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Abstract: In this paper, a novel magnetic field-based sensing system employing statistically
optimized concurrent multiple sensor outputs for precise field-position association and localization
is presented. This method capitalizes on the independence between simultaneous spatial field
measurements at multiple locations to induce unique correspondences between field and position.
This single-source-multi-sensor configuration is able to achieve accurate and precise localization
and tracking of translational motion without contact over large travel distances for feedback control.
Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the
dimensions of the multi-sensor output space for computationally efficient field-position mapping
with artificial neural networks (ANNs). Numerical simulations are employed to investigate the
effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping
performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance
of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator
with a significantly more expensive optical encoder as a comparison.

Keywords: artificial neural networks; magnetic sensors; principal component analysis; signal
mapping; linear actuators

1. Introduction

The measurement of position is paramount for control of devices in a multitude of medical,
automation, manufacturing and industrial environments. Of interest is the precise control of
translational motion in linear actuators, such as voice coil motors (VCMs) and ironless motors, over
large (with respect to resolution) travel distances. Here a distributed sensing approach harnessing
a spatial network of magnetic sensors is used concomitantly with trained artificial neural networks
(ANNs) to provide accurate real-time position information for subsequent control. To optimally reduce
the number of required inputs during ANN mapping, the statistical technique of principal component
analysis (PCA) is innovatively applied as a pseudo-filter for the ANN to improve computational
efficiency while retaining high accuracy.

A major advantage of field-based sensing systems is their ability to function in harsh conditions.
Magnetic fields are invariant to temperature, pressure, radiation and other environmental factors.
Capitalizing magnetic fields for orientation/position sensing is not new as evident by Raab’s et al. [1]
magnetic tracking system which was introduced more than three decades ago. Compared to other
non-contact sensing systems such as optical [2] and vision sensors [3], magnetic sensors do not
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require ‘a line of sight’, permitting sensing across multiple non-ferromagnetic mediums. Despite major
advancement in miniaturization and magnetic sensing technology where modern sensors possess small
physical footprints and high sensitivity and bandwidth [4,5], the deployment of magnetic sensors for
feedback control is under exploited and can be extremely promising as shown by recent applications
in localization of medical instruments [6,7].

Magnetic localization can be categorized into two approaches that involve harnessing active or
passive fields. Localization utilizing artificially generated electromagnetic fields can be either pulsed
or static and possess superior measurement ranges and better immunity to background geomagnetic
noise. However, active fields require power, which can be provided internally using a battery or
externally via constricting tethering wires which are less desirable for applications such as medical
devices [6,7] that require compact and lightweight footprints. Permanent magnets provide static
magnetic fields with zero power and can be embedded directly into the target for non-obtrusive
localization and tracking. Both approaches, however, like all sensing principles and systems, require a
correspondence between the measured field and instantaneous position/orientation.

The main difficulties in cultivating position-field correspondence are the complexities of analytical
field models and absence of bijectivity (both injective and surjective or encompassing one-to-one
and onto correspondence) between field measurements and position/orientation. In a non-bijective
relationship, multiple positions/orientations share a common field measurement value. It is clear that
without bijection, associating an arbitrary field measurement with a unique position is difficult. While
researchers have attempted to isolate the linear field region (where the magnetic flux density with
respect to distance can be approximated by linear relationship) with sensor arrays [8] and directly
overcome the non-linearity via a compensating coil [9] for unique sensing as well as utilize principle of
phase commutation [10], a more robust approach for compensating and characterizing the non-linearity
as introduced in [11] is adopted here, which offers greater potential for high precision localization.

Another critical issue is the manner and speed of extracting position from field measurements
to satisfy the stringent requirements of feedback control. While theoretical field models for the
prediction of fields in space are available, they are often highly complex and not in a tractable form
for direct inverse computation operations, requiring computationally heavy non-linear optimization
methods [12–14] which are unsuitable for real-time operations. As illustrated in [15,16], ANNs provide
a model free method to map concurrently field measurements to positions with high degree of
accuracy where each input of the ANN is linked with a dedicated sensor output. Moreover, ANNs
are computationally efficient during online operation and utilized as real-time robust controllers [17],
parameter estimators [18] and state observers [19] of motors. A potential issue with harnessing
numerous concurrent measurements is the complexity and computation requirements associated with
an ANN containing an excessive number sensor inputs.

