφij(xsj(t)) and xsj(t) ∈ Rnj . Using Assumptions 1, 3 and 6, Equation (72)

can be equivalently written as:

ẋi(t) =Arixi(t) + Brici(t) + BiΛi

[
usi(t) + WT

i σi
(

xi(t), xsi(t), ci(t), xsj(t)
)]

+ BiΛi(usi(t)− ui(t)) + BiK1i(xsi(t)− xi(t)) (73)

where σi
(

xi(t), xsi(t), ci(t), xsj(t)
)

,
[

βT
i (xi(t)) , xT

si(t) , cT
i (t) , FT

ij (xsj(t))
]T
∈ Rgi+ni+mi+(gi ·di),

and the distributed adaptive feedback control is given by:

Ci : ui(t) = −Ŵi(t)Tσi
(

xsi(t), ci(t), xsj(t)
)

(74)

where σi
(

xsi(t), ci(t), xsj(t)
)
,
[

βT
i (xsi(t)) , xT

si(t) , cT
i (t) , FT

ij (xsj(t))
]T
∈ Rgi+ni+mi+gi ·di , and Ŵi(t)

satisfies the weight update law:

˙̂Wi(t) = γiProjm
[
Ŵi(t) , σi

(
xsi(t), ci(t), xsj(t)

)
eT

si(t)PiBi

]
, Ŵi(0) = Ŵi0 (75)

Now, using Equation (74) in Equation (73) yields:

ẋi(t) =Arixi(t) + Brici(t)− BiΛiW̃T
i (t)σi

(
xsi(t), ci(t), xsj(t)

)
− BiΛigi(·)

+ BiΛi(usi(t)− ui(t)) + BiK1i(xsi(t)− xi(t)) (76)
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where gi(·) , WT
i
[
σi
(

xsi(t), ci(t), xsj(t)
)
− σi

(
xi(t), xsi(t), ci(t), xsj(t)

)]
, and using Equations (76)

and (6), we can write the module error dynamics as:

ėi(t) =Ariei(t)− BiΛiW̃T
i (t)σi

(
xsi(t), ci(t), xsj(t)

)
− BiΛigi(·) + BiΛi(usi(t)− ui(t))

+ BiK1i(xsi(t)− xi(t)) (77)

For organizational purposes, we now divide this section into four sections. Specifically, we analyze
the uniform ultimate boundedness of the resulting closed-loop dynamical system in Section 3.2.1,
compute the ultimate bound in Section 3.2.2, show that the proposed architecture does not yield
to a Zeno behavior in Section 3.2.3 and generalize the distributed event-triggered adaptive control
algorithm using the state emulator-based framework in Section 3.2.4.

3.2.1. Stability Analysis and Uniform Ultimate Boundedness

Theorem 2. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (72) subject to Assumptions 1, 3 and 6. Consider, in addition, the reference model given by
Equation (6) and the module feedback control law given by Equations (74) and (75). Moreover, let the data
transmission from the uncertain dynamical module to the local controller occur when E1i is true and the data
transmission from the controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then, the
closed-loop solution (ei(t), W̃i(t)) is uniformly ultimately bounded for all i = 1, 2, ..., N.

Proof. Since the data transmission from the uncertain dynamical module to the local controller
and from the local controller to the uncertain dynamical module occur when E1i and E2i ∨ E3i
are true, respectively, note that ‖xsi(t)− xi(t)‖ ≤ εyi and ‖usi(t)− ui(t)‖ ≤ εui hold. Consider the
Lyapunov-like function given by:

Vi(ei, W̃i) = eT
i Piei + γ−1

i tr
(
(W̃iΛ

1
2
i )

T(W̃iΛ
1
2
i )

)
(78)

Note that Vi(0, 0) = 0 and Vi(ei, W̃i) > 0 for all (ei, W̃i) 6= (0, 0). The time derivative of Equation (78)
is given by:

V̇i(ei(t), W̃i(t))

= 2eT
i (t)Pėi(t) + γ−1

i 2tr
(

W̃T
i (t)

˙̃Wi(t)Λi

)
≤ 2eT

i (t)Pi

(
Ariei(t)− BiΛiW̃T

i (t)σi
(
xsi(t), ci(t), xsj(t)

)
− BiΛigi(·) + BiΛi(usi(t)− ui(t))

