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Abstract: Activity level and gait parameters during daily life are important indicators for clinicians
because they can provide critical insights into modifications of mobility and function over
time. Wearable activity monitoring has been gaining momentum in daily life health assessment.
Consequently, this study seeks to validate an algorithm for the classification of daily life activities
and to provide a detailed gait analysis in older adults. A system consisting of an inertial sensor
combined with a pressure sensing insole has been developed. Using an algorithm that we previously
validated during a semi structured protocol, activities in 10 healthy elderly participants were recorded
and compared to a wearable reference system over a 4 h recording period at home. Detailed gait
parameters were calculated from inertial sensors. Dynamics of physical behavior were characterized
using barcodes that express the measure of behavioral complexity. Activity classification based on
the algorithm led to a 93% accuracy in classifying basic activities of daily life, i.e., sitting, standing,
and walking. Gait analysis emphasizes the importance of metrics such as foot clearance in daily life
assessment. Results also underline that measures of physical behavior and gait performance are
complementary, especially since gait parameters were not correlated to complexity. Participants gave
positive feedback regarding the use of the instrumented shoes. These results extend previous
observations in showing the concurrent validity of the instrumented shoes compared to a body-worn
reference system for daily-life physical behavior monitoring in older adults.

Keywords: activity classification; gait analysis; inertial measurement unit; pressure insole; wearable
sensors; behavioral complexity

1. Introduction

Physical activity and behavior are critical to maintain a healthy long-term lifestyle. Several chronic
health conditions and diseases are caused or aggravated by physical inactivity [1], and sedentary
behavior (time spent in sitting or lying posture) is linked to higher mortality rates even in relatively
active persons [2]. In older adults, increased activity levels can sustain independence and delay the
onset of decline [3], and lower fall risk [4].

Today’s standard in activity assessment is shifting from questionnaires to sensor-based
technologies, triggered by the poor recall and subjectivity of the former compared to objective measures
obtained from the latter [5]. Body worn motion sensors, mainly based on inertial measurement
units (IMU) [6,7] offer a pervasive (indoor/outdoor) monitoring. The main challenge remains in the
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validation of activity classification algorithms relying on wearable sensor data, which are mostly based
on machine learning rules, i.e., learning from a training set and extending classification to a testing
dataset. Validation procedure is generally performed in laboratory conditions, where performed
activities are scripted and annotated by an observer following the participant. Alternatively, validation
can be performed freely in daily life without restrictions and without the presence of an observer [8].
Semi-structured data collection protocols were recently recommended whereby the participant
performs a series of activities in a lifelike scenario (e.g., walking along a track with stop points
for sitting) for at least 30 min at their comfortable speed and in the manner they prefer [9]. This latter
type of data collection could be extremely useful for algorithm development before validation in
real-life conditions.

The difficulty in validating algorithms to classify activity when using wearable sensors lies
in acquiring the ground-truth, i.e., the real activity to be used as reference. To date, three main
ground-truth reference systems have been used: video observation [10–13], direct observation with
annotation [14,15], and self-annotation by the participant [16–18]. Video and direct observations both
enable accurate reporting of activity reference but have several drawbacks. In direct observation,
the study investigator has to write down the activities in real time as they occur, and subsequently
perform manual labeling by evaluating the sensor signals. This task is highly time-, effort-, and
resource-consuming [19]. Moreover, it interferes obtrusively with the regular activities of monitored
subjects in their home environment. Video observation also requires tedious post-analysis to label
the activities from the recordings and poses inevitable privacy concerns [20]. Additionally, it is
recommended that at least two investigators label activity reference from video or direct observation
to minimize observer errors [9]. Self-reporting is certainly less intrusive than the two other approaches.
However, it can lack accurate activity labeling due to subject forgetfulness and has been shown to
misestimate activities as well as, in some cases, to result in over-reporting higher intensity instances [21].
Since most activity monitoring targets populations that are somewhat diseased or at-risk, self-reporting
can be unreliable, especially when considering cognitively impaired older persons.

The use of an already validated wearable monitoring system is an alternative to the
aforementioned validation techniques that has been applied in other works [22,23]. Validations relying
on such systems eliminate the need for an external observer or intrusive video recording, and
profoundly reduce post-processing complexity. The ground-truth activity labels can be simply obtained
by applying the validated algorithms on collected data. However, participants might be required
to wear or carry additional sensors during the validation phase. It is recommended that a wearable
reference system have at least 90% sensitivity and specificity for activity classification [9], which has
already been demonstrated by some multi-sensor systems [24,25].

Walking is an important activity in daily life. Nevertheless, its assessment is usually performed in
the laboratory, using stationary gait analysis systems. Lab-based gait analysis has shown efficacy in
fall risk evaluation [26], and fear-of-falling related gait modifications [27]. Gait parameters such as
stride velocity and cadence have been associated with mortality [28,29], whereas foot clearance might
reveal different obstacle avoidance strategies in young and elderly subjects [30]. Building on lab-based
assessment, gait monitoring during daily life has provided promising preliminary results in recent
years, including fall prediction and risk estimation [4] as well as insights on the association between
fall incidence and gait performance [31]. Nevertheless, due to the predominant sensor configuration
(i.e., trunk-attached sensor) in studies of gait under real-life conditions, only a limited number of gait
parameters have been studied so far.

The complexity of physical behavior in daily life has been recently revealed by multi-sensor
systems combining the different activity determinants, (i.e., FITT principle for frequency, intensity,
time, and type), in a barcode and calculating the entropy of the activity barcode [32]. This combination
provides a global index of physical behavior and its dynamics. Applying complexity measures in
physical behavior analyses has proved very useful in providing improved assessment in patients
suffering from chronic pain. The information from activity barcodes is extremely rich and its application
to other population, such as elderly persons, could provide complementary information beyond those
obtained from classical analyses of physical behavior and gait performance.
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Consequently, there is an evident need for an instrument that can combine capturing reliably,
easily, and for a long period both the coarse-grained daily activity of older adults in terms of activity
type, and the fine-grained gait analysis of locomotion periods. We previously developed instrumented
shoes and validated an activity classification algorithm using a wearable reference system and applying
a semi-structured activity protocol in healthy elderly subjects [33]. The instrumented shoes system
has multiple sensor modalities capable of measuring the load under each foot and its movement,
all contained in a single location. A global accuracy of 97% was achieved by using an event-driven
algorithm inspired from movement biomechanics, revealing the advantage of using the foot (or shoe)
as a single sensor location. In fact, compared to systems with sensors placed on multiple body locations,
the algorithm revealed similar activity classification performances. However, the system has so far
not been validated in real-life conditions. Furthermore, by recognizing daily walking activity, gait
parameters could be estimated using an IMU-based algorithm [34]. Activity barcodes could be built
from the activity output of the classification algorithm combined with pertinent gait parameters.
Therefore the objectives of this study were, first, to demonstrate the concurrent validity of the
instrumented shoes system in classifying basic activity types in real-life conditions. Secondly, we aimed
to provide a refined analysis of locomotion periods by presenting clinically relevant gait parameters
that until now cannot be obtained routinely outside of a laboratory setting. Finally, the potential of
calculating a physical behavior complexity metric using the instrumented shoes was evaluated.

