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Abstract: Nanofibres are increasingly being used in the field of bioanalytics due to their large
surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been
studied as effective filters, concentrators, and immobilization matrices within microfluidic devices.
In addition, they are frequently used as optical and electrochemical transduction materials.
In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and
therefore provide dual functionality when incorporated within microfluidic systems. Specifically,
electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels
and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis.
The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length
was studied. We observed that the most mixing was caused by small diameter PVA nanofibres
(450–550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared
to up to 51% with polystyrene microfibres (0.8–2.7 µm in diameter) and 29% mixing in control
channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant
inhomogeneity in pore size and distribution leading to percolation. As expected, within all the
studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the
microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average
increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was
independent of the length of the fibre mat used (3–10 mm), suggesting that most mixing occurs as
fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable
to or better than many passive mixers reported in literature. Since the nanofibre mats can be further
functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid
mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices.
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1. Introduction

Electrospinning is a well-understood and simple fibre fabrication process in which an electric
field is applied to a polymer spinning dope to generate nano- and microscale fibres [1]. The nonwoven
fibre mats produced by electrospinning are characterized by extremely large surface-area-to-volume
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ratios, high porosities, and small pore sizes. Additionally, fibres can be spun from a wide range of
materials, including biocompatible polymers, and are easily functionalized through the incorporation
of useful materials into the spinning dope or by post-spinning immobilization techniques [2].

Electrospun fibres have been used in a variety of applications, including the development of
tissue engineering scaffolds [3–6], sensors [7–11], high-performance batteries [12–14], and vehicles
for drug delivery [15,16]. Several review articles have been written about the many promising
uses of electrospun nanofibers [17–20]. In particular, the incredibly high surface area afforded
by electrospun fibre mats has been utilized to improve the performance of a wide range of
analytical devices [2,21,22]. Fibre-based sensors feature an increased number of binding sites and
faster mass transfer rates than conventional sensors, resulting in much lower limits of detection
and faster analyte detection [22]. Recently, electrospun nanofibres have been incorporated into
microfluidic sensing systems to allow for enhanced sample preparation and analyte detection [7,23–27].
In some applications, water-soluble nanofibers have been used to facilitate on-chip reagent storage in
microfluidic biosensors [7,27]. Jin et al. used electrospinning to encapsulate a horseradish peroxidase
tagged antibody into polyvinylpyrrolidone nanofibers [7]. Encapsulating the antibodies within the
water-soluble fibres allowed for stable, long-term storage of the biorecognition element on-chip.
This approach has also been used to allow on-chip enzyme storage [27]. Further, non-water-soluble
electrospun nanofibers have been used as a substrate for microfluidic HIV immunoassays [26],
as on-chip sample concentrators [23], and as a substrate for microfluidic E.coli detection [25].
In these applications, the non-water-soluble nanofibres were able to withstand the fluid flow within the
channels and dramatically increased the functional surface area available within the devices. However,
to date, the effects of electrospun fibre mats on the fluid flow within these microfluidic systems has not
been studied.

Microfluidic channels generally feature low Reynold’s number fluid flow, resulting in laminar
flow patterns and limited fluid mixing [28–30]. Achieving rapid and reliable fluid mixing is essential
for facilitating (bio)chemical reactions and allowing for adequate access of analytes to functional
surfaces within microfluidic sensors [28]. While some applications allow for pre-mixing of reagents
prior to injection into the microfluidic device, often it is necessary for mixing to occur on-chip [29].
Rapid chemical reactions that take place on a sub-millisecond time scale, such as protein folding,
are often studied using microfluidic devices and require on-chip reagent mixing [31]. Additionally,
microfluidic devices are well-suited for performing chemical reactions with hazardous or expensive
chemicals because of the small internal volume of the devices and relative safety compared to
bench-top reactions [29]. Finally, on-chip mixing is crucial to the success of microfluidic assays, both to
facilitate access of analytes to all the functional sites within the sensor and to allow for multiple-step
assays [32,33]. In general, mixing within microfluidic channels can be improved through increasing
the contact surface and lowering the diffusion path between fluids [28,34].

Many micromixers have been proposed and developed to address this need for fluid mixing in
miniaturized devices [35–37]. These mixers can either be integrated directly within the microfluidic
channel or function as a separate component that interfaces with the microfluidic device. Mixers
are classified either as passive or active mixers [28,29]. Passive mixers utilize diffusion and chaotic
advection to achieve mixing [29,30]. Active mixers, on the other hand, apply an external energy field
to enhance mixing within the channel [29]. In general, active mixers produce reliable, complete mixing
but are more complicated and expensive than passive mixers due to the need to integrate the external
force field [28]. Therefore, passive mixers are often much simpler than active mixers and can be easier
to fabricate and utilize. Several common passive mixers include T-type, Y-type, split and recombine,
multi-laminating and jet colliding mixers [29]. In each of these mixers, the flow pattern is manipulated
by different channel geometries or by incorporating microstructures within the channel. Furthermore,
in order for analyte detection to be performed within the microchannel, additional modifications must
be made to immobilize the biorecognition element on the channel surfaces. Currently, most mixers are
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fabricated using photolithography or micromachining, which require access to a cleanroom and/or
expensive machinery [38].

Electrospun fibres, on the other hand, are relatively easy to fabricate and do not require a
cleanroom. A typical electrospinning apparatus consists of a high voltage power source, a syringe
pump, a spinneret (typically a syringe) filled with a polymer spinning dope, and a grounded collector
plate (Figure S1) [1,2]. During electrospinning, the viscous polymer solution is slowly pumped out of
the spinneret, which is placed across from the grounded collector plate. When voltage is applied to the
spinning solution, it forms a Taylor cone at the tip of the spinneret [2]. Once the electrostatic attraction
between the charged polymer solution and the grounded collector plate overcomes the surface tension
at the tip of the spinneret, fibres will accelerate from the tip of the Taylor cone and collect on the
grounded collector plate [1]. Previously, we have demonstrated that electrospun poly(vinyl alcohol)
(PVA) nanofibres can be used for sample purification and analyte concentration within microfluidic
systems [23]. However, due to their complex nonwoven three-dimensional structure, it is hypothesized
that electrospun fibre mats can also be used to enhance fluid mixing within microfluidic channels
through manipulation of the flow patterns within the mats. Additionally, in contrast to micromixers
that utilize channel geometry or two-dimensional microstructures, fibre-based mixers can be fabricated
directly from spinning dopes functionalized with a wide range of additives such as conductive
materials [39,40], enzymes [41], biotin [42,43], and aptamers [44]. These functionalized fibres could
be used to perform analyte detection and fluid mixing without requiring further modifications of the
microchannel. In this work, two different polymers, PVA and PS, were used to produce fibres with
different diameters and morphologies to determine their effect on mixing within PMMA microfluidic
channels. The work here was done using a Y-shape design, however, nanofiber mats can be introduced
into any microchannel system as long as the height and width allow for successful bonding of the
device while the nanofiber mats are within the channels.

