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Abstract: Hyperspectral imaging (HSI) is increasingly gaining acceptance in the medical field.
Up until now, HSI has been used in conjunction with rigid endoscopy to detect cancer in vivo.
The logical next step is to pair HSI with flexible endoscopy, since it improves access to hard-to-reach
areas. While the flexible endoscope’s fiber optic cables provide the advantage of flexibility, they
also introduce an interfering honeycomb-like pattern onto images. Due to the substantial impact
this pattern has on locating cancerous tissue, it must be removed before the HS data can be further
processed. Thereby, the loss of information is to minimize avoiding the suppression of small-area
variations of pixel values. We have developed a system that uses flexible endoscopy to record HS
cubes of the larynx and designed a special filtering technique to remove the honeycomb-like pattern
with minimal loss of information. We have confirmed its feasibility by comparing it to conventional
filtering techniques using an objective metric and by applying unsupervised and supervised
classifications to raw and pre-processed HS cubes. Compared to conventional techniques, our
method successfully removes the honeycomb-like pattern and considerably improves classification
performance, while preserving image details.

Keywords: flexible endoscopy; honeycomb-like pattern removal; laryngeal cancer detection;
classification

1. Introduction

Squamous cell carcinoma is the most common head and neck cancer and the cause of
approximately 350,000 deaths per annum worldwide [1]. Early detection of the tumor greatly increases
the chance of a successful treatment. Conventional white light endoscopy often leads to misdetection
of malign lesions at an early stage. As a result, a great deal of effort has been invested into developing
new examination methods, such as narrow band imaging (NBI) [2,3]. NBI combines two specific
wavelengths into a single pseudo-color image to visualize the differences in epithelium quality and
changes in mucosal vascularization. Similar to NBI, hyperspectral imaging (HSI) could be the next
powerful optical technique in cancer detection. HSI utilizes a wider range of the electromagnetic
spectrum than NBI, providing high-resolution spectral and spatial information. A stack of images
depicting the same area over a specified interval of wavelengths forms the so-called hyperspectral
(HS) cube. Its pixels provide the spectral signature of the underlying tissue. Since disease-related
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alterations in tissue physiology and morphology affect the tissue’s reflectance properties, it is possible
to identify and classify different biological tissues through their characteristic signatures. HSI aids in
gathering this spectral information that is relevant to diagnoses around a wide area of the underlying
tissue. HSI is gradually gaining wider acceptance in the field of medicine. Various studies have
already exhibited its value, for example, the characterization of burns [4], estimating skin thickness [5],
intraoperative visualization of cerebral oxygenation [6] and diabetic foot ulcers [7]. In cancerous tissue
detection, HSI has already been applied both in and ex vivo [8–14]. However, previously published
studies have only used an HS system in combination with a rigid endoscope. As a logical next step,
HSI should be paired with flexible endoscopy to improve access to hard-to-reach areas. Pairing the
HS system with the flexible endoscope presents a unique combination of optical devices that has not
previously been used. A flexible endoscope consists of thousands of fiber optic cables, which provide
the advantage of flexibility but simultaneously introduce an interfering honeycomb-like pattern onto
the images. Due to the strong impact that these patterns have on classification performance and
other image processing methods, it is imperative to correct them before digital image classification
approaches can properly detect cancer. To identify even small variations and changes of the tissue,
high image resolution is necessary. Therefore, it is crucial that the honeycomb-like pattern must be
removed accurately, but image details must be preserved.