In image processing, PCA has been diligently adapted to condense a set of highly correlated
images to be approximately represented by a significantly smaller set of eigenimages [20] as well as an
essential element of an algorithm to induce greater color contrast in RGB images [21]. As magnetic
field measurements are highly correlated due to spatial proximity between sensors, the measurements
by a large sensor network can be optimally represented by a smaller set of eigenspaces. Within these
transformed spaces, obtained from the linear combination of the original sensing axes, only the
major principal components are required for ANN mapping. The remainder of this paper presents
the following:

• A method using concurrent field measurements of a moving permanent magnet (PM) to infer its
precise position in real-time is presented. This method employs a sensor array to provide bijective
relationships between measurements of magnetic flux density (MFD) and position as well as
spatially extending the sensing range. Instead of directly mapping sensor outputs to position,
PCA is used to determine an optimized set of transformed measurements for ANN mapping.
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• Through numerical simulations, the effects of geometric parameters (including the PM dimensions
and sensor spacing and location) on sensing accuracy is examined. Simulated measurements are
corrupted with artificial Gaussian noise to explore practical implementation issues of the system.

• Using an ironless brushless linear motor as a platform for analysis, the experimental performance
of a 9-sensor field-based system using PCA optimized ANN mapping is investigated. The tracking
error resulting from the closed-loop control of the system using the field-based system is compared
with an optical encoder. The tracking performance using the field-based system gives a similar
response of that obtained using the optical encoder with 1 µm resolution.

2. Materials and Methods

To harness magnetic fields for absolute precision sensing in translational motion, a stationary
sensing system is designed to determine motion of the moving magnetic source with the
following considerations:

1. A distributed spatial network of sensors to uniquely relate position of a magnetic source to its
measured field from the sensors, and

2. An approach using ANNs and PCA to optimally relate multiple concurrent field measurements
to position coordinates and minimize time-consuming computation.

For applications of PM-based devices undertaken here, time-invariant PM sources are considered
since the effects of electromagnets (with known currents) can be actively compensated or accounted for
by modeling them as equivalent magnets [22]. Consider the single-source-multi-sensor configuration
shown in Figure 1, where a lateral array of fixed sensors is placed at an offset of h from the PM source
of a rectangular cuboid geometry (length l, width 2w and thickness c) undergoing horizontal motion
(along x-axis). The magnetization axis M = Mez of the PM is perpendicular to the motion path x.
The aggregate MFD as measured by a network of n single-axis sensors at an arbitrary position of the
magnetic source can be denoted by Equation (1):

B (x, h) =
[

f1 (x, h) · · · fi (x, h) · · · fn (x, h)
]T

(1)

where fi is the individually measured MFD along the z-axis (ez) from the ith sensor at the absolute
lateral position x of the magnetic source. The vector B contains the individual fi for each sensor, which
could represent analytical field models (single dipole [23], distributed multipole model [24,25] or
hybrid [26]) or experimental field measurements at each spatial location di.

Field-based position sensors require an inverse model that solves for the position x from
measured B. Essentially, the inverse expression of B−1, is necessary and sufficient for field-based
sensing. However, extracting an analytical expression for fi−1 is difficult due to the high degree of
non-linearity and non-uniqueness of analytical field models [27,28]. A numerical method capable of
handling discontinuities at the magnet surface involving manipulation of the scalar magnetic potential
to compute magnetic fields in a current free space around a magnet can be found in [29].
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2.1. Inducing Bijectivity with a Spatial Network

Due to symmetry, the measured MFD is spatially symmetric about the centerline of the ith sensor:
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fi (x− di, h) = fi (−(x− di), h) (2)

In addition, as the field radiating from a PM is finite, the sensor is unable to detect the change in
magnetic field when the PM position exceeds a certain threshold:

| fi(x− di, h)|
{

> 0 for |x− di| ≤ R(h)
= 0 otherwise

(3)

where R is a specified threshold dependent on the separation distance h. While the sensor has a
lateral sensing range of 2R or di ± R in Equation (3), its effective positional sensing range is only R,
[di − R, di] or [di, di + R], because of its inability to distinguish between the two symmetric magnetic
fields in Equation (2). The issue with symmetry is that multiple x locations result in the same fi(x) value,
preventing these locations from being distinguished and hence unique from one another using only
fi(x). In other words, for a given continuous interval x, fi must be a strictly increasing or decreasing
monotonic function if the entire interval were to be unique. This criterion can be assessed by analyzing
the spatial derivative of fi

(
∂ f
∂x

)
.

However, concurrent measurements B of multiple sensors do not exhibit the above symmetry
because each fi has distinct axis of symmetry about di. As best illustrated using Figure 2 where fi
is approximated by a triangle function for simplicity, the composite vector B(x) will be unique for
||B (x)|| > 0 as long as di+1 – di < R (i = 1, . . . , n–1). This stipulation ensures that local axes of
symmetries inherent due to Equation (2) are no longer present. As illustrated in Figure 2, while
x1 and x2 may share the same f 1 value, f 1(x1) = f 1(x2), the composite B at both values are different
and hence unique, B (x1) 6= B (x2). Moreover, the effective positional sensing range of the sensor
network is extended to [d1 − R, dn + R] as long as ||B (x)|| > 0 throughout that specified range for x.
In summary, the spatial network of sensors induces uniqueness for B as well as increases the range
where this uniqueness holds.
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Mathematically, if the forward model B is bijective, the inverse model B−1 exists and is bijective
as well. This property allows measurements to be mapped uniquely to position coordinates, which
is the fundamental mechanics of a sensing system. As analytical solutions to the inverse model are
not available (especially if numerous sensors are involved), a function fitting approach is adopted to
solve for B−1 for real-time feedback. With this mapping approach, the desired inverse model B−1 is
approximated by a fitted analytical artificial function. Look-up tables (LUT) and conventional least
squares (LS) using basis functions of polynomials and sinusoidals are commonly used methods in
creating such mappings but ANN mapping is preferred as the latter are more adaptable and scalable
when managing multiple inputs and outputs.