2. Materials and Methods

2.1. Electrospinning

The PS fibres were spun using a Spraybase vertical electrospinning system (Avectas, Dublin,
Ireland), while the PVA nanofibres were spun using a homemade horizontal electrospinning system as
previously described [23,24]. Positively charged PVA fibres were produced by adding hexadimethrine
bromide (polybrene, Sigma-Aldrich, St. Louis, MO, USA) into the PVA spinning dope. The PVA used
had a molecular weight of 78,000 g/mol and is 99.7% hydrolyzed (Polysciences Inc., Warrington, PA,
USA) [24]. A 10% w/v PVA spinning dope was first created by dissolving PVA in deionized (DI) water
at 95 ˝C for four hours. Then, polybrene was dissolved in DI water at room temperature for 10 min,
and was added to the PVA solution to make a final spinning dope with a 90/10 w/w PVA/polybrene
ratio. The nonionic surfactant Triton X-100 was added to the spinning dope to improve spinnability,
and the resulting solution was mixed for two minutes using a vortex at its highest speed. The spinning
dope was then loaded into a 5 mL BD plastic syringe with an 18 gauge needle, which was placed
horizontally into a syringe pump. The syringe pump was set to 0.01 mL/min. A high voltage power
source was connected to the spinning needle and set to 15 kV (Gamma High Voltage Research Inc.,
Ormond Beach, FL, USA). A piece of copper wrapped in aluminum foil was used as a grounded
collector plate and was placed 15 cm from the syringe tip. After spinning, the aluminum foil was
removed from the copper plate and was cut into strips using a razor blade. The nanofibre mats were
then peeled off the foil strips using tweezers and were placed on pieces of poly(methyl methacrylate)
(PMMA) that had undergone treatment in an UV-ozone (UVO) oven for 15 min (Jelight Company
Inc., Irvine, CA, USA). The UVO oven contained a low pressure mercury vapor grid lamp, which had
an output of 28,000 mW/cm2 at 254 nm. During UVO treatment, oxygen was flowed through the
oven at 0.5 L/min. The PVA fibres were initially spun as 20, 30, and 40 µm thick mats, however the
nanofibre distribution varied along the heights of the mats, producing inconsistent mixing within the
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channels. Therefore, nanofibre mats of approximately 10 µm height were spun and stacked to create
thicker nanofibre mats with more uniform nanofibre distributions. The mats were cut into 3 mm, 5 mm,
and 10 mm long strips for the studies examining the effect of nanofibre mat length on mixing.

The PS microfibres were spun using a solvent solution composed of 50/50 v/v
tetrahydrofuran/dimethylformamide. Polystyrene with a molecular weight of 280,000 g/mol
(Sigma-Aldrich) was dissolved in the solvent solution at room temperature for 24 h on a stir plate on its
medium setting. Different fibre morphologies were produced by using three different PS concentrations
in the spinning solutions: 12.5%, 15%, and 17.5% w/v.

The PS spinning solution was loaded into a 5 mL glass syringe (BD) and was spun using a
Spraybase vertical electrospinning system with an 18 gauge needle. The fibres were spun using a 20 cm
vertical distance, 10.6 kV applied voltage, a 0.01 mL/min flow rate, and a circular metal collector plate.
The fibres were then manually transferred to PMMA squares that had been treated in the UVO oven for
4 min at an oxygen flow rate of 0.5 L/min and lamp power of 28,000 mW/cm2 (Jelight Company Inc.).
The fibre mats were cut into 10 mm long strips using a scalpel and unwanted fibres on the PMMA
surfaces were removed using a strip of adhesive tape. The mats were incorporated onto the PMMA
chips in one-layer or two-layer configurations.

2.2. Analysis of Fibre Morphology

The PVA nanofibre mats were assessed using a SP2 confocal microscope (Leica, Wetzlar, Germany)
to measure the thickness of the mats prior to incorporation into the microfluidic channels [23].
The polybrene/PVA nanofibres produced in our lab have previously been demonstrated to have
an average diameter between 450 and 550 nm [24].
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Figure 1. (Top) TEM image of (A) 12.5% w/v (B) 15% w/v and (C) 17.5% w/v PS microfibres. Fibres
were spun onto carbon-coated grids for 15 s. Micrographs taken using a type CM 12 Philips TEM
at 120 kV; (Bottom) Morphology of 12.5% w/v PS microfibres. Fibres were spun onto a metal collector
plate and transferred to a UVO-treated piece of PMMA. Image taken with a Nikon Digital Eclipse C1
confocal microscope in brightfield setting.

Micrographs of the three different types of PS microfibres were taken using a transmission electron
microscope (TEM, type CM 12 from Philips, Hamburg, Germany) at 120 kV and a magnification ranging
from 800-fold. In order to facilitate TEM analysis, the fibres were spun directly onto carbon-coated
copper grids (400 mesh from Plano, Wetzlar, Germany) for 15 s. The diameter of the cylindrical
portion of the different nanofibre types was measured in six points per fibre type and averaged.
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The 12.5% w/v PS fibres had a 0.8 ˘ 0.14 µm diameter, 15% w/v PS fibres had a 1.5 ˘ 0.2 µm
diameter, and 17.5% w/v PS fibres had a 2.7 ˘ 0.5 µm diameter (Figure 1). Additionally,
the 12.5% w/v PS fibres had a heavily beaded morphology (Figure 1), the 15% w/v fibres had
sporadic beading, and the 17.5% w/v had large cylindrical diameters with no beads. The beads were
not considered when measuring the microfibre diameters.

2.3. Microchannel Fabrication

Y-shaped microfluidic channels were stamped into PMMA using hot embossing with a copper
template (Figure S2) [24]. The Y-shaped channel was used to allow injection of two different fluid
solutions into the microchannel in order to simplify visualization of fluid mixing within the channel.
The copper template was fabricated at the Cornell Nanoscale Facility (CNF) using KMPR 1050
photoresist (MicroChem Corp., Westborough, MA, USA) and copper electroplating to produce raised
copper channels on a smooth copper plate [45]. The channels used in this study were 31 µm deep,
1 mm wide, and 29 mm long. The channels used with the PVA nanofibres were embossed using a
Carver Laboratory Hot Press (Carver, Inc., Wabash, IN, USA) at 130 ˝C and 10,000 lbs (44,482 N)
of force. The channels used with the PS microfibres were embossed using a Specac Hot Press
(Specac Ltd, Orpington, Kent, UK) at 100 ˝C and 0.1 ton of force for 5 min. The inlet and outlet
holes were drilled at each end of the channel with a 0.8 mm steel drill bit.

UVO-assisted thermal bonding was used to create the completed microfluidic devices [23].
First, the pieces of PMMA that had been embossed with the microfluidic channels were UVO treated
using an oxygen flow rate of 0.5 L/min and lamp power of 28,000 mW/cm2. The PMMA channels
used with the PS microfibres was treated for 4 min, while the PMMA channels used with the PVA
nanofibres was treated for 15 min. Then, the pieces of PMMA with the fibre mats were UVO treated
for 4 min. The two pieces of PMMA were sandwiched together so that the fibres faced the
microchannels. The sandwich assembly was placed between two blank pieces of copper and pressed
on the hot press. PS fibres were bonded into channels at 80 ˝C and 0.1 ton force, while PVA nanofibres
were bonded into channels at 100 ˝C and 10,000 lbs (44,482 N) of force. The different UVO treatment
times, temperatures and applied forces were necessary due to differences between the two hot presses
used. Polyvinyl chloride tubing (Tygon, Saint-Gobain Performance Plastics, Paris, France) with
a 0.508 mm external diameter was glued into the inlet and outlet holes with Quicktite instant adhesive
gel (Loctite, Henkel Corporation, Westlake, OH, USA).

2.4. Fluid Mixing

Each Y-shaped microfluidic channel was filled with water in one inlet and a 0.03 M sulforhodamine B
(SRB) in water solution in the other inlet (Figure 2).