Previous studies on honeycomb-like pattern removal from endoscopic images have either filtered
in the spatial [15] or Fourier domain. Spatial domain (SD) filtering reduces the image resolution,
since only low frequencies are passed, while high frequencies are removed. For Fourier domain
(FD) filtering, [16] designed circular and star-shaped masks that let only low frequencies pass, but
which also clearly reduce the resolution of an image. Other studies have exploited the fact that, in
the FD, periodic and quasi-periodic noise appear as regularly distributed areas of high amplitudes
with a single peak in its center. Thus, only small local image areas are affected by the noise as
opposed to the SD, where the whole image is affected. When the noise-affected frequencies are filtered
exclusively, most high and low frequencies remain unaffected, which reduces information loss. [17]
performed an auto-search algorithm to identify the peaks and designed a mask of notch-reject filters of
pre-defined sizes; and [18] designed windowed Gaussian filters of pre-defined sizes centered at the
peaks. Both studies do not take into account the varying spatial extension of the affected components.
However, in order to sufficiently remove the honeycomb-like pattern while simultaneously minimizing
the loss of information in an image, the size of the filter must be individually determined for each peak.
The main goal of this study is to introduce a filter technique that minimizes the loss of information
as much as possible by simultaneously suppressing the honeycomb artifact in HS images for an
improvement of laryngeal cancer detection. For this purpose, we designed a method to detect the
peaks and identify the spatial extent of the noise-affected frequencies to determine the optimal filter
size. We tested various designs, such as Gaussian and ideal, to find the most appropriate filter. We
compare our method of pattern removal to the widely used method of Gaussian filtering in the SD
and star-shaped filtering proposed by [16] using HS data from a United States Air Force (USAF) test
chart. Thereafter, we applied unsupervised and supervised classifications with a Gaussian mixture
model (GMM) and similarity measure to laryngeal HS cubes to document the impact of the new
pre-processing procedure on the hyperspectral classification results.

In addition to the honeycomb-like pattern, HS data collected with a flexible endoscope faces
the same problems as HS data recorded by rigid endoscopy. These issues include false registration
from one image to the next within the HS cube due to the patient’s heartbeat, white noise in the
lower wavelength spectrum and specular reflections (SR). Image contaminations can, however, be
successfully corrected by a pre-processor that was recently developed [19]. The honeycomb-like
pattern removal technique is included in the pre-processor to make it applicable to HS imaging with a
flexible endoscope.

This paper is organized as follows: Section 2 outlines the details of the instrumentation and
patients. Section 3 describes the new filtering method and, in addition, outlines further pre-processing
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steps and the classification settings. Section 4 describes the results of the pattern removal method as
well as of the classification. Our conclusion is then presented in the final section.

2. Instrumentation and Patients

For hyperspectral imaging, a Polychrome V monochromator (TILL Photonics GmbH, Graefelfing,
Germany) was triggered synchronously with a monochromatic high-resolution CCD-camera (Axiocam
MRm, Carl Zeiss MicroImaging GmbH, Oberkochen, Germany). A flexible endoscope was attached
to the monochromator and the camera using a fiber optic light cable. Both devices were controlled
using commercially available software (AxioVision 4.8, Carl Zeiss MicroImaging GmbH). To reduce
movement artifacts, the endoscope was held in place by an endoscope holding system. The system
generates HS cubes between 390 and 680 nm in 30 iterative steps with a 10 nm interval. HS images
measure 1388 × 1040 pixels with a bit depth of 12. The flexible endoscope is made of thousands
of hexagonally arranged fibers. Each optical fiber consists of a core and a cladding, which have a
higher and a lower refractive index, respectively, and generates total reflection at the core-cladding
interface. Light is transmitted from where it enters the fiber to the other end by following the bends
through the core without a loss in intensity. The image shows honeycomb-like structures, consisting
of bright, circular-shaped patterns surrounded by dark rings analogous to the arrangement of the
fibers and the relation of the core and cladding (Figure 1). Patients undergoing routine endoscopy for
diagnostic purposes were imaged using the method described above. All experimental procedures
were approved by the Ethical Committee of the Rheinische Friedrich–Wilhelms-University Bonn and
informed consent was obtained from every participating patient. This study considers two HS cubes
(hereinafter referred to as #caseA and #caseB) from patients with histopathological diagnoses of head
and neck squamous cell carcinoma.

Figure 1. Hyperspectral (HS) images of the larynx of one example case (#caseA) at wavelength
(a) 510 nm and (b) 610 nm showing the honeycomb-like pattern as a result of the hexagonally arranged
fiber cables in the flexible endoscope.