2.2. PCA Optimized ANN Mapping

Feedforward ANNs can be trained with backpropagation supervised learning to fit a desired
set of inputs to a corresponding set of outputs by iteratively adjusting the weighting coefficients and
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biases in the network to minimize the root mean-squared error over all data pairs. For this application
(estimation of x), a fully-connected two layer (single hidden layer) neural network architecture is used
as shown in Figure 3. This network consists of n nodes in the input layer (field measurements by all
sensors B), k neurons in the hidden layer and a single output neuron (x position at B). In order to
construct this mapping, the bijective range of motion [d1 − R, dn + R] is discretized into N data points,
resulting to total of N ANN training-target sets. The positional estimate x̂v of the neural network can
be mathematically represented as:

x̂v = Ω [σ (ωBv) + b] + c (4)

where σ is the sigmoid activation function: σ(θ) = 1/[1 + exp(–θ)], ω is a k × n matrix containing
the weighing coefficients ωji between the i-th input node and the j-th hidden node, Ω is a 1 × k
matrix containing weight coefficients Ωj between the j-th hidden node and output node, b is a vector
containing the biases of each of the k hidden nodes, c is the bias of the solitary output node, and the
subscript v (1 ≤ v ≤ N data points) is an integer representing the training set index. For this single
hidden layer network, there are a total of (n + 1)k weighing coefficients (Ω, ω) and (k + 1) biases (b, c)
which are determined offline during backpropagation training. To numerically execute Equation (4) for
every estimate, it will consist of the following simple and efficient scalar arithmetic operations: (n + 1)k
multiplications, (n + 1)k additions, and k Sigmoid functional evaluations. The root mean squared error
(RMSE) defined in Equation (5) is used to evaluate of the performance of the neural network:

RMSE =

√√√√ 1
N

N

∑
v=1

(xv − x̂v)
2 (5)
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Figure 3. Two layer fully-connected feedforward ANN used for functional mapping. (Biases not shown).

Due to spatial proximity of sensors and PM, the field measurements are correlated. Through the
orthogonal linear transformation of the PCA, the individual measurements by the sensors
(S1, . . . , Si . . . , Sn) can be represented by the principal components (P1, . . . , Pq, . . . , Pn) such that the
greatest variance of the measurements lie on the 1st principal component P1, the second greatest on the
2nd principal component P2 and so on [30]. Rather than using correlated sensor field measurements
as individual inputs to the ANN and graphically illustrated in Figure 4, an optimized subset of m
principal components (from the full set of n principal components) can be applied to Equation (4)
directly and this represents an advantage of requiring fewer ANN inputs while retaining the critical
bijectivity of B.

Collating individual field measurements into the matrix A = [B1 . . . Bv . . . BN], the full suite of
n principal components of A can be determined by finding an orthonormal matrix P such that the
covariance matrix of G (that contains the collated transformed field measurements of A) is a diagonal
matrix [30]:

CG = GGT/n (6)
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where G = PA and P is a square n × n matrix obtained from the offline computation of the singular
value decomposition (SVD) or eigenvectors of:

CA = AAT/n (7)

The rows of P contain the n principal components coefficients of A; and the eigenvector with the
highest associated eigenvalue is the (first) principal component. The relative numerical value of the
eigenvalues denotes the statistical significance of each principal component. To explicitly compute the
qth principal component from n sensor measurements, the following arithmetic expression is used:

Pq = CqB (8)

where Cq is a 1 × n vector constructed from the qth row of P. Numerically computing m principal
components requires mn scalar multiplications and m(n − 1) scalar additions. Note this is independent
on the ANN architecture (k).