2. Materials and Methods

2.1. Activity Classification

2.1.1. Instrumented Shoe and Reference Systems

The instrumented shoe system consists of two main components: a Physilog® inertial
measurement unit (IMU) (GaitUp, Lausanne, Switzerland) with 3D accelerometer, 3D gyroscope,
3D magnetometer, temperature and barometric sensor and a force sensing insole (IEE, Luxembourg)
that measures the pressure under 8 regions of the foot: hallux, the remaining toes, the first, third and
fifth metatarsals’ heads, the lateral longitudinal arch, the lateral and medial heel. The pressure sensing
insole is sandwiched between two layers of neoprene for protection, humidity resistance and increased
comfort. The complete insole has a thickness of 3 mm. The Physilog® has a thickness inferior to 1 cm
and weighs less than 20 g. The system components are shown in Figure 1. All sensors are powered by
a battery and data are acquired on a memory card, both integrated in the Physilog® module. The insole
data is digitized and amplified by custom-made electronics placed in a separate box. One Physilog®

was placed on the dorsal aspect of each shoe and one insole was inserted into each shoe. The box
containing the electronics was strapped to the ankle.
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Figure 1. Instrumented shoe system (right shoe). The Physilog® is placed on a strap looping around
the shoe with Velcro® tape. The insole (in blue) is placed inside the shoe and linked to the Physilog®

by a cable. Converting electronics are in the box with handles (lateral side of the shoe), connected to
the strip stemming from the insole.



Sensors 2016, 16, 1225 4 of 18

Participants were additionally equipped with a reference system consisting of one Physilog®

sensor on the right thigh and another on the trunk, both fixed with hypoallergenic tape to minimize
discomfort and protect the sensors from humidity. These two sensors were used to provide the
reference activity for validation purposes [25]. This reference system has proven high sensitivity
and specificity (>90%) in classifying sitting, standing and walking, and has already been used for
similar validation purposes in other studies [23,35]. Instrumented shoes and reference systems were
synchronized electronically by radio frequency and all data were sampled at 200 Hz, offering an
autonomy of more than 16 h.

2.1.2. Participants and Data Collection

Ten healthy community-dwelling elderly participants were recruited for this study, eight men and
two women. Overall physical characteristics of this convenience sample were (mean ˘ standard
deviation): age 69.9 ˘ 3.1 years old, weight 80.1 ˘ 14.7 Kg, height 171.7 ˘ 8.9 cm, shoe size
range 39–45 EU.

Participants came to the laboratory and were equipped with the instrumented shoes and reference
system. Two tests were performed for the purpose of calibration: (a) standing still for 5 s; (b) level
walking for 10 straight steps. A semi-structured activity protocol was then followed by each participant,
the results of which have already been reported [33]. During this protocol, participants followed
a predefined track and performed basic activities (i.e., sitting, standing, and walking) as well as
more detailed locomotion types including stair, ramp, and elevator ascent and descent. Participants
then returned to their daily activities outside the laboratory after the sensor setup. They were
simply requested to keep their shoes on over a 4 h monitoring period, used for the analyses in
this study. Once the measurement time had elapsed, a study investigator retrieved the sensors from
the participant. No observer followed the participants around, so they were free to perform their
activities independently. All data were stored anonymously on a PC for post-processing and analysis.
All participants gave written consent to participate and the study was approved by the university’s
ethical committee under the title: “Quantification of postural transitions using multimodal sensory
input” and reference “EK 2012-N-32”.

2.1.3. Sensors Calibration

Inertial sensors were calibrated in static position to correct for any gain and offset errors by using
Ferraris’ method [36]. The sensors were then aligned to the foot frame during a level walking period
of 10 steps at the laboratory. The gravity alignment was done during foot static periods (stance phase)
and the medio-lateral axis was found as the principal component during swing phase of the foot by
assuming that the movement was mainly in the sagittal plane.

Raw pressure data from the insole were calibrated to the body weight (BW). The sum of
all 16 sensors from both feet was divided by BW which was obtained during 5 s of static standing
initially performed in the laboratory. This provided an estimation of the total force (TF) under the feet,
Equation (1):

TF “

ř

rightinsolepiq `
ř

le f tinsolepiq

BW
(1)

where i ranges from 1 to 8.

2.1.4. Event-Driven Activity Classification Algorithm

The algorithm is based on a previous study that evaluated the activity classification in a
semi-structured protocol [33]. The algorithm is capable of classifying the basic activities such as
sitting, standing, walking; and activity subclasses including stair climbing, incline walking, and elevator
use. An event-driven classification tree was applied to classify the activities at each node by using data
input from the different sensors in the instrumented shoes. The IMU data (accelerometer, gyroscope
and barometric pressure sensor) were used to detect walking and classify different locomotion types
whereas the insole data were employed to distinguish sitting from standing. Locomotion periods were
identified by step detection using Toe Off (TO) instants. The pitch angular velocity (foot rotation around
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the medio-lateral axis) was subjected to a wavelet transform enhancing the TO, as well as other gait
events, i.e., mid swing and Heel Strike (HS) instants. A Coiflet order 5 wavelet was used to decompose
the signal into 10 scales, and two combinations were used. Subtracting the 9th approximation from the
first emphasized HS, while subtracting it from the third emphasized TO [37]. Stair climbing and elevator
use were detected by using barometric pressure, whereas foot inclination from IMU during stance
was used for incline and level walking identification. A threshold on the TF estimate was applied on
the non-locomotion data to classify sitting and standing. Lying and sitting were considered as a single
activity type in this study.

2.1.5. Evaluation of the Activity Classification Algorithm

The reference activity classification algorithm combines information from trunk and thigh IMU in
order to classify basic activity [23]. In the current study, the validation is mainly intended for these
basic activities (walking, sitting/lying, and standing) since there was no reference data for the remaining
subclasses. The activity outputs from the instrumented shoes classifier and reference algorithm were
segmented into 6 s windows to remove spurious activities. The median activity from the instrumented
shoes’ and the reference system’s classification algorithms were compared for each 6 s window and
the true positives (TP), true negatives (TN), false positives (FP), false negatives (FN) were obtained.
Sensitivity, specificity, precision, F1-score (F-measure) and global accuracy were calculated for each
activity class according to the following equations:

Sensitivity “
#TP

#TP ` #FN

Speci f icity “
#TN

#TN ` #FP

Precision “
#TP

#TP ` #FP

F1 ´ score “
2 ˆ precision ˆ sensitivity

precision ` sensitivity

Global Accuracy “
#TP ` #TN

total sample number

2.2. Gait Analysis

Locomotion periods obtained through the activity classifier were retained for this specific analysis.
The cumulative distribution of locomotion bouts was extracted by taking into consideration any period
with 3 or more detected steps, corresponding to a minimum of one gait cycle (e.g., left-right-left or
right-left-right step sequences). The minimum of three steps has been applied for gait detection in
several other studies [31,38] since this ultimately prevents the algorithm from classifying spurious
foot movement. A gait cycle based on the locomotion detection algorithm is defined between two
successive TO instants of each foot (Figure 2). Cadence distribution is estimated with a histogram
of 1 step/min bins. The number of bouts, total duration and total number of steps are tabulated for
upstairs, downstairs, uphill and downhill periods, respectively.