3. Methods

This section provides a detailed description of the method for removing the honeycomb-like
pattern as well as additional pre-processing steps and the classification methods. Removing the
honeycomb-like pattern prior to processing the image further (such as image registration) is important,
since the pattern is superimposed over the other data structures. For additional image improvement,
the pre-processor developed by [19] was applied to the HS data to correct the other data interferences
mentioned in the introduction. In addition, we applied a normalized ratio index (NRI) to effectively
reduce the impact of non-uniform illumination conditions in the HS cubes. Finally, unsupervised and
supervised classifications were applied to the exemplary cases.
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3.1. Removal of Honeycomb-Like Pattern in the Fourier Domain

Periodic and quasi-periodic noise appear as concentric bursts of energy at the position
corresponding to the frequencies of periodic interference in the FD [20]. Frequencies corresponding to
noise are recognizable by higher amplitudes than surrounding components and a high center point,
the so-called peak. Filtering the noise-affected frequencies removes the periodic and quasi-periodic
noise in the SD.

The honeycomb-like pattern produces six radial, symmetrically arranged and clearly visible peaks
in the lower frequencies around the direct current (DC) (Figure 2). Depending on the individual image
characteristics, less visible and more difficult to detect peaks are located in the higher frequencies.
The noise-affected frequency components vary in location, shape and extension within and between the
HS cubes. However, they must be detected and removed to successfully eliminate the honeycomb-like
pattern. To avoid an unnecessary loss of information due to filtering, selective filters were specifically
designed for each peak. According to the approach described by [18], filtering is done in windows of
size n × n pixels, of which the peak is the central point. To adjust the filter to the size of the affected
components, information about their location and extension is needed. In order to consider these
points, we developed a method for selective filtering with an optimal filter size. The proposed method
includes the following steps: (i) identification of the peaks; (ii) identification of affected components to
derive filter size and (iii) filtering in the FD.

Figure 2. (a) Fourier spectrum of the HS image at wavelength 510 nm corresponding to Figure 1a.
The affected components are marked by red circles for the zoomed area; and (b) Fourier spectrum
presented as a 3D graphic.

The FD image was computed from the original SD image using a 2D fast Fourier transform (FFT)
algorithm. The procedure is explained in detail in the following sections and depicted in Figure 3.

3.1.1. Identification of Peaks

The challenging task of peak detection was solved in the following manner. Local maxima were
identified on the Fourier spectrum by comparing each pixel to its neighboring pixels using a moving
window of 3 × 3 pixels. If a pixel has a higher value than its neighbors, it is defined as a local maximum.
To derive peaks from the local maxima, the latter were used as seed points for an eight-connected
flood-fill algorithm. Starting with the local maximum of the highest amplitude, flood filling was
successively applied to each local maximum in descending order of amplitude. A pixel was included
in the flooded region if its value was less than or equal to the value of the local maximum and greater
than or equal to the local maximum minus an empirically determined value t. A local maximum was
not considered as a global maximum if a pixel was reached that was already filled during flooding
of another local maximum. Another exclusion criterion for a particular local maximum was the
hit of a pixel with an amplitude higher than that local maximum. This approach adapts the global
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maxima detection algorithm of the open source software ImageJ (1.49) [21]. The resulting peak list was
cleaned due to falsely identified peaks at back-to-back periods, where the amplitude is relatively high
compared to the overall Fourier spectrum. Filtering the corresponding components would have led to
image blurring, so it was important to exclude them from further steps. The result is a list of k peaks.

Figure 3. Flow chart of the proposed method for honeycomb-like pattern removal.

3.1.2. Identification of Affected Components to Derive Filter Size

To derive an individual size n for each filter window, an eight-connected flood-fill algorithm
was adapted to identify the extent of the affected components corresponding to each peak. The
algorithm incorporates new pixels into a region if their value is less than the value of the current
pixel. Peaks were used as starting points for flood filling and the resulting connected region marks the
affected neighborhood. Next, the highest distance d between the peak and a pixel within the flooded
region was identified. This distance was used to define the area Duv

n of size n around the peak Puv
k

that should be filtered. The size of the n × n pixel window is defined by n = 2da + 1, where a is an
experimentally determined scaling factor.

3.1.3. Filtering in the Fourier Domain

Affected components were filtered using the windowed filtering approach [18]. The frequency
area Duv

n around Puv
k is filtered by a windowed filter as follows:

D̃uv
n = Duv

n ◦ Gn, (1)

wherein D̃uv
n is the corresponding frequency area after filtering and Gn is the filter matrix of n× n pixels.