A detailed mathematical comparison of the number of scalar arithmetic operations required for
ANN computation with and without PCA is also illustrated in Figure 4 (sigmoid function evaluations
are omitted as they do not change with PCA). As the number of arithmetic operations vary nonlinearly
with both m, n and k, the ratio of the total number of arithmetic operations of PCA-ANN to ANN
only mapping is computed at various n and k values and illustrated with a log-scale contour plot in
Figure 5 when the first, first and second and first three principal components were used. Hence if the
ratio is less than 1, it will represent computational advantage of the PCA-ANN approach over the
ANN-only approach.
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3. Results

3.1. Numerical Simulation

This section provides a numerical investigation in the effects of PCA, geometric configuration,
sensor spacing and noise corruption on the accuracy of the magnetic field-based sensing. Without loss
of generality, a uniformly magnetized cuboid PM (2w = c, l) is used as example for clarity in illustration.
The simulations are presented in non-dimensional form to facilitate parametric studies or for design
analysis. For this, we normalize lengthwise parameters and variables to w, and the magnetic flux
density (MFD) in Equation (1) to µoMo where µo is the magnetic permeability of free space; and Mo is a
specified residual magnetization (or magnetic moment per unit volume):

F = f /Moµo, X = x/w (9)

Normalizing the lateral displacement with respect to the PM width creates a useful reference
point at unity (when d1 = 0) where it defines the PM boundary’s projection on x regardless of the actual
dimensions and parameters of the system. The absolute field sensitivity (AFS) is defined by the partial
spatial derivative:

AFS = |∂F/∂X| (10)

3.1.1. Singular Sensor Geometrical Considerations

The effects of three specifications are chosen for evaluating the sensing system, signal-to-noise
ratio (SNR), resolution and range. For field-based sensors, SNR corresponds to the relative magnitude
of the MFD while AFS impacts the resolution and range. Higher MFD measurements and AFS
correlates with superior SNR and smaller resolutions. Increasing the spatial domain where AFS is
elevated will extend the sensing range. Hence it will be pertinent to examine the combined spatial
effects of the separation ratio β = h/(2w) and geometric aspect ratio γ = l/(2w) of the PM on the
simulated field and its corresponding sensitivity.
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Figure 6. Normalized MFD (top) and absolute sensitivity (bottom) for various aspect and separation
ratios; γ = l/(2w) and β = h/(2w). (a) γ = 0.25, (b) γ = 1 and (c) γ = 4.

Using Equations (9) and (10) and employing a spatial resolution of 0.001, the normalized MFD
and AFS for a zero-centered (d1 = 0) single sensor configuration (S1, n = 1) are evaluated for a variety of
β and γ values. The results are compiled in Figure 6, where the top, middle and bottom rows illustrate
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the numerically simulated MFD and AFS for γ = 0.25, 1 and 4 respectively. Within each plot, the effects
of β (=1, 0.5 and 2) are compared. For all plots, the lateral displacement is spatially zeroed (d1 = 0) such
that the centerlines of the PM and sensor align vertically. In addition, the field sensitivity is presented
in logarithmic scale to accentuate the differences and only the positive spatial domain (0 ≤ X ≤ 4) is
illustrated as the magnetic field is symmetric about X = 0.

3.1.2. Dual-Sensor PCA ANN Mapping Analysis

As a single sensor system is unable to provide a bijective relationship required for a sensing
system, the parametric analysis is extended to investigate the relative placement of two sensors on
mapping performance. Consider a dual-sensor configuration (S1,2, n = 2), where the parameters
(β = 0.5, γ = 0.25) are selected to yield the highest AFS per unit peak MFD.

As will be shown, analysis of this dual-sensor configuration provides a fundamental
understanding on the design of a more extensive multisensor system. With 0.001 spatial resolution
for a total of 4001 data points, Figure 7a visually graphs the simulated effect of the normalized sensor
spacing, δ21 = (d2 − d1)/w, on the corresponding measured MFD over the domain of −2 ≤ X ≤ 2.
Applying PCA using the process outlined in Equations (6) and (7), the two principal components for
each of the three distinct normalized sensor spacing (1, 2 and 4) are compared in Figure 7b. For each
sensor spacing, the PCA coefficients and associated variability for both principal components are
tabulated in Table 1.
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Figure 7. Concurrent MFD measurements (a) and transformed principal components (b) from three
2-sensor (S1 and S2) configuration of varying normalized sensor spacing.

Table 1. Comparison among dual-sensor configurations.

Sensor Spacing
PCA

ANN RMSE (Normalized)% Variability Coefficients

δ21 P1 P2 C11 C12 C21 C22

1 52.2 47.8 1/
√

2 −1/
√

2 1/
√

2 1/
√

2 1.60 × 10−5 (P1,P2)
2 96.0 4.0 1/

√
2 1/

√
2 −1/

√
2 1/

√
2 9.00 × 10−6 (P1,P2)

4 78.5 21.5 1/
√

2 −1/
√

2 −1/
√

2 −1/
√

2 7.53 × 10−6 (P1,P2)
1.13 × 10−3 (P1 only)
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The table also includes the resulting RMSE from utilizing the PCA transformed MFD for ANN
mapping. The ANN used for mapping simulation has a single hidden layer architecture with 10 hidden
nodes (q = 10). Figure 8 spatially illustrates the mapping error resulting from using only the first and
both principal components when δ21 = 4.
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Figure 8. ANN absolute lateral position mapping error at δ21 = 4 using both and single
principal components.