+BiK1i(xsi(t)− xi(t))

)
+ 2tr

(
W̃T

i (t)Λiσi
(
xsi(t), ci(t), xsj(t)

)
eT

si(t)PiBi

)
≤ −eT

i (t)Riei(t)− 2eT
i (t)PiBiΛigi(·) + 2eT

i (t)PiBiΛi(usi(t)− ui(t)) + 2eT
i (t)PiBiK1i(xsi(t)− xi(t))

+2tr
(

W̃T
i (t)Λiσi

(
xsi(t), ci(t), xsj(t)

)
(xsi(t)− xi(t))TPiBi

)
≤ −λmin(Ri)‖ei(t)‖2 + 2‖ei(t)‖λmax(Pi)‖Bi‖F‖Λi‖F‖gi(·)‖+ 2‖ei(t)‖λmax(Pi)‖Bi‖F

·‖Λi‖Fεui + 2‖ei(t)‖λmax(Pi)‖Bi‖F‖K1i‖Fεxi + 2‖W̃i(t)‖F‖Λi‖F‖σi
(
xsi(t), ci(t), xsj(t)

)
‖ (79)

·εxiλmax(Pi)‖Bi‖F

where the same upper bound ‖gi(·)‖ has the same result of Equation (25). In addition, one can compute
an upper bound for ‖σi

(
xsi(t), ci(t), xsj(t)

)
‖ in Equation (79) as:
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‖σi
(

xsi(t), ci(t), xsj(t)
)
‖ ≤ ‖βi(xsi(t))‖+ ‖xsi(t)‖+ ‖ci(t)‖+ ‖Fij(xsj(t))‖
≤ Lβi‖xsi(t)‖+ ‖xsi(t)‖+ ‖ci(t)‖+ ∑

i∼j
‖φij(xj(t))‖

= (Lβi + 1)εxi + (Lβi + 1)‖ei(t)‖+ (Lβi + 1)x∗ri + ‖ci(t)‖

+ ∑
i∼j

Lφij

(
εxj + ‖ej(t)‖+ x∗rj

)
(80)

where ‖xri(t)‖ ≤ x∗ri and ‖xrj(t)‖ ≤ x∗rj. Then, using the bounds given by Equations (25) and (80) in
Equation (79) yields:

V̇i(ei(t), W̃i(t))

≤ −λmin(Ri)‖ei(t)‖2 + 2‖ei(t)‖λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2‖ei(t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui

+2‖ei(t)‖λmax(Pi)‖Bi‖F‖K1i‖Fεxi + 2‖W̃i(t)‖F‖Λi‖F

(
(Lβi + 1)εxi + (Lβi + 1)‖ei(t)‖

+(Lβi + 1)x∗ri + ‖ci(t)‖+ ∑
i∼j

Lφij
(
εxj + ‖ej(t)‖+ x∗rj

))
εxiλmax(Pi)‖Bi‖F

≤ −λmin(Ri)‖ei(t)‖2 +
(

2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+2λmax(Pi)‖Bi‖F‖K1i‖Fεxi + 2w̃∗i ‖Λi‖F(Lβi + 1)εxiλmax(Pi)‖Bi‖F

)
‖ei(t)‖

+2w̃∗i ‖Λi‖F

(
(Lβi + 1)εxi + (Lβi + 1)x∗ri + ‖ci(t)‖+ ∑

i∼j
Lφij

(
εxj + x∗rj

))
εxiλmax(Pi)‖Bi‖F

+2w̃∗i ‖Λi‖Fεxiλmax(Pi)‖Bi‖F ∑
i∼j

Lφij‖ej(t)‖

≤ −d1i‖ei(t)‖2 + d2i‖ei(t)‖+ d3i + fi ∑
i∼j

Lφij‖ej(t)‖ (81)

where d1i , λmin(Ri), d2i , 2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)‖Bi‖F‖K1i‖Fεxi

+2w̃∗i ‖Λi‖F(Lβi + 1)εxiλmax(Pi)‖Bi‖F, d3i , 2w̃∗i ‖Λi‖F

(
(Lβi + 1)εxi + (Lβi + 1)x∗ri + ‖ci(t)‖ +

∑i∼j Lφij
(
εxj + x∗rj

))
εxiλmax(Pi)‖Bi‖F and fi , 2w̃∗i ‖Λi‖Fεxiλmax(Pi)‖Bi‖F.

