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Abstract: Near-infrared spectroscopy (NIRS) has been widely used for quantitative and/or qualitative
determination of a wide range of matrices. The objective of this study was to develop a NIRS
method for the quantitative determination of fluorine content in polylactide (PLA)-talc blends.
A blending profile was obtained by mixing different amounts of PLA granules and talc powder.
The calibration model was built correlating wet chemical data (alkali digestion method) and NIR
spectra. Using FT (Fourier Transform)-NIR technique, a Partial Least Squares (PLS) regression model
was set-up, in a concentration interval of 0 ppm of pure PLA to 800 ppm of pure talc. Fluorine
content prediction (R2

cal = 0.9498; standard error of calibration, SEC = 34.77; standard error of
cross-validation, SECV = 46.94) was then externally validated by means of a further 15 independent
samples (R2

EX.V = 0.8955; root mean standard error of prediction, RMSEP = 61.08). A positive
relationship between an inorganic component as fluorine and NIR signal has been evidenced, and
used to obtain quantitative analytical information from the spectra.
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1. Introduction

Today, polymers are principally of non-renewable origin, and based on crude oil and natural
gas resources. Whereas some of them are recycled and reused, the majority are still disposed of in
landfills or discharged in the environment [1]. Over the last years, several sustained research have
been carried out on biodegradable polymers derived from renewable sources as one of the solutions
to reduce waste disposal problems and to limit the dependence on petroleum-based materials [2].
From a chemical point of view, polylactide or polylactic acid (PLA) is a polyester usually made
from α-hydroxy acids, and is considered biodegradable and compostable [3]. The monomer of PLA,
lactic acid (2-hydroxy propionic acid), is principally produced by the fermentation of renewable
resources such as starch and sugars, and is nowadays only rarely obtained from petroleum-based
ethylene [4]. PLA is produced commercially through the synthesis of lactide (a cyclic ester composed
of two lactic acid molecules), followed by a polycondensation of the ring-open lactides. Even though
lactic acid can exist as D- or L-enantiomer, the well-known stereoselectivity of microbial processes leads
almost exclusively to L-Lactic acid, and subsequent optical inversion is possible. It is worth noting
that based on the proportion of the two enantiomers in the polymer chain, different properties of PLA
can be obtained, depending on the performance required [5]. In fact, PLA is one of the most widely
used biopolymers, especially in biomedical and packaging applications [6]. PLA has several excellent
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properties, such as low toxicity, good transparency, and high resistance; however, compared with
other conventional polymers, it still shows lower technical performance—particularly with respect to
mechanical properties and slow crystallization rate [7]. Several different technological improvements
have been attempted to improve the properties of PLA; for example, blending PLA with other materials,
and the use fillers or nanofillers as additives [8,9]. Conventional inorganic fillers (e.g., talc) are still
widely used as reinforcing and nucleating agents in other diffused polymers, because they have the
potential to assure relevant and low-cost improvements in formulations [10]. To obtain a significant
decrease in processing time and a simultaneous increase in crystallinity, 2%–5% talc can be added to
PLA [11]. Talc is a hydrated magnesium silicate, with the general formula Mg3SiO10(OH)2. However,
talc structure also contains several other ions in smaller quantity or traces, among which fluorine (F)
deserves particular attention due to its high toxicity [12], which can affect the overall compostability
of PLA manufacts. For this reason, the current regulations on composting and biodegradability
fixes strict limits on the fluorine content of biopolymer materials [13], making analytical controls on
products destined for the market mandatory. The official chemical assay is based on the use of fluorine
calorimetric bomb (FCB) under oxygen pressure, followed by ion chromatography analysis [14].
Alkali fusion digestion can also be used, treating samples with a concentrated solution of sodium
hydroxide at high temperature [15]. FBC involves nearly explosive reactions at high pressures, long and
laborious procedures, and often gives underestimated quantification [16]. Near Infrared Spectroscopy
(NIRS) could represent a promising alternative technique for fluorine quantification. In recent decades,
NIRS has been becoming particularly popular for industrial applications because it can rapidly and
non-destructively analyse samples with minimum preparation [17]. The ability of NIRS to analyse the
chemical properties of samples relies on the selective absorption of light (in the range 800–2500 nm) by
the overtones and combinations of vibrations of polar bonds (i.e., CO, OH, CH and NH), which have
their fundamental vibrations in the mid-infrared region [18]. Several studies have described how it
can be used in combination with multivariate calibration techniques for the quantitative prediction of
parameters that are of interest to the polymers industry [19–21]. In this study, a quantitative Fourier
Transform-NIRS (FT-NIRS) method for fluorine detection in PLA—with increasing loadings of talc
before melting—has been set up. Despite talc’s inorganic nature, NIRS has been demonstrated to be a
powerful tool in the characterization of its chemical composition (and of many other hydroxylated
minerals), due to the possibility of recognizing the presence of OH groups in the octahedral crystal
structure around the elements, via hydroxyl bond vibrations [22]. A Partial Least Squares Regression
(PLSR) model has been built from samples at different concentrations of fluorine, artificially constructed
in laboratory in order to obtain a sufficiently wide and representative calibration range.