Gait analysis was performed in terms of spatio-temporal parameters i.e., stride velocity, stride
length, cadence, inter-stride gait cycle time variability, and foot clearance parameters, i.e., maximal heel
clearance (HC), and minimum toe clearance (TC) [39]. HC corresponds to the maximum heel height
above the ground at the beginning of the swing phase whereas TC corresponds to the minimum toe
height above the ground in the middle of the swing phase [39]. These gait parameters were extracted
from locomotion periods with at least 20 steps (combined right and left feet) to achieve steady-state
gait [40]. Initiation and turning steps, i.e., steps with a turning angle higher than 20 degrees, were
detected [34] but omitted during the parameter extraction since they do not pertain to steady-state
gait analysis. Stair and slope locomotion (ground inclination of more than 5% or 3 degrees) was also
excluded from the analysis.
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2.3. Complexity and Activity Barcodes

Activity levels were obtained from the states defined by Paraschiv-Ionescu et al. [32]. In summary,
these states start by low levels pertaining to low intensity during sitting and standing, going to higher
levels of activity obtained by combining gait cadence and duration of locomotion periods. Overall, this
classification yields 18 ranked states, where each state is represented by a color code, with warmer
colors indicating higher activity intensity. The barcodes are based on 1 s-windows represented by
a color corresponding to the median of the activity state over the samples forming the window.
Previous work has shown that such a barcode has higher color (state) entropy in healthy subjects
compared to subjects with pain or disease [32]. Using the outcome of instrumented shoes, activity
barcodes were similarly evaluated by using 14 states (represented by numeric codes) instead of 18
(Table 1). This reduction resulted from assigning only a single numeric code to both sitting (1) and
standing (2) whereas, in the original activity barcode, sitting and standing were assigned 2 and 4 numeric
codes, respectively, based on trunk movement intensity. These states were reduced to 2 in the present
study to avoid using trunk sensor data and keep the activity barcode specific to the instrumented
shoes. Walking was segmented into locomotion periods of duration d < 30 s, 30 s < d < 120 s and
120 s < d. For each locomotion period, the mean cadence was calculated in steps/min. The cadence
was then segmented into cad < 50, 50 < cad < 80, 80 < cad < 140 and 140 < cad. The combinations of
duration and cadence represent 12 numeric codes as shown in Table 1.

Table 1. Coding activities based on duration and intensity thresholds; d: duration, cad: cadence.

Activity Type Activity Duration Activity Intensity Numeric Code

Sitting/Lying - - 1

Standing - - 2

Walking

d < 30 s

cad < 50 3
50 < cad < 80 4
80 < cad < 140 5

140 < cad 6

30 < d < 120 s

cad < 50 7
50 < cad < 80 8

80 < cad < 140 9
140 < cad 10

120 < d

cad < 50 11
50 < cad < 80 12
80 < cad < 140 13

140 < cad 14
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The entropy (complexity) of obtained barcodes was estimated using the Lempel-Ziv complexity
metric [41,42]. The correlation between the instrumented shoes and reference system complexities
was calculated. The correlation between the Lempel-Ziv complexity evaluated from the instrumented
shoes and gait parameters such as the stride velocity, stride length, max HC and min TC, as well as the
duration of steady-state gait cycles was calculated.

2.4. System Comfort Evaluation

Gathering feedback from the system users is important. Therefore, at the end of each data
collection, the participants were asked the following question: “On a scale ranging between 0 “not
comfortable at all” and 10 “very comfortable”, what score would you give to the system in terms of
comfort during daily use?” Scores were recorded by the investigator retrieving the sensors at the end
of the monitoring period.

3. Results

3.1. Activity Classification

A sample output of the event-based activity classification algorithm is shown in Figure 3. The data
are selected from one subject and show a sequence of walking, standing and sitting. The 50% BW line is
marked on the figure to show the distinction between sitting and standing. The TO instants used to
classify walking are displayed in Figure 4, which is a zoom-in of the same walking period from Figure 3.
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Figure 3. Snapshot of classifier output from one participant (taken ~1 h after the beginning of the
recording). Top: plot of TF showing the 50% BW line (dashed red line). Bottom: pitch angular velocity:
right foot (blue) and left foot (green). The vertical dashed bars represent different activity periods
(walking, standing and sitting).
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Figure 4. Zoom-in on the walking period from Figure 3. The pitch angular velocity of the right foot is
shown as a continuous line, and the left foot as a dashed line. TO instants are represented by circles.

Table 2 shows the confusion matrix and the classifier performances compared to reference activity.
Sensitivity, specificity, precision and F-score were all 90% or higher for all activities except the sensitivity
of standing (88%). Only 11 sitting/lying instances were predicted as walking, and one instance of walking
were predicted as sitting/lying. Highest sensitivity was obtained for sitting/lying (99%) and highest
specificity for walking and sitting/lying (98% and 99%). A precision of 95% was achieved for sitting/lying
as well as an F-score of 97%. The algorithm achieved a global accuracy of 93%.

Table 2. Confusion matrix and classifier performance compared to reference activity. Each unit
represents a 6 s activity epoch.

Reference
Predicted Sitting/Lying Standing Walking

Sitting/Lying 9789 87 11
Standing 566 6788 402
Walking 1 420 3986

Sensitivity 0.99 0.88 0.90
Specificity 0.99 0.93 0.98
Precision 0.95 0.93 0.91
F-score 0.97 0.90 0.91

3.2. Gait Analysis of Locomotion Periods

Mean cadence for every locomotion period with three or more steps is plotted as a histogram
with a bin size of one step/min. A kernel smoothing fit is applied on this histogram as shown in
Figure 5a. The two peaks of this fit correspond to a bimodal distribution with mode values of 83 and
93.5 steps/min. The separation of cadence distributions between locomotion periods of 20 or more
steps and locomotion periods of less than 20 steps is also shown in Figure 5b to better illustrate the
hypothesis that cadence mode during short locomotion bouts is lower. This is done by obtaining the
probability density function of each instantaneous cadence distribution per subject and calculating a
mean ˘ SD distribution. The distribution modes in this case are 90 steps/min (less than 20 steps) and
104 steps/min (20 steps or more). These values are somewhat different from the modes obtained for
the entire distribution above because of the discrete separation of locomotion periods. The cumulative
distribution of locomotion period durations (level and non-level) is shown on a semi-log plot, Figure 5c.
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The mean (thick line) and SD (shading) describe the locomotion period durations across all subjects.
The longest continuous locomotion period was 432 s or 7.2 min. About 50% of locomotion periods
lasted less than 7.4 s, and 94% were less than one minute.
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Figure 5. (a) Mean cadence distribution for all locomotion periods with three or more steps;
(b) Instantaneous cadence distribution for locomotion periods with 20 or more steps vs less than
20 steps; (c) Cumulative distribution of locomotion period duration across all subjects (log scale for
locomotion period duration axis). For (b,c): mean is represented by a thick line and SD by a shaded area.

Table 3 displays, for each participant, results of gait analysis during level locomotion over periods
of 20 steps or more. Minimum, maximum, mean, and standard deviation of the duration of locomotion
period are reported, as well as the number of bouts and analyzed gait cycles. The following gait
parameters are shown as mean ˘ standard deviation (SD): stride velocity, stride length, maximum
heel clearance, minimum toe clearance, and gait cycle time variability. The total number of turning
steps is also featured in this table.

Table 4 shows the number of stairs and incline walking bouts (non-level locomotion), along with
the total duration and number of steps taken during these walking activities.
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Table 3. Gait characterization from level walking periods of at least 20 steps. Reported values are mean ˘ SD unless otherwise stated.