Introducing:

V(·) =
N

∑
i=1
Vi(ei(t), W̃i(t)) (82)

for the uncertain system S results in:

V̇(·) ≤
N

∑
i=1

[
− d1i‖ei(t)‖2 + d2i‖ei(t)‖+ fi ∑

i∼j
Lφij‖ej(t)‖+ d3i

]
=

N

∑
i=1

[
− d1i‖ei(t)‖2 +

(
d2i + ∑

i∼j
f jLφji︸ ︷︷ ︸

D2i

)
‖ei(t)‖+ d3i

]
(83)

where D1i > 0. Letting ea(t) ,
[
‖e1(t)‖, . . . , ‖eN(t)‖

]T, D1 , diag
([

d11, . . . , d1N
])

,
D2 , diag

([
D21, . . . , D2N

])
, and D3 , ∑N

i=1 d3i, then Equation (32) can equivalently be written as:
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V̇(·) ≤ −eT
a (t)D1ea(t) + D2ea(t) + D3

≤ −λmin(D1)‖ea(t)‖2 + λmax(D2)‖ea(t)‖+ D3 (84)

When ‖ea(t)‖ > ψ, this renders V̇(·) < 0, where ψ ,
λmax(D2)

2
√

λmin(D1)
+

√
λ2

max(D2)
4λmin(D1)

+D3
√

λmin(D1)
, and hence, ei(t) and

W̃i(t) are uniformly ultimate bounded for all i = 1, 2, ... , N.

3.2.2. Computation of the Ultimate Bound for System Performance Assessment

For revealing the effect of user-defined thresholds and the event-triggered output feedback
adaptive controller design parameters to the system performance, the next corollary presents a
computation of the ultimate bound.

Corollary 5. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (72) subject to Assumptions 1, 3 and 6. Consider, in addition, the reference model given by
Equation (6) and the module feedback control law given by Equations (74) and (75). Moreover, let the data
transmission from the uncertain dynamical module to the local controller occur when E1i is true and the
data transmission from the controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then,
the ultimate bound of the system error between the uncertain dynamical system and the reference model is
given by:

||ea(t)|| ≤ Φ̃λ
− 1

2
min(Pmin), t ≥ T (85)

where

Φ̃ ,
[
λmax(Pmax)ψ

2 + λmax(γa)λmax(Λa)‖W̃a(t)‖2] 1
2 (86)

Proof. The proof is similar to the proof of Corollary 1, and hence, omitted.

3.2.3. Computation of the Event-Triggered Inter-Sample Time Lower Bound

In this subsection, we show that the proposed event-triggered distributed adaptive control
architecture does not yield to a Zeno behavior, which implies that it does not require a continuous
two-way data exchange and reduces wireless network utilization. For this purpose, we use the same
mathematical notations introduced in Section 2.2.2 and make the following assumption.

Assumption 7. Each module Si holds the received triggered state information δij(xsj(t)) from its interconnected
neighboring modules Sj and sends this information to its local controller Ci when the condition E1i in
Equation (20) is violated.

Corollary 6. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (72) subject to Assumptions 1, 3, 6 and 7. Consider, in addition, the reference model given by
Equation (6) and the module feedback control law given by Equations (74) and (75). Moreover, let the data
transmission from the uncertain dynamical module to the local controller occur when E1i is true and the data
transmission from the controller to the uncertain dynamical system occur when E2i ∨ E3i is true. Then, there
exist positive scalars αxi ,

εxi
Φ1i

and αui ,
εui
Φ2i

, such that:

ski+1 − ski
> αxi, ∀ki ∈ N (87)

rki
qi+1 − rk

qi
> αui, ∀qi ∈

{
0, ..., mki

}
, ∀ki ∈ N (88)
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Proof. The proof is similar to the proof of Corollary 2, and hence, omitted.

Corollary 6 also shows that the inter-sample times for the module state vector and distributed
feedback control vector are bounded away from zero, and hence, the proposed event-triggered
distributed adaptive control approach does not yield to a Zeno behavior.