3.1.3. Multi-Sensor PCA ANN Mapping Analysis

The alternative design configuration of three dual sensor pairs depicted in Figure 7a can be
perceived as a 6-sensor configuration (S1,2,3,4,5,6; n = 6), with variable spacing. This continued analysis
illustrates how effortlessly PCA scales with larger sensor networks while offering the added advantage
of improved noise attenuation. The same PCA process as outlined in Equations (6) and (7), can be
applied to these six inputs and the six resultant principal components are spatially plotted in Figure 9.
The relative variability of each principal component expressed as a percentage and PCA coefficient
matrix are consolidated in Table 2.
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Table 2. PCA parameters and noise attenuation performance of a 6 sensor configuration.

PCA % Variability ANN Position Mapping

P1 P2 P3 P4 P5 P6 Noise Inputs ANN RMSE (Normalized)
71.6 24.0 4.1 0.31 0.040 0.011

0%
P123 2.85 × 10−6

PCA Coefficient Matrix S1–6 2.40 × 10−6

Cij i = 1 2 3 4 5 6
1%

P123 1.09 × 10−2

j = 1 0.309 −0.577 0.332 −0.002 0.541 −0.408 S1–6 3.13 × 10−3

2 −0.309 −0.577 −0.332 −0.002 −0.541 −0.408
10%

P123 1.05 × 10−1

3 0.499 −0.160 0.246 −0.649 −0.436 0.230 S1–6 3.32 × 10−2

4 −0.499 −0.160 −0.246 −0.649 0.436 0.230
5 0.394 0.376 −0.573 −0.280 0.127 −0.529
6 −0.394 0.376 0.573 −0.280 −0.127 −0.529
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Employing only the first three principal components, the absolute position error arising from
ANN mapping is spatially presented in Figure 10a. The corresponding absolute position error obtained
if all six sensor simulated measurements were feed directly into the ANN without PCA transformation
was included as a comparison. Finally independent Gaussian noise (with variance equal to 1% of the
total variance of a single channel measurement) were simulated in each sensor channel in Figures 7a
and 10b illustrates the resultant effect of noise on the absolute position error for the two cases in
Figure 10a. For completeness, Table 2 evaluates the effects of various noise levels on the RMSE when
the ANN inputs are the raw sensor measurements or processed three main principal components.
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Figure 10. Absolute error comparison between PCA assisted mapping and mapping without PCA at
different levels of noise corruption. (a) Zero Gaussian noise; (b) 1% Gaussian noise.

3.2. Experimental Investigation

Figure 11 shows the experimental set-up that consists of an ironless brushless linear motor
driven by a digital servo drive (Accelnet ADP-055-18, Copley Controls, Canton, MA, USA) with
optical linear quadrature encoder (RGH41X30D05A, 1 µm resolution, Reinshaw, Gloucestershire,
UK), a reconfigurable embedded control and acquisition system (CompactRIO CRIO-9082 populated
with a 250 kS/s 16-bit 16-channel ±5 V Analog to Digital Converter (ADC) module NI 9205 and
1 Mb/s 1-port CANopen module NI 9881, National Instruments, Austin, TX, USA) and an ultra
low-noise power supply (ABPSM-ULN-A, Abracon, Irvine, CA, USA). The field-based sensing system
includes 9 bi-polar linear Hall-effect sensors (A1301, Allegro, Worcester, MA, USA, 20 kHz bandwidth,
2.5 mV/G sensitivity) and a PM (N42 grade rectangular neodymium rare earth magnet, KJ Magnetics,
Pipersville, PA, USA) attached to the linear motor as shown in the schematic in Figure 1.
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Figure 11. Experimental setup.

The linear encoder was used for calibration as well as a basis for comparison with a resolution
of 1 µm. The ratiometric analog outputs of the nine hall-effect sensors which have a sensing range
of ±100 mT are sampled independently using the 16-bit differential channels on the ADC module
(0.153 mV resolution) and the quadrature outputs of the optical encoder is decoded by the servo drive
to translational position and transmitted to the embedded controller via CAN bus. The CAN bus also
provides the communication platform for the embedded controller to transmit the desired control
signal. As in Figure 1, each sensor is installed with its edges in contact with adjacent sensors and its
sensing axis parallel to the magnetization of the PM. The separation distance h between the sensors and
PM is adjusted using a precise linear rail. One complete rotation of the ball screw increases or decreases
h by 2.54 mm (0.1”). A summary of the parameters of the sensor network and PM is consolidated
in Table 3. The total closed-loop control execution time including acquisition and conversion from
the analog sensors, communication via CAN Bus for encoder data and control output to linear motor,
and real-time data processing (PCA and ANN online computation) is 5 ms (200 Hz).