Because channels filled with nanofibre mats are prone to form air bubbles at low flow rates,
each channel was initially filled with fluid at 20 µL/min for 5 min to remove air bubbles from
the nanofibre mats and ensure that they didn’t impact the mixing observed. Then, the flow rate
was dropped to 5 µL/min and a steady flow profile was allowed to develop for 5 min before a
fluorescent microscopy image was taken of the channel (Leica). This was repeated for flow rates
between 4 µL/min and 1 µL/min. Lower flow rates were not used as pulsatile flow was observed at
rates below 1 µL/min.

Several fluid mixing experiments were recorded using an Eclipse 90i confocal microscope
(Nikon, Tokyo, Japan) to confirm that the observed mixing was consistent along the height
(z direction) of the channel (Figure S3 in Supplementary Information). The fluid mixing experiments
were conducted on the stage of the confocal microscope. During fluid flow, the confocal was used to
perform a z-scan of the channel in order to examine the fluid flow profile along the z direction of the
channel. Images of the channels were taken at 1 µm intervals in the z direction.
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Figure 2. Angled top view of the Y-channel mixer with embedded nanofiber mats. One inlet was used
to fill the channel with DI water, the other filled the channel with SRB in water. Nanofibre mats with
different lengths and thicknesses were placed in the center of the channel to encourage fluid mixing.
The extent of fluid mixing in Region A of the channel (before fibre mat) was compared to the extent of
fluid mixing in Region B (after fibre mat) using ImageJ to measure how the pixel intensity changed
along a 1 mm wide vertical column that spanned the channel (blue arrow in picture).

2.5. Data Analysis

ImageJ was used to measure the pixel intensity of each pixel in a column along the 1 mm width
of the channel (Supplementary Information). In control channels, the pixel intensities along this
column will vary from high values (in SRB portion of channel) to low values (in water portion of
the channel) (Figure 2). Well-mixed channels will have uniform pixel intensities along the column,
as the entire channel is filled with the same fluid mixture. The mixing index of each column of pixels
was determined using the following formula [46,47]:

mixing index “

d

1
N

ÿ

ˆ

IK ´ IO
IO
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where IK = intensity of a single pixel in a column; I0= average intensity of all pixels in a column;
N = number of pixels in a column.

The average mixing index at the inlet of each channel was determined by averaging the mixing
index of each column in a 50 pixel wide section of the channel before the nanofibre mats where a
steady flow profile existed (region A in Figure 2). The average mixing index of the channel after the
nanofibre mat was determined by averaging the mixing index of each column in a 50 pixel wide section
of the channel near the outlet of the channel where again a steady flow profile existed (region B in
Figure 2). Each set of parameters was tested using between 3 and 5 different channels to determine
reproducibility of the results.

2.6. Statistics

Average Mixing Index data for all the channels were compiled in Microsoft Excel (Microsoft,
Redmond, WA, USA). A MATLAB (MathWorks, Natick, MA, USA) code was written to perform
multiple linear regression analysis on the data and determine the statistical significance of mixing
within channels containing the nanofibre mats (as compared to mats containing no nanofibres)
(Supplementary Information Code S1, Code S2, Code S3, and Code S4). Multiple comparisons were
made using the Holm test, which controls for the accumulation of error that occurs when multiple
t tests are performed [48]. The Holm test sequentially compares the p values of multiple comparisons
(from smallest p value to largest p value), with each comparison getting progressively less conservative
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to account for the number of comparisons that have already been done [49]. The roles of nanofibre mat
length, nanofibre mat height (i.e., number of fibre layers), and flow rate on observed fluid mixing was
analyzed for the PVA nanofibres. The influence of nanofibre mat morphology (diameter and number
of fibre layers) and flow rate on observed fluid mixing was determined for the PS microfibres. Each
condition was run in at least triplicate and the mixing values used by the MATLAB code were the
average of 50 pixel-wide columns. Significance was set as p < 0.05.

3. Results

3.1. Thick Nanofibre Mats

Initially, PVA nanofibre mats that were 20, 30 or 40 µm thick were incorporated into the
microfluidic channels (31 µm deep) to determine if thicker nanofibre mats produced better mixing by
increasing the volume of the channel occupied by nanofibres. Each nanofibre thickness was tested
as a 3 mm, a 5 mm, and a 10 mm wide strip of fibres. While mixing was indeed observed in many of the
channels tested, there was significant variability in the flow profiles produced from the same nanofibre
mat morphology (Figure S4 in Supplementary Information). Confocal microscopy of the nanofibre mats
demonstrated that the nanofibre distribution along the thickness of the mats was not uniform. The mats
were most dense at the bottom of the mat and frequently had a sparse nanofibre distribution in the
top of the mat (Figure S4 in Supplementary Information). However, while the fibre distribution
between nanofibre mats with the same thickness also varied significantly along their depths,
the first ~10 µm showed a consistent morphology both within a single nanofibre mat and between
different fibre mats.

Several groups have previously demonstrated that electrospun nanofibres are not evenly collected
on the grounded collector plate due to the shape of the electric field that exists between the charged
spinneret and the collector plate [50–52]. During electrospinning, the thickness uniformity of the
nanofibre mats has been shown to decrease with longer spinning times, with short spinning times
yielding the most uniform nanofibre mats [50]. Therefore, it was determined that the variations seen in
the flow profiles in the thick nanofibre mats were caused by these non-uniformities.

3.2. Layered PVA Nanofibre Mats

In order to address the need for nanofibre filters with uniform morphologies, Zhang et al. [50]
and Podgórski et al. [52] created multi-layered nanofibre mats by stacking thin nanofibre mats.
These multi-layered filters demonstrated both more uniform fibre distribution and improved filtration
performance. Therefore, to improve the reproducibility of our mats, we spun ~10 µm thick nanofibre
layers and stacked them to obtain thicker nanofibre mats with more uniform fibre distributions.
This layered approach was used with varying fibre mat length (3, 5 and 10 mm) and thickness
(one layer or two layer). Images taken of the different channels during fluid flow demonstrated that
the mixing produced by all of the nanofibre mat morphologies was nearly identical (Figure 3).

For data analysis, ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA) was used
to measure the pixel intensity of each pixel in a vertical column that spanned the 1 mm width of
the channel (Figure 2). In the unmixed regions before the nanofibre mats, the pixel intensities along
a column had a binary profile, indicating that the channel was divided into two different flows
that were not mixed (Figure 4). This is expected for laminar flow patterns. The half of the channel
filled with water had a measured pixel intensity of ~10, the half of the channel filled with SRB
had a measured pixel intensity of ~50. A peak was observed at the interface of the two solutions.
As the SRB concentration chosen exhibited a slight quenching effect, its diluted form at the interface
therefore results in a higher fluorescence signal. This two-phase system enters the nanofibre mats.
Mixing occurring within the nanofibre mat will result in a decline of the signal difference observed
between the two halves of the channel. For quantification, the pixel intensity distribution is also
measured after the solution exits the nanofibre mat. As can be seen in Figure 4, the profile becomes
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more uniform, with the pixel intensity increasing rapidly and plateauing where the solution in the
channel is mixed. Furthermore, it can be observed that a pure buffer solution is no longer present
as the minimum pixel intensity within the channel increased significantly to ~25. The highest pixel
intensity is reached more quickly in the region after the nanofibres and is more consistent, as the SRB
dye has spread to a larger portion of the channel and has mixed into a more uniform profile.
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The average mixing index at the inlet and outlet of each type of channel was calculated 
using ImageJ (Table 1). The change in outlet mixing index between the control channels (no 
nanofibres) and the nanofibre channels was calculated to determine whether the channels 
containing nanofibre mats exhibited more fluid mixing than empty control channels (Table 1 
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nanofibre mats studied produced the most mixing in the two-layer mat configuration  
(Table 1). As the one-layer mat will only occupy approximately one third of the total height 