3.2.4. Generalizations to the Event-Triggered Distributed Adaptive Control with State Emulator

Similar to Section 2.2.4, consider the (modified) reference model, so-called the state emulator,
given by Equation (44) and the reference model error dynamics capturing the difference between
the ideal reference model Equation (6), and the state emulator-based (modified) reference model
Equation (44) is given by Equation (45). In addition, the (state emulator-based) system error dynamics
follow from Equations (76) and (44) as:

˙̃xi(t) = Ari x̃i(t)− BiΛiW̃T
i (t)σi

(
xsi(t), ci(t), xsj(t)

)
− BiΛigi(·)

+BiΛi(usi(t)− ui(t)) + (BiK1i − Li)(xsi(t)− xi(t))− Li x̃i(t), x̃i(0) = x̃i0 (89)

where the adaptive controller Equation (74) is used and the weight update law is given by:

˙̂Wi(t) = γiProjm
[
Ŵi(t) , σi

(
xsi(t), ci(t), xsj(t)

)
(xsi(t)− x̂i(t))TPiBi

]
, Ŵi(0) = Ŵi0 (90)

with Pi ∈ Rni×ni
+ ∩ Sni×ni being a solution to the Lyapunov Equation (10).

Corollary 7. Consider the uncertain dynamical system S consisting of N interconnected modules Si described
by Equation (72) subject to Assumptions 1, 3 and 6. Consider, in addition, the ideal reference model given
by Equation (6), the state emulator given by Equation (44) and the module feedback control law given by
Equations (74) and (90). Moreover, let the data transmission from the uncertain dynamical module to the local
controller occur when E1i is true and the data transmission from the controller to the uncertain dynamical
system occur when E2i ∨ E3i is true. Then, the closed-loop solution (x̃i(t), W̃i(t), êi(t)) is uniformly ultimately
bounded for all i = 1, 2, ..., N.

Proof. Consider the Lyapunov-like function given by:

Vi(x̃i, W̃i, êi) = x̃T
i Pi x̃i + γ−1

i tr(W̃iΛ
1
2
i )

T(W̃iΛ
1
2
i ) + 2li‖Li‖−1

F λmax(Pi)λmax(Ri)êT
i Pi êi (91)

Note that Vi(0, 0, 0) = 0 and Vi(x̃i, W̃i, êi) > 0 for all (x̃i, W̃i, êi) 6= (0, 0, 0). The time-derivative of
Equation (91) is given by:

V̇i(x̃i(t), W̃i(t), êi(t))

= 2x̃T
i (t)Pi ˙̃xi(t) + 2γ−1

i tr(W̃i(t)Λ
1
2
i )

T( ˙̃Wi(t)Λ
1
2
i ) + 4li‖Li‖−1

F λmax(Pi)λmin(Ri)êT
i Pi ˙̂ei(t)

≤ 2x̃T
i (t)Pi

[
Ari x̃i(t)− BiΛiW̃T

i (t)σi
(
xsi(t), ci(t), xsj(t)

)
− BiΛigi(·) + BiΛi

(
usi(t)− ui(t)

)
+(BiK1i − Li)(xsi(t)− xi(t))− Li x̃i(t)

]
+ 2trW̃T

i (t)σi
(
xsi(t), ci(t), xsj(t)

)
(xsi(t)− x̂i(t))TPiBiΛi

+4li‖Li‖−1
F λmax(Pi)λmin(Ri)êT

i (t)Pi
[
Ari êi(t) + Li x̃i(t)) + Li(xsi(t)− xi(t))

]
≤ −x̃T

i (t)Ri x̃i(t)− 2x̃T
i (t)PiBiΛigi(·) + 2x̃T

i (t)PiBiΛi
(
usi(t)− ui(t)

)
+ 2x̃T

i (t)Pi(BiK1i − Li)

·(xsi(t)− xi(t))− 2x̃T
i (t)PiLi x̃i(t) + 2trW̃i(t)Tσi

(
xsi(t), ci(t), xsj(t)

)
(xsi(t)− xi(t))TPiBiΛi

−2li‖Li‖−1
F λmax(Pi)λmin(Ri)êT

i (t)Ri êi(t) + 4li‖Li‖−1
F λmax(Pi)λmin(Ri)êT

i (t)PiLi(xsi(t)− xi(t))