We tested several different filtering techniques (Figure 4), including Gaussian (2),
super-Gaussian (3), Hanning (4), Bartlett (5), ideal (6) and smoothed ideal [22]:
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Gn(x, y) = 1 − e
−r2

xy
2σ2 , σ = 0.3, (2)

Gn(x, y) = 1 − e
−rb

xy
κ , κ = 0.3, b = 6.0, (3)

Gn(x, y) =

{
1 − 0.5[cos(πrxy) + 1] if 0 ≤ rxy ≤ 1,

1 else
(4)

Gn(x, y) =

{
rxy if 0 ≤ rxy ≤ 1,

1 else
(5)

Gn(x, y) =

{
0 if 0 ≤ rxy ≤ 1,

1 else
(6)

where x and y are the coordinates within the filter window and rxy =

√
( x−(n−1)/2

(n−1)/2 )2 + ( y−(n−1)/2
(n−1)/2 )2.

We compared these filter designs in order to identify the most appropriate approach for removing the
honeycomb-like pattern while preserving image details. The smoothed ideal filter was computed by
the convolution of the ideal filter using a Gaussian kernel of 9 × 9 pixels. In addition, our method was
compared to Gaussian filtering with various kernel sizes in the SD and Gaussian smoothed star-shaped
filtering as described by [16]. This is an ideal low-pass filter in the form of a star, with convex corners
located between the six radial symmetric peaks around the DC and smoothed by Gaussian filtering
(with a kernel size of 9 × 9 pixels).

To quantify the performance of the filter techniques, quality metrics were computed on the basis
of the USAF test chart. This is a resolution test pattern that consists of several groups of different-sized
bars and was originally developed by the USAF to test the resolution of optical imaging systems.
The HS cube of the USAF test chart was recorded under exclusion of external light sources to emulate
the light conditions of the larynx. The comparison was made using the quality metrics proposed
by [16], variance-based smoothness s and Rayleigh-based line separation criteria r. The combination
of both is given by the weighted quality measure q = γ ∗ s + (1 − γ) ∗ r, where γ is the factor that
weights the importance of s compared to r. The quality metrics ranges between 0 and 1. As the value of
q increases, the better the performance is in terms of γ. The metric takes into account both the positive
effects of removing the honeycomb-like pattern as well as the negative impact of blurring. s measures
how well the honeycomb-like pattern is removed by comparing the average standard deviation of a
homogeneous area of the filtered image to the unfiltered image, while r measures the detail-preserving
quality of the filter, which can be derived from the filtered image of a USAF test chart using an image
area along line patterns. The less those line patterns are blurred, the higher the detail resolution of the
filtered image is.
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Figure 4. Various filters used for performance test.

3.2. Further Pre-Processing and Hyperspectral Classification

3.2.1. Application of the Image Pre-Processor

In addition to the honeycomb-like pattern, the HS data exhibit other complications, which were
corrected by the pre-processor proposed by [19]. The pre-processor was designed for HS recordings
made by a rigid endoscope. We adapted the individual modules of the pre-processor, image registration,
image denoising and detection of SR, for flexible endoscopy. Image registration was used to reduce
the shift of individual images within the HS cube caused by sequential scanning with the camera
while the patients’ tissue moves due to their heartbeat. Image denoising was applied to reduce the
white noise in the lower wavelengths. The specular reflection method identifies and removes image
areas with SR from the HS data to avoid impacting the classification. However, the combination
of the honeycomb-like pattern and the strong white noise in the lower wavelengths reduces the
signal-to-noise ratio in the first two bands to an extent that made satisfactory correction impossible.
Hence, these two bands were excluded from further processing steps.

3.2.2. Illumination

The combination of the anatomy of the larynx and the geometry of light source results in various
intensities of light reaching the mucosa surface. If a spectrally homogeneous object is variably
illuminated, its spectral signatures are linearly scaled variations of one another. Although the shape of
the spectral signature remains the same regardless of the illumination conditions, there is a significant
impact on classification performance. To effectively reduce image artifacts caused by non-uniform
illumination of the scene, NRI [23] Equation (7) was calculated from all possible two-band combinations
of HS cubes between 410 and 680 nm:

nri(λ1,λ2) =
Iλ1 − Iλ2

Iλ1 + Iλ2
, λ1 > λ2, (7)

where λ1 and λ2 are spectral bands of the HS cube.