Figure 3. Example images of fluid flow through nanofibre mats within microfluidic channels. Each set
of nanofibre mat morphologies was investigated at a flow rate of 1 µL/min. Arrows indicate direction
of fluid flow through the channels. Black lines indicate the location and length of the nanofibre mats
within the channels. The inlet of each channel consisted of a red fluid stream (SRB) and a black
fluid stream (water). After the nanofiber mats, the two fiber steams have mixed, producing a more
homogeneous diluted SRB/water outlet fluid solution. Fluorescent microscope, 5ˆ objective.
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Figure 4. Pixel intensities of a region before the nanofibre mat and after the nanofibre mat for a 5mm,
two-layer mat with flow rate of 1 µL/min. Pixel intensity values shown represent the average value
of 50 vertical columns across the 1 mm width of the channel.
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The average mixing index at the inlet and outlet of each type of channel was calculated using
ImageJ (Table 1). The change in outlet mixing index between the control channels (no nanofibres) and
the nanofibre channels was calculated to determine whether the channels containing nanofibre mats
exhibited more fluid mixing than empty control channels (Table 1 and Table S1 in Supplementary
Information). Based on their outlet mixing indexes, the nanofibre mats studied produced the
most mixing in the two-layer mat configuration (Table 1). As the one-layer mat will only occupy
approximately one third of the total height of the microchannel, the fluid can partly pass above the
nanofibre mat without having to flow directly through the mat. On the other hand, the two-layer mat
will fill most of the channel height, forcing the fluid to pass through the nanofibre mats. Additionally,
the outlet mixing index values for the two-layer nanofibre mats had lower standard deviations than
the one-layer mats or the control channels, indicating that the mixing observed in the two-layer mat
morphology is more reproducible.

Table 1. Average mixing index in channels containing different PVA nanofibre mats. Each mixing
index was calculated for channels with a flow rate of 1 µL/min. Values shown are calculated as the
average mixing index of at least three channels.

Morphology Mixing Index
(inlet)

Standard
Deviation

Mixing Index
(outlet)

Standard
Deviation

Difference from
Control Outlet

Standard
Deviation

Control: No Fibres 0.8 0.17 0.71 0.12 - -
3 mm 1 layer 0.56 0.20 0.41 0.13 0.30 0.17
3 mm 2 layer 0.53 0.07 0.36 0.09 0.35 0.15
5 mm 1 layer 0.64 0.08 0.45 0.11 0.26 0.16
5 mm 2 layer 0.45 0.08 0.29 0.09 0.42 0.15
10 mm 1 layer 0.74 0.22 0.52 0.07 0.19 0.14
10 mm 2 layer 0.57 0.21 0.32 0.06 0.39 0.13

It was also observed that for the two-layer mat morphologies, the average mixing index at the
inlet of the channels was markedly lower than the inlet mixing index of the channels containing no
nanofibres (Table 1). We assume that this is caused by back pressure produced by the mats. In turn,
this pressure would slow the fluid velocity at the inlet of the channel, allowing for more diffusive
mixing before the fluid even enters the nanofibre mat and enhancing the overall desired mixing of the
two solutions.

The effect of fluid flow rate on observed mixing was also determined. As expected, the amount of
mixing observed in the channels increased slightly as the flow rate decreased (Figure S5 and Table S2
in Supplementary Information).

Multiple linear regression was used to determine if the mixing observed in the channels containing
PVA nanofibres was statistically different from the diffusive mixing observed in empty control channels
(Table S1 in Supplementary Information). The analysis showed that the increase in fluid mixing
observed in all the PVA nanofibre mats was statistically significant (p < 0.05), with the greatest increase
in mixing observed with the two-layer mat morphologies as expected. The p value for mixing observed
in the 3 mm 2 layer morphology is 2.35 ˆ 10´10 with values below 0.05 generally considered to show
statistically significant difference in data sets [53].

In order to better understand the influence of nanofibre mat height (number of layers) and length
on the observed mixing, additional statistical analysis was performed. Based on the outlet mixing
index values for the channels containing PVA nanofibre mats, the number of fibre mats and the
flow rate appear to have an effect on the mixing produced in the microchannels, while the length
of the nanofibre mat does not appear to play a role. Therefore, multiple linear regression was used
to test these hypotheses with significance set as p < 0.05 (Table S2 in Supplementary Information).
Overall, the hypothesis that the number of fibre mats affects the mixing index was highly significant
(p = 5.15 ˆ 10´8). On average, the two-layer mats reduced the mixing index by 0.14 relative to the
one-layer mat. The flow rate was also found to play a statistically significant role in the observed
mixing, with p = 0.0045. The mixing index increased by an average of 0.03 for each 1 µL/min increase
in flow rate. However, the effect of nanofibre mat length was not significant (p = 0.24).
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3.3. Layered PS Microfibre Mats

In order to study the effects of fibre diameter and shape on fluid mixing within the channels,
PS microfibres of different diameters were incorporated into Y-shaped channels (Figure S6 in
Supplementary Information). The PS fibres were chosen for this study since they afforded a much
larger diameter (2–7 times lager) than the positively charged PVA nanofibres used in the previous
parts of this work. Several labs have successfully used micropillars with diameters in the 10 µm range
to encourage fluid mixing within microfluidic systems [54,55]. Therefore, investigation of mixing
within the PS mats would determine if fibres with micrometer diameters could similarly be used as
obstacles to enhance fluid mixing. Fibres with diameters larger than 2.7 µm were not investigated
as they could not be successfully bonded into the microfluidic channels. Additionally, the PS fibres
have a beads-on-a-string morphology when spun at lower polymer concentrations and a smooth,
cylindrical morphology at high concentrations. Therefore, PS fibres were also used to determine which
fibre shape (beaded or smooth) produces more mixing within the channels. In the end, three different
PS fibre types were used in this study (Figure 1). Fibres spun from a 12.5% w/v PS solution had a
beads-on-a-string morphology and a diameter of 0.8 ˘ 0.14 µm. Fibres spun from a 15% w/v PS
solution have few beads and a smooth cylindrical morphology with a diameter of 1.5 ˘ 0.2 µm. Finally,
fibres spun from a 17.5% w/v PS solution have no beads and a cylindrical morphology with a diameter
of 2.7 ˘ 0.5 µm.

Based on the previous results, which indicated that mat length does not play a significant role
in mixing, the microfibre mats were always 10 mm long and stacked in one or two layers within
the channels. The 10 mm mat length was chosen as PS fibres are difficult to cut into smaller mats
and the most reproducible mats could be made at this length as shorter mats were prone to tearing
while being cut. SRB and water were pumped through the channels at flow rates between 1 µL/min
and 5 µL/min (Figure S6 in Supplementary Information). Similar flow profiles at the inlet (Figure S7
in Supplementary Information) and outlet (Figure S8 in Supplementary Information) of the channels
were observed for the PS systems as described above for the PVA nanofibre mats.

The average mixing index values at the inlets and outlets of the different channels were calculated
using ImageJ (Table 2). The difference in outlet mixing index for the microfibre channels and the
control channels was used as a metric of how the various PS fibre morphologies affected mixing within
the channels.