Table 3. Experimental setup parameters.

Field Sensor Network PM (Grade N42)

n d1 (mm) di+1 − di (mm) 2w (mm) l (mm) c (mm) Mo (A/m)

9 −7.27 4.09 12.7 6.35 4.76 4.67 × 105

The block diagram of the experimental setup is shown in Figure 12. The host PC specifies
the reference trajectory r to the embedded controller (CompactRIO) and also measures and logs the
instantaneous positional estimates of the field-based sensing system and linear encoder. The embedded
controller computes the corresponding control signal u from feedback of the hall sensors or linear
encoder. The servo drive amplifies the control signal transmitted to actuate the linear motor. Motion of
the linear motor is detected by the change in B by the Hall sensors as well as directly from the
quadrature output of the optical encoder.
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Figure 12. Control scheme of the linear motor using hall sensors and linear encoder.

By actuating the linear actuator in increments of 10 µm using the feedback signal of the encoder,
the measured magnetic flux density (MFD) of all nine sensors at each incremental position (N = 1200)
of the attached PM are recorded. These measurements are shown in Figure 13 at three different h
values (h1, h2 and h3). Taking the sensor noise into consideration, a modified signal-to-noise ratio
(SNR) defined by Equation (11) is used to characterize the variability in the measured signal:

SNR(dB) = 20log10 (σ/Q) (11)

where σ is the standard deviation of the measurements for one sensing channel; and Q is the standard
deviation of the sensor noise. Typically, a SNR of at least 28 dB (the ratio of σ/Q is 25) is preferred to
minimize noise corruption during ANN mapping. Using Equation (11), the SNR for measurements of
each sensor are tabulated in Table 4. Sensors will low SNR are highlighted.

Table 4. Distribution of hall sensor SNR.

h (mm)
SNR (dB)

S1 S2 S3 S4 S5 S6 S7 S8 S9
1.905 54.1 59.1 56.5 7.0 53.4 59.4 57.2 37.3 32.0
3.81 52.1 57.6 55.6 40.3 53.1 58.0 55.1 42.2 21.6

5.715 49.6 54.0 53.9 46.4 52.9 55.9 51.9 42.6 27.0
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Figure 13. Composite B measurements from a nine sensor network at various separation distances.
(a) h1 = 1.905 mm (3/4 rotations), (b) h2 = 3.81 mm (3/2 rotations) and (c) h3 = 5.715 mm (9/4 rotations).
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3.2.1. PCA-ANN Field-Based Localization

Applying PCA on each case in Figure 13, the first three principal components are graphically
illustrated as a function of PM position and three separation distances in Figure 14. The relative
importance of each principal component (eigenvalue) are computed as a percentage and shown along
with its corresponding SNR in Table 5.
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Figure 14. First three principal components as a function of position and separation distance.

Table 5. Relative dominance and SNR of each principal component.

h (mm)
% Variability, (SNR, dB)

P1 P2 P3 P4 P5 P6 P7 P8 P9

1.905
79.55 14.54 5.49 0.22 0.12 0.04 0.018 ~0 ~0
(64.0) (56.6) (52.4) (38.4) (35.9) (31.8) (27.6) (5.9) (4.8)

3.81
86.81 10.67 1.98 0.37 0.11 0.04 0.004 ~0 ~0
(63.0) (53.9) (46.6) (39.3) (34.1) (29.9) (19.1) (10.7) (−0.5)

5.715
91.50 8.20 0.27 0.03 0.001 0.0002 0.0001 ~0 ~0
(61.0) (50.6) (35.8) (26.3) (12.8) (4.4) (1.2) (−0.2) (−1.4)

With the PCA transformed measurements, ANN models of varying hidden nodes k are used to
characterize the measurements-position mapping. For ANN mapping, 80% of the sets will be used
for training, 15% for validation and 5% for testing. The effects due to selection of ANN inputs on the
mapping accuracy are presented in Figure 15, which graph the RMSE against k, used in the single-layer
ANN mapping and absolute mapping errors against position. Figure 15a compares the effects of
using only the first principal component across h and different number of principal components
and Figure 15b,c evaluates between using the sensor and PCA filtered measurements for mapping.
For mapping utilizing directly the sensor measurements, only sensor channels with at least 28 dB are
considered as a viable mapping input.
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Figure 15. Error analysis of ANN mapping performance.