+4li‖Li‖−1
F λmax(Pi)λmin(Ri)êT

i (t)PiLi x̃i(t)
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≤ −λmin(Ri)‖x̃i(t)‖2 + 2λmax(Pi)‖Bi‖F‖Λi‖F‖gi(·)‖‖x̃i(t)‖+ 2‖x̃i(t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui

+2‖x̃i(t)‖λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
εxi − 2λmax(Pi)‖Li‖‖x̃i(t)‖2 + 2‖W̃i(t)‖F

·‖σi
(

xsi(t), ci(t), xsj(t)
)
‖λmax(Pi)‖Bi‖F‖Λi‖Fεxi − 2li‖Li‖−1

F λ−1
max(Pi)λ

2
min(Ri)‖êi(t)‖2

+4liλmin(Ri)εxi‖êi(t)‖+ 4liλmin(Ri)‖êi(t)‖‖x̃i(t)‖ (92)

Now, using Young’s inequality [46] for the last term in Equation (92), with µi ∈ R+, yields:

V̇i(x̃i(t), W̃i(t), êi(t))

≤ −λmin(Ri)‖x̃i(t)‖2 + 2λmax(Pi)‖Bi‖F‖Λi‖F‖gi(·)‖‖x̃i(t)‖+ 2‖x̃i(t)‖λmax(Pi)‖Bi‖F‖Λi‖Fεui

+ 2‖x̃i(t)‖λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
εxi − 2λmax(Pi)‖Li‖‖x̃i(t)‖2 + 2‖W̃i(t)‖F

· ‖σi
(

xsi(t), ci(t), xsj(t)
)
‖λmax(Pi)‖Bi‖F‖Λi‖Fεxi − 2li‖Li‖−1

F λ−1
max(Pi)λ

2
min(Ri)‖êi(t)‖2

+ 4liλmin(Ri)εxi‖êi(t)‖+ 2liµiλmin(Ri)‖êi(t)‖2 + 2
li
µi

λmin(Ri)‖x̃i(t)‖2 (93)

Using Equations (25) and (79), Equation (93) can be written by:

V̇i(x̃i(t), W̃i(t), êi(t))

≤ −
[

λmin(Ri)− 2λmax(Pi)‖Li‖F − 2
li
µi

λmin(Ri)

]
‖x̃i(t)‖2 − 2

[
li‖Li‖−1

F λ−1
max(Pi)λ

2
min(Ri)

−liµiλmin(Ri)
]
‖êi(t)‖2 +

[
2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+2λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
εxi

]
‖x̃i(t)‖+ 4liλmin(Ri)εxi‖êi(t)‖

+2w̃∗i
[
(Lβi + 1)εxi + (Lβi + 1)‖x̃i(t) + êi(t)‖+ (Lβi + 1)x∗ri + ‖ci(t)‖+ ∑

i∼j
Lφij

(
εxj

+‖x̃j(t) + êj(t)‖+ x∗rj
)]

λmax(Pi)‖Bi‖F‖Λi‖Fεxi

≤ −
[

λmin(Ri)− 2λmax(Pi)‖Li‖F − 2
li
µi

λmin(Ri)

]
‖x̃i(t)‖2 − 2

[
li‖Li‖−1

F λ−1
max(Pi)λ

2
min(Ri)

−liµiλmin(Ri)
]
‖êi(t)‖2 +

[
2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui

+2λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
εxi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

]
‖x̃i(t)‖

+
[
4liλmin(Ri)εxi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

]
‖êi(t)‖

+2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

(
(Lβi + 1)(εxi + x∗ri) + ‖ci(t)‖+ ∑

i∼j
Lφij

(
εxj + x∗rj

))
+2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi ∑

i∼j
Lφij

(
‖x̃j(t)‖+ ‖êj(t)‖

)
(94)

then setting µi = liλmin(Ri)λ
−1
max(Pi)‖Li‖−1

F in Equation (94) yields:

V̇i(x̃i(t), W̃i(t), êi(t))

≤ −λmin(Ri)‖x̃i(t)‖2 − 2li‖Li‖−1
F λ−1

max(Pi)λmin(Ri)
[
λmin(Ri)− li

]
‖êi(t)‖2

+
[
2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi + 2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)