Participant Duration (s)
(min/max) Duration (s) # Bouts # Gait Cycles Stride

Velocity (m/s)
Stride Length

(m)
Heel

Clearance (m)
Toe Clearance

(m)
Variability

(%)
# Turning

Steps

1 13.86/190.48 56.73 ˘ 49.34 34 1419 1.07 ˘ 0.19 1.33 ˘ 0.15 0.28 ˘ 0.04 0.02 ˘ 0.01 8.19 ˘ 7.66 232
2 12.82/431.82 48.65 ˘ 73.74 34 1346 1.29 ˘ 0.20 1.43 ˘ 0.14 0.30 ˘ 0.04 0.03 ˘ 0.01 8.83 ˘ 11.05 240
3 14.59/284.61 94.80 ˘ 75.01 18 1284 0.97 ˘ 0.16 1.22 ˘ 0.12 0.27 ˘ 0.03 0.04 ˘ 0.02 6.56 ˘ 3.54 102
4 15.04/295.95 58.99 ˘ 63.54 50 2213 1.12 ˘ 0.20 1.32 ˘ 0.12 0.27 ˘ 0.02 0.03 ˘ 0.01 7.21 ˘ 6.11 390
5 12.97/60.54 24.36 ˘ 10.69 31 538 1.07 ˘ 0.34 1.22 ˘ 0.32 0.26 ˘ 0.05 0.04 ˘ 0.01 11.21 ˘ 10.12 176
6 10.68/130.64 35.07 ˘ 27.53 39 1082 1.28 ˘ 0.25 1.37 ˘ 0.22 0.25 ˘ 0.03 0.03 ˘ 0.01 9.69 ˘ 11.73 283
7 12.63/162.40 29.04 ˘ 38.67 14 307 1.47 ˘ 0.38 1.55 ˘ 0.26 0.27 ˘ 0.03 0.03 ˘ 0.01 9.51 ˘ 7.97 96
8 13.16/275.15 53.49 ˘ 64.30 60 2708 0.99 ˘ 0.16 1.07 ˘ 0.12 0.22 ˘ 0.02 0.03 ˘ 0.01 7.03 ˘ 6.30 345
9 12.97/368.34 49.77 ˘ 55.64 50 1939 1.37 ˘ 0.18 1.60 ˘ 0.16 0.31 ˘ 0.03 0.03 ˘ 0.01 7.85 ˘ 8.11 392
10 15.22/277.31 84.35 ˘ 96.03 11 735 1.06 ˘ 0.12 1.26 ˘ 0.10 0.22 ˘ 0.01 0.04˘0.01 8.79 ˘ 9.04 65

Table 4. Non-level locomotion periods. TD: total duration in seconds.

Participant
Upstairs Downstairs Uphill Downhill

Bouts TD (s) Steps Bouts TD (s) Steps Bouts TD (s) Steps Bouts TD (s) Steps

1 3 47.27 43 7 149.54 117 2 99.49 71 1 45.21 36
2 2 52.60 48 5 393.09 374 1 35.49 33 1 32.85 31
3 0 0 0 3 65.95 55 1 36.83 27 0 0 0
4 3 95.45 84 5 243.36 205 1 67.18 55 0 0 0
5 2 55.73 48 3 60.60 53 0 0 0 0 0 0
6 7 272.51 253 5 181.08 177 0 0 0 0 0 0
7 6 40.49 33 2 29.91 26 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 11 193.77 162 14 168.33 150 2 16.39 16 0 0 0
10 3 96.05 76 1 21.08 17 0 0 0 0 0 0
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To illustrate the range in walking performance, gait speed (stride velocity) and stride length
profiles are shown in Figure 6. The cumulative distributions were obtained from the cumulated sum of
the probability distributions of each subject. Subsequently, the average cumulative distribution (thick
line) was calculated as the average of the cumulative distributions from each subject, and the shading
represents the area between the 5th and 95th percentiles of the cumulative distributions.
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Figure 6. Left: stride velocity distribution; Right: stride length distribution as mean (thick line) and
5th/95th percentile shading across all subjects.

Foot clearance is a novel parameter measured in daily life in this study. To highlight the importance
of measuring this parameter, Figure 7 shows the relationship between stride velocity and maximum
HC /minimum TC, respectively. Pearson’s correlation coefficients reveal moderate positive correlation
between HC and gait speed (r = 0.50; p < 0.001) and weak negative correlation between minimum TC
and gait speed (r = ´0.18; p < 0.001).

Sensors 2016, 16, x FOR PEER  11 of 18 

 

To illustrate the range in walking performance, gait speed (stride velocity) and stride length 

profiles are shown in Figure 6. The cumulative distributions were obtained from the cumulated sum 

of the probability distributions of each subject. Subsequently, the average cumulative distribution 

(thick line) was calculated as the average of the cumulative distributions from each subject, and the 

shading represents the area between the 5th and 95th percentiles of the cumulative distributions. 

  

Figure 6. Left: stride velocity distribution; Right: stride length distribution as mean (thick line) and 

5th/95th percentile shading across all subjects. 

Foot clearance is a novel parameter measured in daily life in this study. To highlight the 

importance of measuring this parameter, Figure 7 shows the relationship between stride velocity and 

maximum HC /minimum TC, respectively. Pearson’s correlation coefficients reveal moderate 

positive correlation between HC and gait speed (r = 0.50; p < 0.001) and weak negative correlation 

between minimum TC and gait speed (r = −0.18; p < 0.001). 

  

Figure 7. Maximum HC (left) and minimum TC (right) as a function of stride velocity for all analyzed 

steps. 

3.3. Activity Barcodes, Complexity Metric and Activity Distribution 

Table 5 presents individual barcodes constructed for each participant and the corresponding 

Lempel-Ziv complexity obtained from the instrumented shoes and the reference system, respectively. 

The correlation between the reference and the instrumented shoes barcodes is considered as strong 

(r = 0.76, p < 0.05). 

  

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

Stride Velocity (m/s)

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

Stride Length (m)

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stride velocity (m/s)

H
e

e
l 
c
le

a
ra

n
c
e

 (
m

)

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

Stride velocity (m/s)

T
o

e
 c

le
a

ra
n

c
e

 (
m

)

Figure 7. Maximum HC (left) and minimum TC (right) as a function of stride velocity for all
analyzed steps.

3.3. Activity Barcodes, Complexity Metric and Activity Distribution

Table 5 presents individual barcodes constructed for each participant and the corresponding
Lempel-Ziv complexity obtained from the instrumented shoes and the reference system, respectively.
The correlation between the reference and the instrumented shoes barcodes is considered as strong
(r = 0.76, p < 0.05).
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Table 5. Subject specific activity barcodes. The scale on the right indicates the activity intensity, starting
from 1: sitting, 2: standing, 3–14: walking with different cadences and locomotion period durations.
Lempel-Ziv complexity values for each subject and for each activity monitoring system are shown.

Lempel-Ziv Complexity Activity Barcodes from Instrumented Shoes

Instrumented Shoes Reference Scale:
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The correlation between complexity evaluated by instrumented shoes and relevant gait parameters
was calculated to shed light on the complementarity of behavioral complexity and gait analysis.
The Lempel-Ziv complexity showed little to no correlation with mean stride velocity (r = 0.02, p = 0.96),
stride length (r = ´0.12, p = 0.75), max HC (r = ´0.05, p = 0.88) and min TC (r = ´0.28, p = 0.43).
However, this metric was strongly correlated to the number of gait bouts with more than 20 cycles
(r = 0.91, p < 0.001) but not with the mean duration of these gait bouts (r = ´0.24, p = 0.50) nor their
maximum duration (r = 0.14, p = 0.71).