3.2.2. Closed-Loop Tracking Performance

With a sinusoidal reference signal (0.2 Hz frequency, 4 mm amplitude centering at 6 mm),
the corresponding positional estimate provided by the field-based sensing system (using a single layer,
10 hidden nodes ANN with first three principal components as inputs) and optical encoder under the
same PID control for one period cycle is shown in Figure 16. A zoomed-in view of the response at the
peak is also provided for clarity. The absolute tracking error between the reference command and each
sensing systems is spatially compared in Figure 17. The average tracking error for the optical encoder
and proposed magnetic sensing system are 0.085 mm and 0.074 mm, respectively.
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Figure 16. Feedback response comparison between field-based sensing and optical encoder.
(a) Tracking performance; (b) Close-up view of the response at the peak in (a).

Sensors 2016, 16, 1280  14 of 18 

 

 
(c) Error distribution comparison (h3, k = 10)

Figure 15. Error analysis of ANN mapping performance. 

3.2.2. Closed-Loop Tracking Performance 

With a sinusoidal reference signal (0.2 Hz frequency, 4 mm amplitude centering at 6 mm), the 
corresponding positional estimate provided by the field-based sensing system (using a single layer, 
10 hidden nodes ANN with first three principal components as inputs) and optical encoder under 
the same PID control for one period cycle is shown in Figure 16. A zoomed-in view of the response 
at the peak is also provided for clarity. The absolute tracking error between the reference command 
and each sensing systems is spatially compared in Figure 17. The average tracking error for the optical 
encoder and proposed magnetic sensing system are 0.085 mm and 0.074 mm, respectively. 

(a) (b)

Figure 16. Feedback response comparison between field-based sensing and optical encoder.  
(a) Tracking performance; (b) Close-up view of the response at the peak in (a). 

 

Figure 17. Closed-loop absolute tracking error using both sensing systems. 

0 2 4 6 8 10 12
10

-2

10
-1

10
0

10
1

10
2

Position (mm)

A
bs

ol
ut

e 
Po

si
ti

on
 E

rr
or

s 
( 

 m
)

 

 

S
1-8

P
123

0 1 2 3 4 5
0

2

4

6

8

10

12

Time (sec)

Po
si

ti
on

 (
m

m
)

 

 

1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26
9.94

9.95

9.96

9.97

9.98

9.99

10

Time (sec)

Po
si

ti
on

 (
m

m
)

 

 

Command
Hall Sensors
Optical Encoder

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

A
bs

ol
ut

e 
T

ra
ck

in
g 

E
rr

or
 (

m
m

)

 

 

Hall Sensors
Optical Encoder

Figure 17. Closed-loop absolute tracking error using both sensing systems.
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4. Discussion

4.1. Numerical Results from Singular Sensor Geometrical Considerations

All normalized MFD plots (in Figure 6a) resemble a Ricker wavelet (or Mexican hat wavelet)
which is characterized by its curve width and peak MFD value at zero X. The comparison suggests
that β has a predominant bearing on the peak value while the effect of γ on the curve width is more
pronounced. Reducing β resulted in a stronger field and hence a higher peak value of the wavelet
due to its closer proximity to the magnetic source. Decreasing γ in contrast shortens the curve width,
resulting in a steeper MFD plot, and it is most easily seen by comparing the MFD curves when β = 0.5
in Figure 6a–c.

The increase in peak value of the MFD wavelets brought by reduction in β is clearly reflected by
the higher average AFS on the right column of Figure 6. Moreover, these curves indicate that reducing
γ has the effect of increasing AFS for small X while decreasing AFS for large X. This is especially
apparent when β and γ are less than unity where the AFS significantly deteriorates at X > 2.5.

Simultaneously reducing β and γ has an augmenting effect of increasing both the average
measured MFD and AFS, but at the expense of reducing the effective range of the sensing system.
This represents a design trade-off between SNR/sensitivity and range, and provides a rational basis
for a multi-sensor configuration in Figure 1, which aims at maximizing SNR and sensitivity without
compromising the effective range of the system.

4.2. Numerical Results from Dual & Multi-Sensor PCA ANN Mapping Analysis

While the MFD curves for each sensor pair (S1 and S2) in Figure 7a are symmetrical about X = 0,
at least one of the corresponding principal components (P1 and P2) are asymmetrical. In fact, the first
principal component when δ21 = 4 is a strictly increasing monotonic function. While the other sensor
spacing configuration require both principal components to uniquely relate position, employing only
the monotonic principal component allows the use of a single input ANN (as opposed to a two input
ANN) for mapping as presented in Figure 8 albeit possessing a higher mapping error.

Of the three configurations in Table 1, despite having significantly different MFD distribution in
Figure 7a, the resultant RMSE using both principal components were comparable and only separated
by less than a factor of 10. The lowest RMSE was obtained when δ21 = 4 with a value of 7.53 × 10−6.
The spatial plot in Figure 8 demonstrates a relatively consistent position error when using both P1 and
P2 but noticeably higher at the ends when only P1 is employed.