3.2.3. Hyperspectral Classification

Unsupervised classification with GMM and supervised classification with spectral similarity
measure were applied to the raw and pre-processed HS data to test the performance of the introduced



Sensors 2016, 16, 1288 8 of 14

filter technique in terms of HS classification. We compared our method with the super-Gaussian filter,
SD-Gaussian filter with a kernel size of 17 × 17 pixels and star-shaped filter.

The GMM is an established unsupervised classification method in HS imaging, wherein each
cluster corresponds to a Gaussian distribution. The GMM is a parametric probability density function
defined by

p(x) =
k

∑
k=1

αk N(X, µk, ∑
k
), (8)

wherein X denotes the feature vector and k is the number of mixture components, namely, the number
of clusters. αk,µk,∑k are the mixing weights, mean vector and covariance matrix of the kth component,
which is expressed by N(X, µk, ∑k). The maximum likelihood estimates of these unknown parameters
were found by the expectation-maximization (EM) algorithm proposed by [24]. EM iterations stop
once a pre-defined convergence threshold is reached. GMM with full covariance matrices was fitted
on the NRI spectra extracted from the raw and pre-processed HS cube. SR were detected from the
pre-processed HS cube and excluded from the unsupervised classification. GMM was performed for
10 clusters.

Supervised classification was used to visualize the effect of filtering on the information content
of HS images. Therefore, a spectral similarity measure was used to detect the cancerous tissue of
#caseA using the mean NRI spectrum of the cancerous tissue of the second case (#caseB). The mean
NRI spectrum was calculated from 100 randomly selected pixels within the marked area of cancerous
tissue. We used the Pearson’s correlation coefficient as a similarity measure, since it is responsive to the
spectral shape but not to changes in brightness. The correlation coefficient ranges between −1 and 1,
negative and positive correlation, respectively; 0 indicates no relationship between spectra.

4. Results and Discussion

The proposed method for removal of the honeycomb-like pattern was tested for various filters
and compared to other methods. The USAF test chart was used to evaluate the method’s efficacy in
removing the desired pattern while simultaneously preserving image details and compute quality
metrics. Table 1 lists the two measures s and r, as well as the resulting combined measure q for different
weights γ, which are 0.5 and 0.8. In the case of γ = 0.5, the weight is equally balanced between
detail-preserving and smoothness, whereas γ = 0.8 shifts more weight to the smoothness. Table 1
shows the mean and standard deviation of the quality metrics for the entire HS cube. Removing the
pattern from the USAF test chart through filtering leads to image smoothing that corresponds to a
higher s value. If no filter is applied, the image reaches its highest value for detail preservation r, since
smoothing does not occur. s is 0 for the unfiltered image, since it was used as reference.

The evaluation reveals that our method, in combination with the various filters described above,
removes the pattern by different degrees. In detail, super-Gaussian filtering delivers the best results
for pattern removal (s = 0.858), while Gaussian filtering best preserves the details (r = 0.638).
Both filters return equal results for γ = 0.5, while super-Gaussian filtering outperforms all other filters
at γ = 0.8. The visual inspection (Figure 5) underlines the failure of the Gaussian and Bartlett filters in
removing the pattern in highly contrasted areas, resulting in a low s. However, super-Gaussian filtering
achieves good results in smoothing as well as detail preservation. The small standard deviation of q
demonstrates that there are only slight differences in quality among the images of the same HS cube.
Similar to the super-Gaussian filter, Hanning, ideal and smoothed ideal filtering achieve high values
for s, but low values for r. In addition, ideal and smoothed ideal filtering leads to ring artifacts on the
edges of the image.
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Table 1. Comparison of our method using various filters to spatial domain (SD)-Gaussian filtering and
star-shaped filtering to remove the honeycomb-like pattern from the United States Air Force (USAF)
test chart. Mean and standard deviation are listed for quality metrics Rayleigh-based line separation
criteria (r), variance-based smoothness (s) and quality measure (q) of the HS cube.