3.4. Evaluation of System Comfort

A total of nine scores from the 10 participants were collected. Missing data is due to the fact
that assessment of comfort was introduced to the study protocol only after the first data collection.
The scores are distributed as follows: 10, 9, 10, 10, 10, 8, 10, 10, 9, indicating good overall satisfaction
(mean 9.6 ˘ 0.7).

4. Discussion

This study presents evidence supporting the feasibility and validity of using an instrumented
shoes system to monitor and classify activity during daily life in community-dwelling elderly subjects.
Two algorithms were combined in order to provide both a coarse grained activity classification and
fine-grained gait analysis towards a comprehensive evaluation of real-life physical behavior. Besides
results of the system’s validation, several metrics were proposed to characterize various aspects of daily
life physical behavior. Those included postural allocations, locomotion bouts distribution, gait features
such as foot clearance and stride velocity, as well as complexity of physical behavior. These aspects are
innovative since their previous application has been limited to the laboratory environment. The use of
instrumented shoes for activity classification and gait analysis has not yet been demonstrated in daily
life, especially the validation of the activity classifier in real life conditions without the presence of an
observer. Therefore this study extends previous findings from structured protocols to the real world.

4.1. Activity Classification

The main validation outcome of this study pertains to the activity classification algorithm that
performed with accuracy as high as 93% in real-life condition, a performance similar to the reference
system used for its validation. This result compares favorably to those reported in previous studies on
validation of activity classification in a real-life setting. Indeed, studies that used sensors on multiple
body locations reported global accuracies ranging between 84% and 89% [14,17,18], whereas studies
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using single sensor systems reported accuracy from 76% to 80% [10,16,22]. These comparisons further
emphasize the advantage of using combined inertial and pressure sensing at the foot level as a single
location solution. In this study under real-world conditions, global accuracy of 93% was slightly
lower than the 97% obtained with the semi-structured protocol validation [30]. This difference is
negligible and appears congruent with similar worsened performance observed in previous studies
when classification algorithms validated in lab or semi-structured conditions were applied to data
collected under real-life conditions [18,22,43]. This disparity can be explained by the more limited
range in both the type and intensity of structured activity assessed during these protocols, as shown in
a previous study [44].

Lowest performances were observed for standing (88% sensitivity) periods. This slightly low
sensitivity ensued mainly from misclassifications of standing as sitting/lying. Indeed, a couple of
transitions from sitting to standing were not correctly detected and resulted in two relatively long
periods of sitting classified as standing. A dedicated postural transition analysis can provide reliable
information on the origin of such misclassifications. Furthermore, misclassifying standing into walking
and vice-versa occurred for shortest locomotion periods (~3–5 steps), as well as from a small systematic
difference between the two systems in defining start/end of locomotion periods. However, longer (i.e.,
20 steps or more) locomotion periods were almost equally identified by both systems. The sensitivity
and precision of walking were higher than 90%, reaching similar performance compared to that of the
reference system [25]. In terms of locomotion, it would be interesting to study the effect of sensor
calibration on the TO detection, as well as evaluating this detection using a calibration free method [45]
or by combining inertial data with force data from the insole at each candidate gait cycle to confirm
its occurrence.

Sitting and lying activities were combined into a single activity type. This limitation of the system
is arguably relative since lying is an activity class that will rarely be observed by the system. In fact,
people in their home environment would frequently remove their shoes before going to bed. A further
relative limitation relates to the assumption we made that energy expenditure of lying and sitting are
similar [46]. It could be hypothesized that during lying, the insole should measure negligible force
under the feet, and this in turn could be used to classify lying. However this remains to be investigated.

4.2. Gait Analysis

Instrumented shoes have been used in the past for gait analysis of level walking during locomotion
tests in clinical or laboratory environment [27,34,47,48]. This is, to the best of our knowledge, the
first study combining activity monitoring and gait analysis using a single instrumented shoes system
in daily life. Considering the high accuracy of the activity classification algorithm as well as the
possibility to distinguish level walking from stairs or ramps, gait analysis could be performed on
correctly classified level walking bouts with a sufficient number of steps.

In terms of spatio-temporal gait analysis, we showed the potential to provide reliable gait
parameters for steady-state gait (periods with >20 steps). In this study, the mean stride velocity,
stride length, maximum HC and minimum TC were similar to normative values obtained for an age
matched cohort of healthy elderly subjects performing a 20 m gait test in laboratory conditions [49].
Stride velocity, stride length and cadence measured during daily activity are significantly and
prospectively associated with falls in elderly subjects as shown in a recent study [3]; instrumented
shoes providing accurate estimation of these parameters could therefore be further used for fall
prediction. Another original contribution of this study is to show the feasibility to record foot clearance
parameters in daily life. To the best of our knowledge, these parameters have not yet been retrieved
in other than clinical or gait lab settings, and never over extended periods such as performed in the
current study. There is a major interest in obtaining clearance data from daily life especially since this
parameter expresses the highest variance in gait data obtained from elderly subjects [47]. In the present
study, clearance parameters were moderately (HC) and weakly (TC) correlated to stride velocity,
a result similar to observations made in laboratory-based gait analysis over 20 m in an age- and
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health-matched older population [49]. Therefore, these parameters could provide new insights on a
subject’s performance in addition to stride velocity; while simultaneously playing a crucial role in
obstacle negotiation and fall avoidance. This could be complementary to context aware systems where
the presence of obstacles can be detected. Furthermore, the instrumented shoes could be equipped
with additional sensors such as infrared or ultrasound, which have shown the possibility to detect
obstacles at relatively short distances from the foot [50]. However, the main interest in measuring
clearance parameters lies in their longitudinal evolution, where a decrease in these parameters could
indicate higher risk of fall.

The cumulative distribution of locomotion periods provides a good illustration of a subject’s
overall mobility performance. In our study, this distribution varied substantially from one participant
to another (Figure 5). A shift to the left of this sigmoid curve would indicate reduced occurrence of
long periods of walking. Around 94% of locomotion periods were under one minute. The results
vary somewhat compared to the literature; for example, Brodie et al. reported that almost 90% were
less than a minute [31], whereas Orendurff et al. reported 81% of locomotion periods under one
minute [38]. This is arguably due to the longer monitoring time in these two studies. However, the
cadence distribution in the current study revealed a bimodal pattern that is similar to the result by
Brodie et al. [31], even though the cadence peaks differ slightly (again, possibly due to monitoring
time). Incidentally, when locomotion periods were separated by number of steps (<20 vs. 20 or more
steps), the cadence modes were similar to those reported in [31]. This result in itself is important
because it underpins the hypothesis that locomotion strategies are different between short and long
bouts of walking. Gini index [51] or Kolmogorov-Smirnov distance [52] between distribution curves
could be further used for the comparison of activity behaviors between subjects with different health
conditions, as well as comparisons within the same individual over time to identify change in her/his
activity level that could flag an underlying health problem.