Table 2. Average mixing index in channels containing different PS fibre mats. Calculated for channels
with a flow rate of 1 µL/min. Each mixing index is calculated as the average mixing index of at least
three channels.

Morphology Mixing Index
(Inlet)

Standard
Deviation

Mixing Index
(Outlet)

Standard
Deviation

Difference from
Control Outlet
Mixing Index

Standard
Deviation

Control: No Fibres 0.80 0.17 0.71 0.12 - -
1 layer 12.5% 0.84 0.12 0.64 0.17 0.07 0.21
2 layer 12.5% 0.77 0.05 0.56 0.09 0.15 0.15
1 layer 15% 0.87 0.02 0.78 0.05 ´0.07 0.13
2 layer 15% 0.67 0.05 0.49 0.03 0.22 0.12

1 layer 17.5% 0.71 0.28 0.56 0.19 0.15 0.22
2 layer 17.5% 0.72 0.23 0.57 0.18 0.14 0.22

The mixing in the PS fibres exhibited many of the same trends as the mixing in the PVA nanofibre
mats, though the average mixing indexes were higher for the PS fibres (indicating less mixing).
As with the PVA nanofibres, the two-layer PS fibre morphologies produced a larger change in outlet
mixing index than the one-layer morphologies (Table 2). Additionally, the two-layer morphologies
had smaller standard deviations in their outlet mixing index values, indicating that their mixing is
more reproducible than the one-layer mats. Finally, the inlet mixing index values for the two-layer
mats were also smaller than the inlet mixing index of the control channels, indicating that the increase
in mixing observed in two-layer fibre mats is due both to an increase of diffusive mixing in the inlet
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region of the channel and mixing from fluid flow through the fibre mat itself. The PS fibres produced a
smaller change in outlet mixing index than the PVA nanofibres, indicating that it is was more effective
to use the nanoscale fibres than the larger microfibres to induce mixing in the microfluidic channels.

In order to determine if the mixing in the different PS mats was statistically significant
(when compared to empty control channels), multiple linear regression was used. Multiple
comparisons within the mat type group were made using the Holm test with the overall p-value set as
p < 0.05. The different fibre weight percentages and layer combinations were represented as individual
variables and compared for significance relative to their respective control of no fibre mat (Table S3 in
Supplementary Information).

There were three PS microfibre morphologies that produced a statistically significant increase
in mixing when compared to empty control channels: 1 layer 17.5% w/v PS, 2 layer 15% w/v PS,
and 2 layer 17.5% w/v PS. Therefore, though overall mixing was highest with PVA nanofibre mats
(which have the smallest diameters of all the fibres used in this study), within the PS microfibres
mixing increased with increased diameter. This suggests that the mixing observed in the microfibres
may be caused by a different mechanism than the mixing observed in the nanofibre mats. Multiple
linear regression analysis was performed once more to determine the effect of fibre mat thickness
(number of layers) and morphology (12.5%, 15%, or 17.5% w/v PS) on the mixing observed in the
PS mats (Table S4 in Supplementary Information). Once again, the fibre mat thickness had a very
significant effect on fluid mixing, though the magnitude of this effect was decreased for the PS
fibres (´0.084 change to the outlet mixing index) when compared to using two layers of PVA fibres
(´0.142 change to the outlet mixing index). Additionally, increasing the diameter of PS fibres also
increased the mixing observed in the channels. Finally, flow rate once again affected the mixing
observed, with decreasing mixing with increasing flow rate (Table S4).

4. Discussion

Microfluidic analytical systems depend on efficient fluid mixing to ensure that the desired
reactions can take place under optimal conditions. This work examines the mixing effect caused
by nanofibre mats that have been integrated into a Y-shaped polymer microchannel (Figure 2).
The question at hand is whether electrospun fibre mats used primarily for immobilization, separation,
or transduction purposes also afford enough mixing capabilities so that the additional integration
of passive or active mixers into a microanalytical system is unnecessary. Many passive micromixers
reported in the literature utilize obstacles to split inlet streams into narrow flow streams, thus increasing
the interfacial areas of the fluids and decreasing mixing time [56,57]. The obstacles used within
these studies all have diameters on the order of 10 or 100 µm, making them substantially larger
than the fibres used in this study [28,29,35,57]. Indeed, the individual fibres themselves are likely
too small to serve as obstacles that redirect the flow pattern within the channels. However, it was
postulated that the dense, porous structure of the fibre mats would lead to enhanced mixing of solutions
flowing through the mats. In order to investigate which type of fibrous media was most capable of
causing increased mixing within microfluidic channels, both electrospun nanofibres (PVA) and small
electrospun microfibres (PS) were incorporated into the microchannels. Parameters investigated were
fibre mat density, mat thickness (these two are closely related in the electrospinning process) [23],
mat length, fibre diameter, fibre shape, and flow rate.

4.1. Comparison of PVA and PS Fibre Mixing

The amount of fluid mixing observed was highest in the PVA nanofibre mats, which had a much
smaller diameter (450–550 nm) than the PS microfibres (0.8 µm, 1.5 µm, and 2.7 µm). However, within
the PS microfibre mats, mixing increased with increasing fibre diameter, indicating that the mechanism
of mixing within the PS and PVA fibres is different.

We assume that the largest PS microfibres can cause some flow manipulation through the
volumetric presence of the microfibre, similar to using micropillar obstacles within the channel.
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However, the microfibres used within this study are still much smaller than the 10–100 µm diameter
obstacles frequently used within micromixers, resulting in less mixing than reported in other
obstacle-based micromixers (Table 3). In contrast, with the PVA nanofibre mat, it is the porous,
inhomogeneous 3D shape of the mat itself that causes the increased dispersive mixing. It has been
reported that micromixers that utilize an asymmetric arrangement of obstacles yield significantly more
mixing than a symmetric obstacle arrangement [34,57]. An asymmetrical obstacle distribution within
the channel results in different resistances to flow in the lateral direction of the channel, causing the
fluids to find paths of least resistance through the obstacles [34]. The fluid flow is then repeatedly
distorted and redirected as it flows through the obstacles, which in turn increases mixing [34].
The inhomogeneous pore size, pore density and fibre distribution of the PVA nanofibre mats similarly
force the fluid to find paths of least resistance as it enters and travels through the fibre mat, producing
the increase in mixing reported in this work. On the other hand, the PS microfibre mats used in this
study have a more homogeneous pore size and distribution within the channels and thus produce
less mixing within the channels than the PVA nanofibre mats. While the average pore size of the mats
used in this study was not measured in order to prevent damage to the mats prior to incorporation
within the microfluidic devices, average pore size within nanofibre mats typically correlates with
the nanofiber diameter [58]. Our lab has previously measured the mean pore size of non-layered
PVA mats using an 1100-AEHXL capillary flow porometer. The PVA mats had a measured mean
pore size between 0.62 and 0.72 µm, which agrees with predictions for nanofibre mats with diameters
of 300–550 nm [58]. Because fibre mat pore size and distribution appear to have a significant effect
on mixing, future studies will look at optimizing pore size and distribution within the fibre-based
micromixers. Several labs have reported methods for controlling the size, shape, and distribution of
electrospun nanofibre pores, which could be used to examine the relationship between mat porosity
and fluid mixing [59–62].

The chemistry of the two polymers used likely also contributed to their different mixing
behaviours. The hydrophilicity of PVA [63] may facilitate movement of water into the pores of
the PVA fibre mats, thus producing the increased mixing observed. Further, the hydrophobic PS
fibres [64] would likely have repelled the mixing fluids, making it more difficult for fluid to fill the
pores of the PS fibre mats and mix together.