s r q (γ = 0.5) q (γ = 0.8)

Our Method

Gaussian 0.820 (0.054) 0.638 (0.066) 0.729 (0.030) 0.784 (0.039)

Super-Gaussian 0.858 (0.056) 0.600 (0.044) 0.729 (0.028) 0.806 (0.042)

Hanning 0.851 (0.059) 0.572 (0.105) 0.711 (0.067) 0.796 (0.057)

Bartlett 0.827 (0.053) 0.617 (0.059) 0.722 (0.028) 0.785 (0.038)

Ideal 0.851 (0.060) 0.572 (0.105) 0.711 (0.067) 0.796 (0.057)

Smoothed ideal 0.856 (0.056) 0.586 (0.071) 0.721 (0.044) 0.802 (0.046)

Star-shaped 0.795 (0.044) 0.622 (0.065) 0.709 (0.024) 0.760 (0.028)

SD-Gaussian

kernel size: 3 × 3 0.692 (0.006) 0.672 (0.036) 0.682 (0.018) 0.688 (0.008)

kernel size: 17 × 17 0.936 (0.025) 0.408 (0.041) 0.672 (0.019) 0.831 (0.018)

Unfiltered 0.000 (0.000) 0.736 (0.030) 0.368 (0.015) 0.147 (0.006)

Figure 5. Test chart displayed in detail at wavelength 510 nm for (a) our method using different filters;
(b) star-shaped filtering (c) filtering in the SD using Gaussian filtering with two different kernel sizes
and (d) the unfiltered image.

Star-shaped filtering obtains smaller values for γ = 0.5 and for γ = 0.8 than our proposed
method. However, visual inspection reveals that this approach does not completely remove the
honeycomb-like artifact.

SD-Gaussian filtering is only able to remove the pattern using large filter kernels. For the USAF
test chart, the kernel size requires a minimum of 17 pixels to satisfactorily remove the pattern, but
it also leads to higher detail preservation as shown in Figure 5c. The strong image blurring effect is
reflected by high values for s, and a simultaneously considerable low value for r. In contrast, a filter
kernel of 3 × 3 pixels does not remove the pattern. In summary, SD-Gaussian filtering either leads to
strong image blurring or an unsatisfactory removal of the pattern.

Overall, the quality metrics signify that our method, especially in combination with the
super-Gaussian filter, is more efficacious in suppressing the pattern than Gaussian filtering in the SD
and star-shaped filtering in the FD.

Applying our method to the HS cubes of the larynx likewise results in good image quality,
as a visual examination of the two example cases reveals. Figure 6 depicts the HS images of two
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wavelengths after pattern removal using our method with the super-Gaussian filter. A comparison with
the corresponding HS images before pattern removal (see Figure 1) demonstrates that the pattern is
completely removed, while the image details are preserved. The same applies to the second exemplary
case (Figure 7), where the quality of the image was distinctly improved.

Figure 6. HS images of the larynx (#caseA) after removing the honeycomb-like pattern by our method
at wavelength (a) 510 nm and (b) 610 nm (corresponding to the images in Figure 1).

Figure 7. (a) HS image of the larynx (#caseB) at wavelength 510 nm after removal of the pattern, zoom
in areas (b) before and (c) after removal of the pattern.

To analyze how the filtering affects the pixel spectra, we extracted the spectra of 800 honeycombs
in the unfiltered and filtered HS cubes of healthy tissue in #caseA. The spectra were extracted from
the center, the inner and the outer pixel of the honeycombs. Figure 8 shows the mean and standard
deviation of the spectra of the pixel corresponding to the honeycombs before (Figure 8a) and after
pattern removal (Figure 8b). Figure 8a underlines that the spectra of the center, the inner and the outer
pixels vary in brightness and shape. The brightness decreases from the center to the outer pixel in most
wavelengths. Examining the spectra after the removal of the honeycomb-like pattern in Figure 8b,
it becomes clear that the filtering leads to a change in shape and brightness of the spectra, whereby the
spectra of the inner and the outer pixels increase in brightness while the center pixels become darker.
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Figure 8. Mean and standard deviation of spectra from healthy tissue extracted from the center, the
inner and the outer pixels of 800 honeycombs (a) before and (b) after pattern removal.