4.3. Physical Behavior Complexity

The high correlation of Lempel-Ziv complexity values obtained from instrumented shoe barcodes
with the reference system justifies the use of the instrumented shoes to assess physical behavior
complexity. It should be noted that there is a slight discrepancy due to the few errors of activity
classification between the two systems, mainly pertaining to misclassifications of walking into standing
and vice versa. A systematic underestimation of the Lempel-Ziv complexity metric by the instrumented
shoes was observed. This could be explained by the lower number of states in the instrumented shoes
barcodes (maximum of 14) compared to the reference system (maximum of 18). Still, results strongly
suggest the potential application of instrumented shoes to assess physical behavior complexity in
different populations of older persons. For instance, this system could be used to monitor progresses
in patients undergoing rehabilitation. Another potential application could be to evaluate the potential
positive or negative effects of a new medication regimen on mobility and activity over daytime periods.

Interestingly, there was no strong association between gait parameters (stride velocity, stride
length, heel clearance and toe clearance) and the Lempel-Ziv complexity values. In contrast, this
measure of complexity was highly correlated (r = 0.91, p < 0.001) with the number of steady-state
locomotion bouts (i.e., 20 steps or more). This result strongly suggests the complementarity of activity
pattern analysis and classical gait analysis. For example, participant 7 who achieved the highest
average stride velocity had 14 steady-state locomotion bouts only whereas participant 8 who had
the highest complexity value completed 60 bouts of steady-state locomotion but had a mean stride
velocity lower than 1 m/s. Thus, the complexity metric adds information to mobility assessment by
quantifying physical behavior that cannot be achieved by looking at activity distribution/step counts
or spatio-temporal gait parameters.
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4.4. System Evaluation and Drawbacks

Participants gave highly positive feedback on the usability of the instrumented shoes in terms of
comfort. Although the methodology used is subject to limitation (participants providing socially
desirable answers, assessment not based on an exhaustive, previously validated questionnaire),
these results can be considered as preliminary positive and encouraging from end-users of the
instrumented-shoes system. Additional investigation of other dimensions such as its easiness of
use or end-users’ concern about robustness or reliability need to be considered in the future.

Some additional limitations of our study should be noted. The number of participants is limited
and the recording time only covers 4 h. All participants were fit and living independently, therefore
results of this study do not reflect physical behavior and gait performance in frailer older persons
who are the ultimate target population of this system. However, results of this feasibility study
are sufficiently encouraging to further consider additional investigations such as including more
participants from other populations (e.g., frail elderly or stroke patients), as well as performing
longitudinal studies within the same individuals (e.g., monitoring of activity at baseline and at the
end of rehabilitation). In our previous study it was also shown that stairs, ramps, and elevators can
be recognized [33]. The validation of these events was not possible in the present study because the
reference system used was minimized to lessen intrusiveness and therefore did not include an event
marker to provide information on these activities as was the case in our previous validation study [33].
However, since the detection of elevation change depends mainly on barometric pressure variations, it
would be possible to add the detection of such events in real life without compromising the accuracy
of the classifier. These activities can be added to the activity barcode to enrich the complexity metric.
In fact, non-level locomotion has different energy expenditure requirements compared to level walking
and it would be extremely interesting to further compare barcodes in persons who frequently engage
in such activities to those who rarely do. The calibration of the insoles relied on a simple technique that
required 5 s of quiet standing; this was useful for the estimation of total force used in the algorithm.
For accurate force measurements, it would be interesting to calibrate each insole sensor individually in
static and dynamic conditions.

5. Conclusions

We have presented and validated an instrumented shoe system for activity and gait monitoring
of older adults in daily life. The activity classification algorithm proved to be highly accurate in
identifying basic activities (siting/lying, standing, and walking) and in distinguishing different types of
locomotion (incline walking and stairs climbing). The feasibility of classifying daily life activity in elderly
subjects was demonstrated and the system was capable of evaluating locomotion by performing
highly detailed gait analysis on locomotion periods of sufficient durations. An additional important
contribution of this study is to show that clinically relevant gait parameters such as stride velocity,
stride length, cadence and their distribution during the period of recording can be extracted from
instrumented shoes data. Moreover, some original gait parameters, such as foot clearance, were
detected for the first time in daily life situation. The outcome measures from the instrumented shoes
can also be accurately combined in an activity barcode embedding the complexity of daily life activity.
This information on complexity appears to extend and enrich the type of information on physical
behavior beyond what is usually assessed. The instrumented shoes were judged comfortable to use
and did not hinder the movement of participants during daily life. Overall, these results are promising
to contemplate further applications of this system in more frail and diverse populations.

Acknowledgments: The research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007–2013) under grant agreement FARSEEING n˝ 288940. The authors would like
to acknowledge Eling de Bruin for the ethical application that was required to perform the measurements.

Author Contributions: This work was completed by C.M.E.A. under the supervision of K.A.C. L.-H. contributed
to the data collection and patient recruitment. All authors contributed to the study design and writing
the manuscript.



Sensors 2016, 16, 1225 16 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on
major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet
2012, 380, 219–229. [CrossRef]

2. Katzmarzyk, P.T.; Church, T.S.; Craig, C.L.; Bouchard, C. Sitting Time and Mortality from All Causes,
Cardiovascular Disease, and Cancer. Med. Sci. Sport. Exerc. 2009, 41, 998–1005. [CrossRef] [PubMed]

3. De Bruin, E.D.; Hartmann, A.; Uebelhart, D.; Murer, K.; Zijlstra, W. Wearable systems for monitoring
mobility-related activities in older people: A systematic review. Clin. Rehabil. 2008, 22, 878–895. [CrossRef]
[PubMed]

4. Van Schooten, K.S.; Rispens, S.M.; Elders, P.J.M.; Lips, P.; Pijnappels, M.; van Dieën, J.H. Mbulatory fall risk
assessment: Quality and quantity of daily-life activities predict falls in older adults. J. Gerontol. Med. Sci.
2015, 1, 71–83.

5. Brühmann, B.A.; Schmidt, M.E.; Steindorf, K. Assessment of physical activity in epidemiological studies:
Are questionnaires obsolete in the era of accelerometry? GMS Med. Inform. Biometrie Epidemiol. 2014, 10,
1–12.

6. Yang, C.-C.; Hsu, Y.-L. A review of accelerometry-based wearable motion detectors for physical activity
monitoring. Sensors 2010, 10, 7772–7788. [CrossRef] [PubMed]

7. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D.; Meijer, K.; Crompton, R. Activity identification using
body-mounted sensors—A review of classification techniques. Physiol. Meas. 2009, 30, R1–R33. [CrossRef]
[PubMed]

8. Awais, M.; Mellone, S.; Chiari, L. Physical Activity Classification Meets Daily Life: Review on Existing
Methodologies and Open Challenges. In Proceedings of the 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5050–5053.