2. Materials and Methods

Polylactic acid (PLA)–talc blends. A known amount of pure PLA granules were mixed with a
known amount of talc powder. PLA and talc were supplied by an industrial manufacturer and were
derived from its own production plant. Talc powder was previously analysed with a wet chemical
method to determine the concentration of fluorine (see below). Thirteen different blends were created,
increasing the amount of talc (0%–100%) and decreasing the amount of PLA granules (100%–0%),
so as to maintain constant the final weight at 3.53 ˘ 0.05 g at room temperature. In such a way,
the concentration of fluorine in samples varies in the interval 0–800 ppm. Samples were well mixed
using a lab-scale powder mixing system (BT200 Batch Homogenizer, Dynaken, Silangor, Malaysia)
and then submitted to NIR analysis.

Wet chemical fluorine assays. The alkali digestion method was used [23]. An aliquot of talc sample
was ground, homogenized, and incinerated at 550 ˝C. Two grams of ash were digested at high
temperature for 2 h with 50 mL of NaOH 30% w/v. Sample volume was reported at 50 mL with
water, filtered on cellulose acetate, and then analysed on an ion chromatography system 930 Compact
IC Flex (Metrohm, Herisau, Switzerland). Samples were separated on an anion-exchange column
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(250 mm ˆ 4.0 mm i.d.), using Na2CO3 0.27 M and NaHCO3 1.00 M as eluents, at a flow rate
of 1.2 mL/min at room temperature. The injection volume was 25 µL.

Water for preparation of all solutions was deionized by a Milli-Q purification system with
a 0.2 µm fiber filter (Millipore, Billerica, MA, USA). All reagents were ultrapure and of HPLC grade
(Sigma Aldrich, St. Louis, MO, USA).

FT-NIR spectra collection. FT-NIR diffuse reflectance spectra of samples were collected with
a NIRFLex N-500 (Büchi, Flawil, Switzerland), equipped with the Solids Cell Module (Büchi,
Switzerland) designed for standard Petri dishes (Schott, Mainz, Germany), and set up with a
polarization interferometer with TeO2 wedges. Fresh samples were flattened on the glass surface
of a 9.0 cm-diameter standard cup by using a stainless steel load disk. Due to the eccentrically rotating
cup housing, two scans for each sample were taken. The instrument was designed to be operational
for working temperature conditions from 5 up to 35 ˝C, without any drift of the spectra signal.
The reflectance spectra were recorded using NIRWare 1.4 (Büchi, Switzerland) and scanning the full
range, from 10,000 to 4000 cm´1, at 8 cm´1 intervals; measurements were carried out at 2–4 scans/s
with a wavenumber accuracy of ˘0.2 cm–1 (measured with HF gas cell at an ambient temperature
of 25 ˘ 5 ˝C). To obtain a good signal-to-noise ratio, 128 scans for each spectrum were averaged during
each spectral acquisition, resulting in a total measurement time of 30 s. Every spectrum acquisition
was preceded by the acquisition of an internal reference to optimize the spectrum baseline.