(
‖BiK1i‖F + ‖Li‖F

)
εxi

+ 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

]
‖x̃i(t)‖+

[
4liλmin(Ri)εxi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

]
‖êi(t)‖

+ 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

(
(Lβi + 1)(εxi + x∗ri) + ‖ci(t)‖+ ∑

i∼j
Lφij

(
εxj + x∗rj

))
+ 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi ∑

i∼j
Lφij

(
‖x̃j(t)‖+ ‖êj(t)‖

)
(95)
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It then follows that Equation (95) can be given by:

V̇i(x̃i(t), W̃i(t), êi(t))

≤ −d1i‖x̃i(t)‖2 − d2i‖êi(t)‖2 + d3i‖x̃i(t)‖+ d4i‖êi(t)‖+ d5i + fi ∑
i∼j

Lφij‖x̃j(t)‖

+ fi ∑
i∼j

Lφij‖êj(t)‖ (96)

where d1i , λmin(Ri), d2i , 2li‖Li‖−1
F λ−1

max(Pi)λmin(Ri)
[
λmin(Ri)− li

]
, d3i , 2λmax(Pi)‖Bi‖F‖Λi‖FKgiεxi

+2λmax(Pi)‖Bi‖F‖Λi‖Fεui + 2λmax(Pi)
(
‖BiK1i‖F + ‖Li‖F

)
εxi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi, d4i ,

4liλmin(Ri) · εxi + 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi, d5i , 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi

(
(Lβi + 1)(εxi + x∗ri) +

‖ci(t)‖ + ∑i∼j Lφij
(
εxj + x∗rj

))
and fi , 2w̃∗i λmax(Pi)‖Bi‖F‖Λi‖Fεxi. To ensure that d2i is positive

definite, we consider li = θiλmin(Ri) and θi ∈ (0, 1).
Introducing:

V(·) =
N

∑
i=1
Vi(x̃i(t), W̃i(t)êi(t)), (97)

for the uncertain system S results in:

V̇i(·) ≤
N

∑
i=1

[
− d1i‖x̃i(t)‖2 − d2i‖êi(t)‖2 + d3i‖x̃i(t)‖+ d4i‖êi(t)‖+ d5i + fi ∑

i∼j
Lφij‖x̃j(t)‖

+ fi ∑
i∼j

Lφij‖êj(t)‖
]

=
N

∑
i=1

[
− d1i‖x̃i(t)‖2 − d2i‖êi(t)‖2 +

(
d3i + ∑

i∼j
f jLφji︸ ︷︷ ︸

D3i

)
‖x̃i(t)‖+

(
d4i + ∑

i∼j
f jLφji︸ ︷︷ ︸

D4i

)
‖êi(t)‖+ d5i

]

(98)

Letting x̃a(t) ,
[
‖x̃1(t)‖, . . . , ‖x̃N(t)‖

]T, êa(t) ,
[
‖ê1(t)‖, . . . , ‖êN(t)‖

]T, D1 , diag
([

d11, . . . , d1N
])

, D2

, diag
([

d21, . . . , d2N
])

, D3 , diag
([

D31, . . . , D3N
])

, D4 , diag
([

D41, . . . , D4N
])

, and D5 , ∑N
i=1 d5i,

then Equation (98) can equivalently be written as:

V̇(·) ≤ −x̃T
a (t)D1 x̃a(t)− êT

a (t)D2 êa(t) + D3 x̃a(t) + D4ea(t) + D5

≤ −λmin(D1)‖x̃a(t)‖2 − λmin(D2)‖êa(t)‖2 + λmax(D3)‖x̃a(t)‖+ λmax(D4)‖êa(t)‖+ D5 (99)

Either ‖x̃a(t)‖ > ψ1 or ‖êa(t)‖ > ψ2, renders V̇(·) < 0, where ψ1 ,

λmax(D3)
2
√

λmin(D1)
+

√
λ2

max(D3)
4λmin(D1)

+
λ2

max(D4)
4λmin(D2)

+D5
√

λmin(D1)

and ψ2 ,

λmax(D4)
2
√

λmin(D2)
+

√
λ2

max(D3)
4λmin(D1)

+
λ2

max(D4)
4λmin(D2)

+D5
√

λmin(D2)
, and hence, x̃i(t), êi(t), and W̃i(t) are uniformly ultimate

bounded for all i = 1, 2, ... , N.