9. Lindemann, U.; Zijlstra, W.; Aminian, K.; Chastin, S.F.M.; de Bruin, E.D.; Helbostad, J.L.; Bussmann, J.B.J.
Recommendations for standardizing validation procedures assessing physical activity of older persons by
monitoring body postures and movements. Sensors 2014, 14, 1267–1277. [CrossRef] [PubMed]

10. Dijkstra, B.; Kamsma, Y.; Zijlstra, W. Detection of gait and postures using a miniaturised triaxial
accelerometer-based system: Accuracy in community-dwelling older adults. Age Ageing 2010, 39, 259–262.
[CrossRef] [PubMed]

11. Ruch, N.; Rumo, M.; Mäder, U. Recognition of activities in children by two uniaxial accelerometers in
free-living conditions. Eur. J. Appl. Physiol. 2011, 111, 1917–1927. [CrossRef] [PubMed]

12. Bussmann, J.B.; Tulen, J.; van Herel, E.; Stam, H.J. Quantification of physical activities by means of ambulatory
accelerometry: A validation study. Psychophysiology 1998, 35, 488–496. [CrossRef] [PubMed]

13. Aminian, K.; Robert, P.; Buchser, E.E.; Rutschmann, B.; Hayoz, D.; Depairon, M. Physical activity monitoring
based on accelerometry: Validation and comparison with video observation. Med. Biol. Eng. Comput. 1999,
37, 304–308. [CrossRef] [PubMed]

14. Ermes, M.; Pärkka, J.; Mantyjarvi, J.; Korhonen, I. Detection of daily activities and sports with wearable
sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26.
[CrossRef] [PubMed]

15. Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Büla, C.J.; Robert, P. Ambulatory system for human
motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans.
Biomed. Eng. 2003, 50, 711–723. [CrossRef] [PubMed]

16. Long, X.L.X.; Yin, B.; Aarts, R.M. Single-accelerometer-based daily physical activity classification. In
Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 6107–6110.

17. Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. Pervasive Comput. 2004,
3001, 1–17.

18. Riou, M.-È.; Rioux, F.; Lamothe, G.; Doucet, É. Validation and Reliability of a Classification Method to
Measure the Time Spent Performing Different Activities. PLoS ONE 2015, 10, e0128299. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(12)61031-9
http://dx.doi.org/10.1249/MSS.0b013e3181930355
http://www.ncbi.nlm.nih.gov/pubmed/19346988
http://dx.doi.org/10.1177/0269215508090675
http://www.ncbi.nlm.nih.gov/pubmed/18955420
http://dx.doi.org/10.3390/s100807772
http://www.ncbi.nlm.nih.gov/pubmed/22163626
http://dx.doi.org/10.1088/0967-3334/30/4/R01
http://www.ncbi.nlm.nih.gov/pubmed/19342767
http://dx.doi.org/10.3390/s140101267
http://www.ncbi.nlm.nih.gov/pubmed/24434881
http://dx.doi.org/10.1093/ageing/afp249
http://www.ncbi.nlm.nih.gov/pubmed/20083616
http://dx.doi.org/10.1007/s00421-011-1828-0
http://www.ncbi.nlm.nih.gov/pubmed/21249388
http://dx.doi.org/10.1017/S0048577298971153
http://www.ncbi.nlm.nih.gov/pubmed/9715093
http://dx.doi.org/10.1007/BF02513304
http://www.ncbi.nlm.nih.gov/pubmed/10505379
http://dx.doi.org/10.1109/TITB.2007.899496
http://www.ncbi.nlm.nih.gov/pubmed/18270033
http://dx.doi.org/10.1109/TBME.2003.812189
http://www.ncbi.nlm.nih.gov/pubmed/12814238
http://dx.doi.org/10.1371/journal.pone.0128299
http://www.ncbi.nlm.nih.gov/pubmed/26052699


Sensors 2016, 16, 1225 17 of 18

19. Bulling, A.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-Worn Inertial
Sensors. ACM Comput. Surv. 2014, 46, 1–33. [CrossRef]

20. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition Using Wearable Sensors. IEEE Commun.
Surv. Tutor. 2013, 15, 1192–1209. [CrossRef]

21. Lester, J.; Choudhury, T.; Borriello, G. A Practical Approach to Recognizing Physical Activities. Pervasive
2006, 2006, 1–16.

22. Gyllensten, I.C.; Bonomi, A.G. Identifying types of physical activity with a single accelerometer: Evaluating
laboratory-trained algorithms in daily life. IEEE Trans. Biomed. Eng. 2011, 58, 2656–2663. [CrossRef]
[PubMed]

23. Ganea, R.; Paraschiv-lonescu, A.; Aminian, K. Detection and Classification of Postural Transitions in
Real-World Conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 688–696. [CrossRef] [PubMed]

24. Zhang, K.; Werner, P.; Sun, M.; Pi-Sunyer, F.X.; Boozer, C.N. Measurement of human daily physical activity.
Obes. Res. 2003, 11, 33–40. [CrossRef] [PubMed]

25. Paraschiv-Ionescu, A.; Buchser, E.E.; Rutschmann, B.; Najafi, B.; Aminian, K. Ambulatory system for the
quantitative and qualitative analysis of gait and posture in chronic pain patients treated with spinal cord
stimulation. Gait Posture 2004, 20, 113–125. [CrossRef] [PubMed]

26. Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial
sensors. J. Neuroeng. Rehabil. 2013, 10, 1–12. [CrossRef] [PubMed]

27. Rochat, S.; Büla, C.J.; Martin, E.; Seematter-Bagnoud, L.; Karmaniola, A.; Aminian, K.; Piot-Ziegler, C.;
Santos-Eggimann, B. What is the relationship between fear of falling and gait in well-functioning older
persons aged 65 to 70 years? Arch. Phys. Med. Rehabil. 2010, 91, 879–884. [CrossRef] [PubMed]

28. Studenski, S.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; Kritchevsky, S.;
Badinelli, S.; Harris, T.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [CrossRef]
[PubMed]

29. Brown, J.C.; Harhay, M.O.; Harhay, M.N. Walking Cadence and Mortality Among Community-Dwelling
Older Adults. J. Gen. Intern. Med. 2014, 29, 1263–1269. [CrossRef] [PubMed]

30. Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the
minimisation of trip-related falls. Gait Posture 2007, 25, 191–198. [CrossRef] [PubMed]

31. Brodie, M.; Lord, S.; Coppens, M.; Annegarn, J.; Delbaere, K. Eight weeks remote monitoring using a freely
worn device reveals unstable gait patterns in older fallers. IEEE Trans. Biomed. Eng. 2015, 9294, 2588–2594.
[CrossRef] [PubMed]

32. Paraschiv-Ionescu, A.; Perruchoud, C.; Buchser, E.; Aminian, K. Barcoding human physical activity to assess
chronic pain conditions. PLoS ONE 2012, 7, e32239. [CrossRef] [PubMed]

33. Moufawad el Achkar, C.; Lenoble-Hoskovec, C.; Paraschiv-Ionescu, A.; Major, K.; Büla, C.; Aminian, K.
Instrumented shoes for activity classification in the elderly. Gait Posture 2015, 44, 12–17. [CrossRef] [PubMed]

34. Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and
elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [CrossRef] [PubMed]

35. Massé, F.; Gonzenbach, R.R.; Arami, A.; Paraschiv-Ionescu, A.; Luft, A.R.; Aminian, K. Improving
activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
J. Neuroeng. Rehabil. 2015, 12, 72. [CrossRef] [PubMed]

36. Ferraris, F.; Grimaldo, U.; Parvis, M. Procedure for Effortless In-Field Calibration of Three-Axis Rate Gyros
and Accelerometers. Sens. Mater. 1995, 7, 311–330.

37. Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an
ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [CrossRef]

38. Orendurff, M.S.; Schoen, J.A.; Bernatz, G.C.; Segal, A.D.; Klute, G.K. How humans walk: Bout duration,
steps per bout, and rest duration. J. Rehabil. Res. Dev. 2008, 45, 1077–1089. [CrossRef] [PubMed]

39. Mariani, B.; Rochat, S.; Büla, C.J.; Aminian, K. Heel and Toe Clearance Estimation for Gait Analysis
UsingWireless Inertial Sensors. IEEE Trans. Biomed. Eng. 2012, 59, 3162–3168. [CrossRef] [PubMed]

40. Lindemann, U.; Najafi, B.; Zijlstra, W.; Hauer, K.; Muche, R.; Becker, C.; Aminian, K. Distance to achieve
steady state walking speed in frail elderly persons. Gait Posture 2008, 27, 91–96. [CrossRef] [PubMed]

41. Lempel, A.; Ziv, J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [CrossRef]
42. Hu, J.; Gao, J.; Principe, J.C. Analysis of biomedical signals by the lempel-Ziv complexity: The effect of finite

data size. IEEE Trans. Biomed. Eng. 2006, 53, 2606–2609. [PubMed]

http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1109/TBME.2011.2160723
http://www.ncbi.nlm.nih.gov/pubmed/21712150
http://dx.doi.org/10.1109/TNSRE.2012.2202691
http://www.ncbi.nlm.nih.gov/pubmed/22692942
http://dx.doi.org/10.1038/oby.2003.7
http://www.ncbi.nlm.nih.gov/pubmed/12529483
http://dx.doi.org/10.1016/j.gaitpost.2003.07.005
http://www.ncbi.nlm.nih.gov/pubmed/15336280
http://dx.doi.org/10.1186/1743-0003-10-91
http://www.ncbi.nlm.nih.gov/pubmed/23927446
http://dx.doi.org/10.1016/j.apmr.2010.03.005
http://www.ncbi.nlm.nih.gov/pubmed/20510978
http://dx.doi.org/10.1001/jama.2010.1923
http://www.ncbi.nlm.nih.gov/pubmed/21205966
http://dx.doi.org/10.1007/s11606-014-2926-6
http://www.ncbi.nlm.nih.gov/pubmed/24934147
http://dx.doi.org/10.1016/j.gaitpost.2006.03.008
http://www.ncbi.nlm.nih.gov/pubmed/16678418
http://dx.doi.org/10.1109/TBME.2015.2433935
http://www.ncbi.nlm.nih.gov/pubmed/25993701
http://dx.doi.org/10.1371/journal.pone.0032239
http://www.ncbi.nlm.nih.gov/pubmed/22384191
http://dx.doi.org/10.1016/j.gaitpost.2015.10.016
http://www.ncbi.nlm.nih.gov/pubmed/27004626
http://dx.doi.org/10.1016/j.jbiomech.2010.07.003
http://www.ncbi.nlm.nih.gov/pubmed/20656291
http://dx.doi.org/10.1186/s12984-015-0060-2
http://www.ncbi.nlm.nih.gov/pubmed/26303929
http://dx.doi.org/10.1016/S0021-9290(02)00008-8
http://dx.doi.org/10.1682/JRRD.2007.11.0197
http://www.ncbi.nlm.nih.gov/pubmed/19165696
http://dx.doi.org/10.1109/TBME.2012.2216263
http://www.ncbi.nlm.nih.gov/pubmed/22955865
http://dx.doi.org/10.1016/j.gaitpost.2007.02.005
http://www.ncbi.nlm.nih.gov/pubmed/17383185
http://dx.doi.org/10.1109/TIT.1976.1055501
http://www.ncbi.nlm.nih.gov/pubmed/17152441


Sensors 2016, 16, 1225 18 of 18

43. Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study
in ambulatory monitoring. Comput. Human Behav. 1999, 15, 571–583. [CrossRef]

44. Van Hees, V.T.; Golubic, R.; Ekelund, U.; Brage, S. Impact of study design on development and evaluation of
an activity-type classifier. J. Appl. Physiol. 2013, 114, 1042–1051. [CrossRef] [PubMed]

45. Seel, T.; Landgraf, L.; Escobar, V.C.; Schauer, T. Online Gait Phase Detection with Automatic Adaption to
Gait Velocity Changes Using Accelerometers and Gyroscopes. Biomed. Tech. 2014, 59, S795–S798.

46. Crouter, S.E.; Churilla, J.R.; Bassett, D.R. Estimating energy expenditure using accelerometers. Eur. J.
Appl. Physiol. 2006, 98, 601–612. [CrossRef] [PubMed]

47. Aminian, K.; Dadashi, F.; Mariani, B.; Lenoble-Hoskovec, C.; Santos-Eggimann, B.; Büla, C.J. Gait analysis
using shoe-worn inertial sensors. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp 114, Seattle, WA, USA, 13–17 September 2014; pp. 481–485.

48. Rouhani, H.; Favre, J.; Crevoisier, X.; Aminian, K. Ambulatory measurement of ankle kinetics for clinical
applications. J. Biomech. 2011, 44, 2712–2718. [CrossRef] [PubMed]

49. Dadashi, F.; Mariani, B.; Rochat, S.; Büla, C.J.; Santos-Eggimann, B.; Aminian, K. Gait and foot clearance
parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors
2013, 14, 443–457. [CrossRef] [PubMed]

50. Mustapha, B.; Zayegh, A.; Begg, R.K. Wireless obstacle detection system for the elderly and visually impaired
people. In Proceedings of the 2013 IEEE International Conference Smart Instrumentation, Measurement and
Applications (ICSIMA), Kuala Lumpur, Malaysia, 25–27 November 2013; pp. 26–27.

51. Chastin, S.F.M.; Granat, M.H. Methods for objective measure, quantification and analysis of sedentary
behaviour and inactivity. Gait Posture 2010, 31, 82–86. [CrossRef] [PubMed]

52. Paraschiv-Ionescu, A.; Buchser, E.; Aminian, K. Unraveling dynamics of human physical activity patterns in
chronic pain conditions. Sci. Rep. 2013, 3, 2019. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0747-5632(99)00037-0
http://dx.doi.org/10.1152/japplphysiol.00984.2012
http://www.ncbi.nlm.nih.gov/pubmed/23429872
http://dx.doi.org/10.1007/s00421-006-0307-5
http://www.ncbi.nlm.nih.gov/pubmed/17058102
http://dx.doi.org/10.1016/j.jbiomech.2011.07.021
http://www.ncbi.nlm.nih.gov/pubmed/21851944
http://dx.doi.org/10.3390/s140100443
http://www.ncbi.nlm.nih.gov/pubmed/24379049
http://dx.doi.org/10.1016/j.gaitpost.2009.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19854651
http://dx.doi.org/10.1038/srep02019
http://www.ncbi.nlm.nih.gov/pubmed/23779003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Activity Classification 
	Instrumented Shoe and Reference Systems 
	Participants and Data Collection 
	Sensors Calibration 
	Event-Driven Activity Classification Algorithm 
	Evaluation of the Activity Classification Algorithm 

	Gait Analysis 
	Complexity and Activity Barcodes 
	System Comfort Evaluation 

	Results 
	Activity Classification 
	Gait Analysis of Locomotion Periods 
	Activity Barcodes, Complexity Metric and Activity Distribution 
	Evaluation of System Comfort 

	Discussion 
	Activity Classification 
	Gait Analysis 
	Physical Behavior Complexity 
	System Evaluation and Drawbacks 

	Conclusions 