Increasing the number of sensors in PCA improves sensitivity as the range of the transformed
MFD being used for ANN mapping is extended. The MFD plots in of individual sensors in Figure 7a
vary from −0.002 to 0.067 for a total range of 0.069. In dual sensor configuration, the corresponding
range of the first principal component in Figure 7b for sensor spacings of 1, 2 and 4 are 0.083, 0.095
and 0.097, respectively. For the all-inclusive six sensor configuration, the range of the first principal
component in Figure 9 is even higher, at 0.134.

As depicted in Figure 10a, the mapping performance with and without PCA is indistinguishable
in absence of noise. It is noted that only three inputs were needed for the PCA- assisted mapping to
achieve the same accuracy. When the sensors are corrupted with Gaussian noise, the ANN that uses
PCA inputs is more resilient as visually illustrated in Figure 10b. From Table 2, at both 1% and 10%
noise corruption, the RMSE of the ANN using three PCA inputs is an order of magnitude lower than a
six input ANN without using PCA transformed measurements.

4.3. Experimental Results from PCA ANN Field-Based Localization

At small separation distances (or close proximity between the sensors and PM), many of the
sensors are fully saturated (around 100 mT). In fact at h1, S4 remains fully saturated throughout the
motion range. This is reflected in the low SNR in Table 4 of 7.0. As h is increased, saturation effects and
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low SNR become less of an issue. At h2 and h3, only S9 has SNR less than 28 dB. However, increasing h
further is undesirable as it will result in reduced SNR across all sensors.

As expected, relying on a single sensor is insufficient to associate and extract position from MFD
measurements due to lack of bijection. As seen in Figure 13a,b, it is exacerbated with saturation effects
where the MFD measurements remains constant for multiple positions. With PCA, the 1st principal
component P1 is clearly bijective for all three values of h as reflected in Figure 14. Hence, for any h
value, the 1st principle component is sufficient to uniquely infer position.

The first three principal components represent an overwhelming majority of the total variability.
They account for 99.47%, 99.88% and 99.97% for different h values respectively. In fact, the 1st principal
component alone was responsible for at least 80% (For h3, it was over 90%). In addition, the SNR for
the 1st principal component for all h (over 60 dB) was noticeably higher than any of the individual
sensors SNR in Table 5. At 60 dB, σ/Q is 1000.

Using only the first principal component P1 (single input ANN model), an RMSE of 10 µm or
less is attained for all values of h. With the exception for h1 (possibly due to the high degree of
saturation across the sensors), this was achieved with only five hidden nodes. The results suggest that
with PCA, the mapping performance is relatively insensitive to h, but related to the variability of the
corresponding principle component. The larger the variability, the smaller the mapping errors.

Employing additional principal components reduces the RMSE further. At h2, using the first
two and all three principal components lowers the RMSE to 2.5 µm and 2.4 µm, respectively,
at k = 35. This modest improvement reiterates the significance of the first principal component in
mapping accuracy.

While attaining sub-micron accuracy is possible using the measurements without PCA as depicted
in Figure 15b, this is achieved at a cost of using higher order ANN models (6, 8 and 8-input models
for h1, h2 and h3 respectively) which require larger computational overheads and memory. Moreover,
the RMSE of using with and without PCA filtered measurements are comparatively insignificant.
Even with hidden nodes as low as k = 10, the absolute error distribution in Figure 15c demonstrates
that the mapping accuracy at h3 using only three principle components (P1,2,3) as ANN inputs is
comparative to that using eight sensor measurements (S1–8) throughout the range of motion.

4.4. Experimental Results from Closed-Loop Tracking Performance

The preceding results in Figures 16 and 17 show that while the proposed PCA mapping approach
could reduce the computational expensiveness of the field-based method for real-time tracking,
the corresponding system response is able to offer comparative performance to the system response
using high resolution encoder of 1 µm. Taking account of the prices of the commercialized hall
sensors and optical encoder used in the setup, the proposed PCA mapping approach provides a more
cost-effective solution without loss of functionality (non-contact sensing) or precision.

5. Conclusions

Using a network of magnetic sensors, the position of a moving PM can be extracted with high
precision via ANN mapping from concurrent measurements of all sensors. With PCA operating as a
pseudo-filter, the number of ANN inputs required can be significantly reduced with minimal effect on
overall accuracy while increasing computational speed; thereby improving real-time tracking control
performance. Moreover, through simulations and experimental investigation, it was found that PCA
has the beneficial effects of rendering sensing performance insensitive to separation distance as well
as capable of coping with sensor saturation effects and noise corruption in practical applications.
With a spatial network of nine magnetic sensors used in tandem with a 3-input PCA optimized ANN,
positional micron accuracy of a linear motor was achieved which offered comparative performance
of an optical encoder with resolution of 1 µm. As PCA transformed outputs as well as ANNs are
achieved using simple algebraic operations, even in very large scale sensor networks, they can be
realized easily in real-time with rudimentary analog summing circuits.
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