Remark 4. To show that ei(t) is bounded for all i = 1, 2, . . . , N under the condition of Corollary 7, we can
follow Corollary 4 to show the boundedness of ei(t) for all i = 1, . . . , N using:

‖ei(t)‖ ≤ ‖x̃i(t)‖+ ‖êi(t)‖ (100)



Sensors 2016, 16, 1297 24 of 31

Furthermore, in order to obtain the closed-loop system error ultimate bound value
for Equation (100) and the no Zeno characterization proof, we can follow the same steps highlighted in
Corollaries 5 and 6, respectively.

4. Illustrative Numerical Example

In this section, the efficacy of the proposed event-triggered decentralized adaptive control
approach is demonstrated in an illustrative numerical example. For this purpose, we consider the
uncertain dynamical system, which consists of five masses connected serially by springs and dampers
as depicted in Figure 2. We use the following equations of motion for the i-th mass:[

ẋ1(t)
ẍ1(t)

]
=

[
0 1
−k1
m1

−b1
m1

] [
x1(t)
ẋ1(t)

]
+

[
0
1

m1

]
[Λ1u1(t) + ∆1 (x1(t)) + δ12(x2(t))] (101)[

ẋi(t)
ẍi(t)

]
=

[
0 1

−(ki−1+ki)
mi

−(bi−1+bi)
mi

] [
xi(t)
ẋi(t)

]
+

[
0
1

mi

] [
Λiui(t) + ∆i (xi(t)) + δij(xj(t))

]
,

i = {2, 3, 4} (102)[
ẋ5(t)
ẍ5(t)

]
=

[
0 1
−k4
m5

−b4
m5

] [
x5(t)
ẋ5(t)

]
+

[
0
1

m5

]
[Λ5ui(t) + ∆5 (x5(t)) + δ54(x4(t))] (103)

where mi = 1Kg, ki = 1.5 N·m−1, bi = 0.4 N·sec·m−1, Λi = 0.7, Woi = [3 , 1]T, and we set the basis
function as βi(xi(t)) = xi(t). In addition, δ12(x2(t)), δij(xj(t)) and δ54(x4(t)), which represent the
effect of the system interconnections, are given by:

δ12(x2(t)) =
[

k1 b1

] [ x2(t)
ẋ2(t)

]
(104)

δij(xj(t)) =
[

k j=i−1 bj=i−1

] [ xj=i−1(t)
ẋj=i−1(t)

]
+
[

k j=i bj=i

] [ xj=i+1(t)
ẋj=i+1(t)

]
,

i = {2, 3, 4} (105)

δ54(x4(t))) =
[

k4 b4

] [ x4(t)
ẋ4(t)

]
(106)

u1(t)

b1

k1

x1(t)

m1

u2(t)

b2

k2

x2(t)

m2

u3(t)

b3

k3

x3(t)

m3

u4(t)

b4

k4

x4(t)

m4

u5(t)

x5(t)

m5

Figure 2. Connected mass-damper-spring system.

The control objective of each module is to enforce xi(t) to track a filtered square reference
input ci(t) under the effect of uncertainties and disturbances with reduced communication effort by
event-triggering architecture. For our example, we choose a second-order ideal reference model that
has a natural frequency of 2 rad/s and a damping ratio of 0.707 for all Si, i = 1, . . . , 5. In addition,
we use a state emulator gain Li = 9I2 and set all initial conditions to zero for all Si, i = 1, . . . , 5.

For the event-triggered decentralized model reference adaptive control (which is equivalent to
Li = 0), we set Qi = I2 in order to compute Pi in Equation (10). The condition in Assumption 4
holds when αij ≤ 0.26 for i = {1, 5} and αij ≤ 0.13 for i = {2, 3, 4}. In this case, Assumption 2 is
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satisfied for the coupling terms given in Equations (104)–(106). For the purpose of event-triggered state
emulator-based decentralized adaptive control, we set Ri = 3 and Qi = I2×2 in order to compute Pi in
Equation (48). For li = 0.001 and Q̃0i = 250I2, the condition in Assumption 5 holds when αij ≤ 4.2
for i = {1, 5} and αij ≤ 2.1 for i = {2, 3, 4}. In addition, Assumption 2 is satisfied for coupling terms
given by Equations (104)–(106).