Table 3. Comparison of passive micromixers.

Mixer Setting Mixing Index Reference

Split and Recombine Re = 10 0.9 Ansari et al. [65]
Re = 60 0.7 Ansari et al. [65]

Diamond Obstacles Asymmetric Distribution 0.2 Bhagat et al. [57]
Zigzag 0.1 Jeon et al. [66]

Circular Baffles 0.3 Jeon et al. [66]
PVA Nanofibres 2 layer 5 mm 0.3 This work

For all the fibres studied, mixing increased with mat height and with decreasing flow rate
(Table S2 in Supplementary Information). Additionally, the fibre mat length did not have a significant
impact on the final mixing observed, which leads to the conclusion that, for mixing in the PVA fibre
mats, most of the observed mixing effects are from the fluid entering and exiting the fibre mats.
Finally, the mixing index within the channels containing two layers of PS or PVA fibre mat was lower
than the control mixing index at both the inlet and outlet of the channels, suggesting that the observed
mixing was also caused by increased back pressure in the channels containing fibre mats.

4.2. Comparison to Conventional Micromixers

To date, passive fluid mixing in microfluidic channels is typically accomplished through patterning
of microstructures into polymer channels or by creating complex channel geometries that alter the
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flow pattern [29]. While these passive mixers can be very effective, they often utilize multi-step
lithography or require aligned assembly of multilayered channel geometries [57]. Additionally,
simple channel geometries such as T-junction and Y-junction channels have also been used to allow
for complete diffusive mixing by optimizing channel length [67,68]. While this can be very effective
for thin microchannel designs, the length of channel required to allow for mixing in these simple
channel designs is dependent on channel width and mixer aspect ratio [69,70], with wider channel
designs requiring channel lengths on the order of tens of centimetres to allow for complete mixing [70].
Therefore, microanalytical systems that have to find strategies for effective mixing, immobilization,
separation, and transduction can take advantage of the apparent dual functionality of nanofibres
and don’t have to use additional mixing structures when already using nanofibres as functional
components in their systems. While expertise in electrospinning is required to spin and functionalize
the fibres, a basic electrospinning system consists only of a syringe pump, a high voltage source,
and a grounded collector plate and can be carried out in any lab setting. It is thus much simpler
than most microfluidic fabrication methods. Additionally, fibres produced by electrospinning can be
spun out of many different polymers and with many different functionalities [71–73]. Furthermore,
the two-layer PVA micromixers described in this work produced an average outlet mixing index
of between 0.29 and 0.36, corresponding to 71% and 64% fluid mixing, respectively. These mixing
index values are comparable to or better than several previously reported passive micromixers, such
as circular baffle, diamond obstacle, and split and recombine mixers, though it is less than the 90%
mixing observed using zigzag mixing channels (Table 3). However, unlike these other micromixers,
electrospun nanofibre mats can easily be further functionalized to allow for coupling of fluid mixing
directly with analyte detection or sample preparation as demonstrated in our research group [21,23,24].
The increased surface area provided by the nanofibre mats would also increase the sensitivity of
detection when compared to conventional, two-dimensional sensors due to an increase in binding sites
within the device.

While electrospun fibre mats are a promising alternative to conventional micromixers,
the electrospinning process depends on many different parameters (such as solution viscosity, ambient
temperature and humidity, feed rate, applied voltage, etc.) which can make precise control of
fibre morphology difficult. Further, because electrospinning typically uses a spinneret to produce
ultrathin fibres, it can have a lower yield than would be ideal for some industrial applications [74].
Therefore, future work will seek to optimize the fibre formation process used to produce the fibre-based
micromixers to allow for more precise control over fibre morphology and deposition. The use
of temperature and humidity controlled spinning systems could be examined to reduce beading
and better control solvent evaporation. Further, alternative collector plates could be used to allow
for better fibre alignment. In particular, rotating drum [75], aligned electrode [76], and air-flow
impedance [77] collector plates can be used to more precisely control fibre alignment and distribution.
Finally, alternative fibre formation processes could be utilized to address the reproducibility and
scalability of the electrospinning process including meltblowing, bi-component spinning, forcespinning
and flashspinning [78]. Mahalingam et al. have developed a pressurised gyration fibre formation
process that could be used for mass production of fibres such as those used in this work [79].

5. Conclusions

Multiple morphologies of electrospun poly(vinyl alcohol) and polystyrene fibres were
incorporated into poly(methyl methacrylate) microchannels to study their ability to enhance fluid
mixing. The most mixing was observed in the PVA nanofibre mats, which had a diameter
of 450–550 nm. The PVA nanofibre mats had an inhomogeneous morphology, which is likely
the cause of the increased fluid mixing when compared to the more homogeneous PS fibre mats.
On the other hand, the PS fibres likely produce mixing due to their volumetric presence within
the channel, acting much like traditional microstructure-based mixers. Further, the electrospun
fibre mats can easily be functionalized to allow for sensitive analyte detection as well as fluid
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mixing. The reproducible mixing and relatively easy fabrication of electrospun fibre mats makes
them a highly interesting functional component for microanalytical systems in which reaction,
separation, immobilization, and transduction capabilities can be combined with their inherent passive
mixing performance. Amazingly, they even outperform many passive mixers described in literature.
As previously demonstrated in our lab, nanofibres can function as a concentration matrix [23] and as
an immobilization matrix [42]—the added benefit of mixing produced by the nanofibres makes them
thus an even more interesting new material to study for use in bioanalytical sensing systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/8/1238/s1:
Figure S1: Schematic of a basic electrospinning apparatus; Figure S2: Schematic of hot embossing and bonding
protocol; Figure S3: Confocal Z scan of a channel during mixing experiments; Figure S4: Thick nanofibre
experiments; Figure S5: Outlet mixing index at different flow rates, Table S1: Multiple linear regression variables
and their outcome (PVA fibres); Table S2: Multiple linear regression variables and their outcome for analyzing
the effect of poly(vinyl alcohol) mat morphology; Figure S6: Flow profiles in channels containing PS fibre mats;
Figure S7: Flow profiles of inlets of channels containing PS fibre mats; Figure S8: Flow profiles at outlets of
channels containing PS fibre mats; Table S3: Multiple linear regression variables and their outcomes (PS fibres);
Table S4: Multiple linear regression variables and their outcomes for analyzing the effects of polystyrene mat
morphology on mixing index; Code S1: PVA analysis-effect of length and number of fibre mat layers; Code S2:
PVA analysis-comparison of each PVA mat type; Code S3: PS Analysis-effect of polymer weight percent and
number of layers; Code S4: PS analysis-comparison of each type of PS fibre mat.

Acknowledgments: The authors are grateful for the partial support provided by the National Science Foundation
(NSF) under grant No. CBET-0852900. Also, this work was performed in part at the Cornell NanoScale Facility,
a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science
Foundation (Grant ECCS-0335765). Finally, the authors also acknowledge partial funding through the Multistate
Federal Formula Grant “Development of a novel rapid-on-site biosensor for food safety” Project #2012-13-132.

Author Contributions: Lauren Matlock-Colangelo, Antje Baeumner, and Margaret Frey conceived and
designed the experiments; Lauren Matlock-Colangelo performed the experiments; Nicholas Colangelo and
Lauren Matlock-Colangelo analyzed the data; Lauren Matlock-Colangelo and Christoph Fenzl performed
microscopy and analyzed images.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. In Proceedings of the
Conference Record of the 1993 IEEE Industry Applications Society Annual Meeting, Toronto, ON, Canada,
2–8 October 1993; Volume 3, pp. 1698–1703.