Unsupervised classification by GMM was applied to the NRI of the raw and the pre-processed HS
cube of one example case (#caseA). Figure 9 presents the classification results. Clusters corresponding
mainly to the cancerous area are displayed in color. In comparing the classification results before
and after pre-processing, it becomes clear that the pattern has a significant impact on classification
performance. As Figure 9a illustrates, the data’s separation into clusters not only depends on the
signature of the tissue, but also on the honeycomb-like pattern, which is clearly reflected in the
classification results, since the clusters seem more dependent on the pattern than on the underlying
signature. The clusters corresponding to the marked region clearly overestimate the cancerous tissue.
For example, the class displayed in blue includes pixels from the cancerous tissue as well from the
cancer-free vestibular folds. The pre-processed HS data is illustrated in Figure 9b, where the cancer is
clearly outlined and incorrect classifications are reduced.

Figure 10 displays the results of the supervised classification of #caseA using raw data,
SD-Gaussian filtered data, star-shaped filtered data and data filtered by our method. The closer
the correlation coefficient is to one, the higher the pixel is correlated to the cancerous tissue of #caseB.
A correlation coefficient approaching −1 indicates a negative correlation to the cancerous tissue of
#caseB. For classification of the raw data (Figure 10b), the pattern is clearly reflected in classification
results, in particular on the margins of the cancerous tissue. SD-Gaussian filtering (Figure 10c)
removes the honeycomb-like pattern, but greatly blurs the details since the filter only passes low
frequencies. Structures of small spatial expansions are either blurred or entirely eliminated. Star-shaped
filtering (Figure 10d) returns better results in terms of blurring and preservation of information than
SD-Gaussian filtering, since it passes more frequencies, but the classification results illustrate that
blurring and the honeycomb-like pattern are still present. Our filtering technique (Figure 10e) achieved
the best results. The details of the image are highly preserved and the honeycomb-like pattern is
completely removed. Ultimately, this leads to a highly differentiated classification result.
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Figure 9. Unsupervised classification results for #caseA (a) before and (b) after pre-processing.
Red Green Blue (RGB) image of the HS cube with cancerous tissue marked by a black line (left),
unsupervised classification results with the cluster/clusters corresponding to a cancerous area marked
in color (middle) and overlay of the cluster/clusters corresponding to the cancerous area and the RGB
image (right).

Figure 10. Results of cancerous tissue detection by hyperspectral classification using correlation for
the zoomed area which shows the cancerous tissue of #caseA (a). As underlying data for classification,
we used (b) raw data; (c) SD Gaussian filtered data; (d) star-shaped filtered data; and (e) data filtered
by our method.

5. Conclusions

This study is the first of its kind to attach an HS system to a flexible endoscope to detect laryngeal
cancer. As a prerequisite for proper detection, we proposed a pre-processing method to improve
the HS data for further analysis. This feasibility study was conducted with the overall objective of
creating a spectral distinction between cancerous and non-cancerous tissue in HS data by utilizing
the advantages of the flexible endoscope. The major disadvantage to this system, however, is that
honeycomb-like patterns appear and degrade the quality of the HS images. This can be attributed to
the fiber optic cables, which make the endoscope flexible yet prevent successful classification without a
correction of the images’ degradation. Therefore, we developed a method specifically for the system in



Sensors 2016, 16, 1288 13 of 14

order to overcome this drawback, in which the spectral domain is filtered by a selective window that
automatically adjusts to the size of the periodic noise. Our method clearly shows better results in terms
of pattern smoothing and preserving detail compared with other methods. Using the pre-processed
HS data as an input for an unsupervised and supervised classification instead of the raw HS cubes
improves classification performance and the ability to locate the cancerous tissue, as revealed by the
visual inspection. However, clinical studies are necessary to optimize cancer detection.
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The following abbreviations are used in this manuscript:

DC direct current
EM expectation-maximization
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HS hyperspectral
HSI hyperspectral imaging
NBI narrow band imaging
NRI normalized ratio index
RGB Red Green Blue
SD spatial domain
SR specular reflection
USAF United States Air Force
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