For the proposed event-triggered distributed adaptive control, we set Qi = I2 in order to compute
Pi in Equation (10). Note that there are no fundamental stability conditions for the case of distributed
adaptive control. Lastly, for the event-triggering thresholds, we choose εxi = 0.2 and εui = 0.2 for
i = {1, 3, 5} and εxi = 0.07 and εui = 0.07 for i = {2, 4}.

For the proposed event-triggered decentralized adaptive control design of Theorem 1 and
Corollary 1, Figures 3–5 represent the results for various γi and Li. In particular, we first set γi = 50
and Li = 0 in Figure 3, which results in a control response with high-frequency oscillations. In order to
suppress these undesired oscillations, we set Li = 9I2 as seen in Figure 4. In this figure, even though
such oscillations are reduced, the command tracking performance becomes worse as we increase Li
compared to the response in Figure 3. In addition to increasing Li, we also increase γi in Figure 5,
to improve command tracking performance without causing high-frequency oscillations. In general,
if one picks Li to be greater than nine, then it may also be necessary to increase γi further to obtain
a similar closed-loop system performance. It should also be mentioned that choosing Li and γi to
produce both a control response without any significant high-frequency oscillations, and a small
uniform ultimate bound can be cast as an optimization problem, as well.

Figures 6–8 represent the results of the proposed event-triggered distributed adaptive control of
Theorem 2 and Corollary 7 for the same γi and Li values. Specifically, we see high frequency content
in the control signal in Figure 6 when γi = 50 and Li = 0, which is mitigated by increasing the state
emulator gain to Li = 9I2, as seen in Figure 7. In order to enhance the command tracking, which is
degraded by increasing the state emulator gain, we increase γi as seen in Figure 8.
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Figure 3. Command following performance for the proposed event-triggered decentralized adaptive
control approach with γi = 50 and Li = 0.
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Figure 4. Command following performance for the proposed event-triggered decentralized adaptive
control approach with γi = 50 and Li = 9.
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Figure 5. Command following performance for the proposed event-triggered decentralized adaptive
control approach with γi = 200 and Li = 9.
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Figure 6. Command following performance for the proposed event-triggered distributed adaptive
control approach with γi = 50 and Li = 0.
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Figure 7. Command following performance for the proposed event-triggered distributed adaptive
control approach with γi = 50 and Li = 9.
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Figure 8. Command following performance for the proposed event-triggered distributed adaptive
control approach with γi = 200 and Li = 9.

From these results, we observe from the decentralized adaptive control case that the state
emulator-based approach not only gives stringent performance without causing high frequencies in the
controller response, but also tolerates the interconnection uncertainties of the modules. In addition, the
performance of the distributed adaptive controller is better than the decentralized adaptive controller
with the corresponding design parameter setting. The total number of the state and control event
triggers of the whole system for the cases in Figures 3–8 is given in Figure 9A,B, respectively. Figure 9
shows the drastic decrement of the triggering number using the event-triggering approach and also
the further triggering number decrement due to utilizing the state emulator-based approach.
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Figure 9. Number of triggers with respect to the controller design parameters.

5. Conclusions

The design and analysis of event-triggered decentralized and distributed adaptive control
architectures for uncertain networked large-scale modular systems were presented. For the
decentralized case, it was shown in Section 2 that the proposed event-triggered adaptive control
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architecture guarantees system stability and performance with no Zeno behavior under some structural
conditions stated in Assumptions 4 and 5 that depend on the parameters of the large-scale modular
systems and the proposed architecture. For the distributed case, it was shown in Section 3 that the
proposed event-triggered adaptive control architecture guarantees the same system stability and
performance with no Zeno behavior without such structural conditions under the assumption that
physically-interconnected modules can locally communicate with each other for exchanging their
state information. In addition to the presented theoretical findings, the efficacy of the proposed
event-triggered decentralized and distributed adaptive control approaches is demonstrated on an
illustrative numerical example in Section 4, where significant reduction on the overall communication
cost was obtained for large-large modular systems in the presence of system uncertainties resulting
from modeling and degraded modes of operation of the modules and their interconnections between
each other. For the future work, sampling, data transmission and computation delays will be
considered along with the proposed results of this paper, since they also play an important role
in the performance of networked control systems. Furthermore, we will also consider the cases when a
set of diagonal elements of the control effectiveness matrix is zero and generalize the results of this
paper to cover these so-called loss of control cases.
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