2. Matlock-Colangelo, L.; Baeumner, A.J. Recent progress in the design of nanofiber-based biosensing devices.
Lab. Chip 2012, 12, 2612–2620. [PubMed]

3. Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering.
Adv. Drug Deliv. Rev. 2016. in press. [CrossRef] [PubMed]

4. Jing, X.; Mi, H.-Y.; Peng, J.; Peng, X.-F.; Turng, L.-S. Electrospun aligned poly(propylene carbonate)
microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydr. Polym. 2015, 117, 941–949.
[CrossRef] [PubMed]

5. Kucinska-Lipka, J.; Gubanska, I.; Janik, H.; Sienkiewicz, M. Fabrication of polyurethane and polyurethane
based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.
Mater. Sci. Eng. C 2015, 46, 166–176. [CrossRef] [PubMed]

6. Ru, C.; Wang, F.; Pang, M.; Sun, L.; Chen, R.; Sun, Y. Suspended, Shrinkage-Free, Electrospun PLGA
Nanofibrous Scaffold for Skin Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 10872–10877.
[CrossRef] [PubMed]

7. Jin, S.; Dai, M.; Ye, B.; Nugen, S.R. Development of a capillary flow microfluidic Escherichia coli biosensor
with on-chip reagent delivery using water-soluble nanofibers. Microsyst. Technol. 2013, 19, 2011–2015.
[CrossRef]

8. Zhang, P.; Zhao, X.; Ji, Y.; Ouyang, Z.; Wen, X.; Li, J.; Su, Z.; Wei, G. Electrospinning graphene quantum dots
into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B
2015, 3, 2487–2496. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/22596104
http://dx.doi.org/10.1016/j.addr.2016.04.019
http://www.ncbi.nlm.nih.gov/pubmed/27125190
http://dx.doi.org/10.1016/j.carbpol.2014.10.025
http://www.ncbi.nlm.nih.gov/pubmed/25498720
http://dx.doi.org/10.1016/j.msec.2014.10.027
http://www.ncbi.nlm.nih.gov/pubmed/25491973
http://dx.doi.org/10.1021/acsami.5b01953
http://www.ncbi.nlm.nih.gov/pubmed/25941905
http://dx.doi.org/10.1007/s00542-013-1742-y
http://dx.doi.org/10.1039/C4TB02092H


Sensors 2016, 16, 1238 15 of 18

9. Bourourou, M.; Holzinger, M.; Bossard, F.; Hugenell, F.; Maaref, A.; Cosnier, S. Chemically
reduced electrospun polyacrilonitrile-carbon nanotube nanofibers hydrogels as electrode material for
bioelectrochemical applications. Carbon 2015, 87, 233–238. [CrossRef]

10. Adabi, M.; Saber, R.; Faridi-Majidi, R.; Faridbod, F. Performance of electrodes synthesized with
polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors.
Mater. Sci. Eng. C 2015, 48, 673–678. [CrossRef] [PubMed]

11. Zhang, Y.; Liu, S.; Li, Y.; Deng, D.; Si, X.; Ding, Y.; He, H.; Luo, L.; Wang, Z. Electrospun graphene decorated
MnCo2O4 composite nanofibers for glucose biosensing. Biosens. Bioelectron. 2015, 66, 308–315. [CrossRef]
[PubMed]

12. Chung, S.-H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically Stable Rechargeable
Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. Adv. Energy Mater.
2015, 5. [CrossRef]

13. Aravindan, V.; Sundaramurthy, J.; Suresh Kumar, P.; Lee, Y.-S.; Ramakrishna, S.; Madhavi, S. Electrospun
nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries.
Chem. Commun. 2015, 51, 2225–2234. [CrossRef] [PubMed]

14. Singhal, R.; Chung, S.-H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for
high-performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538. [CrossRef]

15. Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery
applications. J. Controlled Release 2014, 185, 12–21. [CrossRef] [PubMed]

16. Mendes, A.C.; Gorzelanny, C.; Halter, N.; Schneider, S.W.; Chronakis, I.S. Hybrid electrospun
chitosan-phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm. 2016, 510, 48–56. [CrossRef]
[PubMed]

17. Pramanik, S.; Pingguan-Murphy, B.; Abu Osman, N.A. Progress of key strategies in development of
electrospun scaffolds: Bone tissue. Sci. Technol. Adv. Mater. 2012, 13. [CrossRef]

18. Jiang, T.; Carbone, E.J.; Lo, K.W.-H.; Laurencin, C.T. Electrospinning of polymer nanofibers for tissue
regeneration. Prog. Polym. Sci. 2015, 46, 1–24. [CrossRef]

19. Rezaei, B.; Ghani, M.; Shoushtari, A.M.; Rabiee, M. Electrochemical biosensors based on nanofibres for
cardiac biomarker detection: A comprehensive review. Biosens. Bioelectron. 2016, 78, 513–523. [CrossRef]
[PubMed]

20. Rezvani, Z.; Venugopal, J.R.; Urbanska, A.M.; Mills, D.K.; Ramakrishna, S.; Mozafari, M. A bird’s eye view on
the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging
directions and future trends. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2181–2200. [CrossRef] [PubMed]

21. Li, D.; Frey, M.W.; Baeumner, A.J. Electrospun polylactic acid nanofiber membranes as substrates for
biosensor assemblies. J. Membr. Sci. 2006, 279, 354–363. [CrossRef]

22. Luo, Y.; Nartker, S.; Miller, H.; Hochhalter, D.; Wiederoder, M.; Wiederoder, S.; Setterington, E.; Drzal, L.T.;
Alocilja, E.C. Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV
cells in a direct-charge transfer biosensor. Biosens. Bioelectron. 2010, 26, 1612–1617. [CrossRef] [PubMed]

23. Matlock-Colangelo, L.; Cho, D.; Pitner, C.L.; Frey, M.W.; Baeumner, A.J. Functionalized electrospun
nanofibers as bioseparators in microfluidic systems. Lab Chip 2012, 12, 1696–1701. [CrossRef] [PubMed]

24. Cho, D.; Matlock-Colangelo, L.; Xiang, C.; Asiello, P.J.; Baeumner, A.J.; Frey, M.W. Electrospun nanofibers for
microfluidic analytical systems. Polymer 2011, 52, 3413–3421. [CrossRef]

25. Matlock-Colangelo, L.; Coon, B.; Pitner, C.L.; Frey, M.W.; Baeumner, A.J. Functionalized electrospun
poly(vinyl alcohol) nanofibers for on-chip concentration of E. coli cells. Anal. Bioanal. Chem. 2016, 408,
1327–1334. [CrossRef] [PubMed]

26. Yang, D.; Niu, X.; Liu, Y.; Wang, Y.; Gu, X.; Song, L.; Zhao, R.; Ma, L.; Shao, Y.; Jiang, X. Electrospun
Nanofibrous Membranes: A Novel Solid Substrate for Microfluidic Immunoassays for HIV. Adv. Mater. 2008,
20, 4770–4775. [CrossRef]

27. Dai, M.; Jin, S.; Nugen, S.R. Water-Soluble Electrospun Nanofibers as a Method for on-Chip Reagent Storage.
Biosensors 2012, 2, 388–395. [CrossRef] [PubMed]

28. Nguyen, N.T.; Wu, Z. Micromixers—A review. J. Micromec. Microeng. 2005, 15, R1–R16. [CrossRef]
29. Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—A review on passive and active mixing principles.

Chem. Eng. Sci. 2005, 60, 2479–2501. [CrossRef]

http://dx.doi.org/10.1016/j.carbon.2015.02.026
http://dx.doi.org/10.1016/j.msec.2014.12.051
http://www.ncbi.nlm.nih.gov/pubmed/25579970
http://dx.doi.org/10.1016/j.bios.2014.11.040
http://www.ncbi.nlm.nih.gov/pubmed/25437368
http://dx.doi.org/10.1002/aenm.201500738
http://dx.doi.org/10.1039/C4CC07824A
http://www.ncbi.nlm.nih.gov/pubmed/25493289
http://dx.doi.org/10.1039/C4TA06511E
http://dx.doi.org/10.1016/j.jconrel.2014.04.018
http://www.ncbi.nlm.nih.gov/pubmed/24768792
http://dx.doi.org/10.1016/j.ijpharm.2016.06.016
http://www.ncbi.nlm.nih.gov/pubmed/27286632
http://dx.doi.org/10.1088/1468-6996/13/4/043002
http://dx.doi.org/10.1016/j.progpolymsci.2014.12.001
http://dx.doi.org/10.1016/j.bios.2015.11.083
http://www.ncbi.nlm.nih.gov/pubmed/26657595
http://dx.doi.org/10.1016/j.nano.2016.05.014
http://www.ncbi.nlm.nih.gov/pubmed/27247186
http://dx.doi.org/10.1016/j.memsci.2005.12.036
http://dx.doi.org/10.1016/j.bios.2010.08.028
http://www.ncbi.nlm.nih.gov/pubmed/20833013
http://dx.doi.org/10.1039/c2lc21278a
http://www.ncbi.nlm.nih.gov/pubmed/22414955
http://dx.doi.org/10.1016/j.polymer.2011.05.026
http://dx.doi.org/10.1007/s00216-015-9112-5
http://www.ncbi.nlm.nih.gov/pubmed/26493980
http://dx.doi.org/10.1002/adma.200801302
http://dx.doi.org/10.3390/bios2040388
http://www.ncbi.nlm.nih.gov/pubmed/25586029
http://dx.doi.org/10.1088/0960-1317/15/2/R01
http://dx.doi.org/10.1016/j.ces.2004.11.033


Sensors 2016, 16, 1238 16 of 18

30. Li, J. Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro-heat Sinks and
Bio-MEMS; ProQuest: Ann Arbor, MI, USA, 2008.

31. Bökenkamp, D.; Desai, A.; Yang, X.; Tai, Y.-C.; Marzluff, E.M.; Mayo, S.L. Microfabricated Silicon Mixers for
Submillisecond Quench-Flow Analysis. Anal. Chem. 1998, 70, 232–236. [CrossRef]

32. Ducrée, J.; Haeberle, S.; Lutz, S.; Pausch, S.; von Stetten, F.; Zengerle, R. The centrifugal microfluidic bio-disk
platform. J. Micromech. Microeng. 2007, 17, S103–S115.

33. Vijayendran, R.A.; Motsegood, K.M.; Beebe, D.J.; Leckband, D.E. Evaluation of a Three-Dimensional
Micromixer in a Surface-Based Biosensor. Langmuir 2003, 19, 1824–1828. [CrossRef]

34. Wang, H.; Iovenitti, P.; Harvey, E.; Masood, S. Optimizing layout of obstacles for enhanced mixing in
microchannels. Smart Mater. Struct. 2002, 11, 662–667. [CrossRef]

35. Yang, Z.; Matsumoto, S.; Goto, H.; Matsumoto, M.; Maeda, R. Ultrasonic micromixer for microfluidic systems.
Sens. Actuators Phys. 2001, 93, 266–272. [CrossRef]

36. Wong, S.H.; Ward, M.C.L.; Wharton, C.W. Micro T-mixer as a rapid mixing micromixer. Sens. Actuators
B Chem. 2004, 100, 359–379. [CrossRef]

37. Kim, D.S.; Lee, S.W.; Kwon, T.H.; Lee, S.S. A barrier embedded chaotic micromixer. J. Micromech. Microeng.
2004, 14, 798. [CrossRef]

38. Marle, L.; Greenway, G.M. Microfluidic devices for environmental monitoring. TrAC Trends Anal. Chem.
2005, 24, 795–802. [CrossRef]

39. Chronakis, I.S.; Grapenson, S.; Jakob, A. Conductive polypyrrole nanofibers via electrospinning: Electrical
and morphological properties. Polymer 2006, 47, 1597–1603. [CrossRef]

40. Jang, S.-Y.; Seshadri, V.; Khil, M.-S.; Kumar, A.; Marquez, M.; Mather, P.T.; Sotzing, G.A. Welded
Electrochromic Conductive Polymer Nanofibers by Electrostatic Spinning. Adv. Mater. 2005, 17, 2177–2180.
[CrossRef]

41. Patel, A.C.; Li, S.; Yuan, J.-M.; Wei, Y. In situ Encapsulation of Horseradish Peroxidase in Electrospun Porous
Silica Fibers for Potential Biosensor Applications. Nano Lett. 2006, 6, 1042–1046. [CrossRef] [PubMed]

42. Li, D.; Frey, M.W.; Vynias, D.; Baeumner, A.J. Availability of biotin incorporated in electrospun PLA fibers
for streptavidin binding. Polymer 2007, 48, 6340–6347. [CrossRef]

43. Wang, D.; Sun, G.; Xiang, B.; Chiou, B.-S. Controllable biotinylated poly(ethylene-co-glycidyl methacrylate)
(PE-co-GMA) nanofibers to bind streptavidin–horseradish peroxidase (HRP) for potential biosensor
applications. Eur. Polym. J. 2008, 44, 2032–2039. [CrossRef]

44. Kim, J.H.; Hwang, E.T.; Kang, K.; Tatavarty, R.; Gu, M.B. Aptamers-on-nanofiber as a novel hybrid capturing
moiety. J. Mater. Chem. 2011, 21, 19203–19206. [CrossRef]

45. Nugen, S.R.; Asiello, P.J.; Baeumner, A.J. Design and fabrication of a microfluidic device for near-single cell
mRNA isolation using a copper hot embossing master. Microsyst. Technol. 2008, 15, 477–483. [CrossRef]

46. Lu, L.-H.; Ryu, K.S.; Liu, C. A magnetic microstirrer and array for microfluidic mixing. J. Microelectromec. Syst.
2002, 11, 462–469.

47. Chang, S.T.; Beaumont, E.; Petsev, D.N.; Velev, O.D. Remotely powered distributed microfluidic pumps and
mixers based on miniature diodes. Lab Chip 2007, 8, 117–124. [CrossRef] [PubMed]

48. Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70.
49. Glantz, S.; Slinker, B. Primer of Applied Regression & Analysis of Variance; McGraw-Hill Education: New York,

NY, USA, 2000.
50. Zhang, Q.; Welch, J.; Park, H.; Wu, C.-Y.; Sigmund, W.; Marijnissen, J.C.M. Improvement in nanofiber

filtration by multiple thin layers of nanofiber mats. J. Aerosol. Sci. 2010, 41, 230–236. [CrossRef]
51. Przekop, R.; Gradon, L. Deposition and Filtration of Nanoparticles in the Composites of Nano- and

Microsized Fibers. Aerosol. Sci. Technol. 2008, 42, 483–493. [CrossRef]
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