Chemometric analysis. All chemometric analysis, including calibration and validation,
were performed using NIRCal 5.0 (Buchi, Switzerland). The raw optical data were pre-processed with
a Standard Normal Variate (SNV) transformation to correct the multiplicative interferences of scatter
and particle size, generally found in the reflectance spectra of solid samples [24]. The wavenumbers for
each set of processing data were suggested by the NIRCal 5.0, based on the calculation of all regression
coefficients between each wavenumber of all the calibration set spectra and the property value.
To establish the relationship between the off-line wet chemical data and NIR values, the Partial Least
Squares Regression (PLSR) was used. The optimum number of factors to be used was determined by
the predicted residual error sum of squares (PRESS) calculation, which shows the sum of squares of
deviation between predicted and reference values [25]. The selection of the best quantitative regression
models was carried out using squared Pearson correlation coefficient for calibration (R2

cal) and cross
validation (R2

CV), standard error of calibration (SEC) and standard error of cross-validation (SECV).
Relative Prediction Deviation (RPD)—i.e., the relationship between the SD (Standard Deviation)
of the entire population divided by the SEC—was also calculated for both calibrations and cross
validations [26].

Permutation random test on PLS regressions was carried out using the lmPerm library in the
software RPackage 3.3.1 x Windows [27].

Cross validation. Cross validation, as default software output, was performed in blockwise mode,
splitting the calibration set into six-fold segments, and testing one segment as a validation set and the
remaining as a calibration set. Quality of calibration was described in terms of the Q-value, calculated
by the NIRCal 5.0 software combining all relevant statistical measures (SEC, determination coefficients).
This quality index qualifies the calibrations using a number between 0 (useless) and 1 (ideal).
When achieving a Q-value greater than 0.50, the calibration will give reliable results [28]. Outlier
detection was performed by the software based on Mahalanobis distance criterion [29]. To test the
probability of autocorrelation between time-series spectra, the Durbin–Watson (DW) test, calculated
on residuals of PLS regression, was used [30].

External validation. The calibration for fluorine was then validated by means of external
validation: 15 new independent samples were acquired to obtain additional data and evaluate the
predictive capability of the model. The prediction accuracy was considered in terms of squared
correlation coefficient (R2

EX.V) and root mean standard error of prediction between predictions
and reference values (RMSEP). Finally, the standard error of the laboratory (SEL)—i.e., the error
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of the reference data—was reported in order to allow a comparison between that value and the NIR
performance (SEC and RMSEP).

3. Results and Discussion

3.1. NIR Spectra and Data Pretreatments

Average spectra of pure talc containing fluorine used for the blends and pure PLA are shown
in Figure 1.
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6000–4700 cm−1 [31]. 

Three spectra acquisitions for each talc–PLA blend sample have been carried out, for a total of 
39 spectra. Original spectra are depicted in Figure 2A. As expected, by comparison with pure 
components, two main regions could be recognized: in the 7200–6800 cm-1 interval, principally 
corresponding to talc signals; and in the 6000–4700 cm−1 interval, mainly influenced by PLA 
absorptions. Figure 2B shows the same set of spectra after mathematical pretreatment. Raw spectra 
were pretreated with a combination of Standard Normal Variate (SNV) and first derivative  
(Savitzky-Golay five points) as mathematical pretreatments. SNV is a mathematical function applied 
to spectra with the aim of reducing slope variation and minimizing scattering dispersion [32]. 

SNV removes the multiplicative interferences of scatter, particle size, and the change of light 
distance. It corrects both multiplicative and additive scatter effects. To remove slope variations on an 
individual spectrum basis, each element is transformed independently using the calculation 
suggested by Brereton [33]. 

First derivative eliminates baseline drifts and small spectral differences are enhanced. 
Derivatives in general are mainly used to resolve peak overlap (or enhance resolution) and eliminate 
constant and linear baseline drift between samples, but at the expense of the signal-to-noise ratio, 
which usually increases. Spectral first derivative has been calculated here by Savitzky-Golay 
polynomial fitting, where the data within a moving window are fitted by a polynomial of a given 
degree in order to generate a differential of a chosen degree. In this procedure, it is very important to 
select the proper differentiation width of the moving window in the function. The width should not 
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The final choice of SNV followed by first derivative calculation was the result of trial and error, 
as the best combination between highlighting spectral information and reducing noise. 

Figure 1. Average spectra of pure talc (red) and of pure polylactide (PLA) polymer (blue).

Pure talc shows the typical sharp peak at 7185 cm´1 due to fluorine content [30], whilst the PLA
spectrum is principally characterized by absorptions at 8400 cm´1 and in the interval 6000–4700 cm´1 [31].

Three spectra acquisitions for each talc–PLA blend sample have been carried out, for a total of 39
spectra. Original spectra are depicted in Figure 2A. As expected, by comparison with pure components,
two main regions could be recognized: in the 7200–6800 cm-1 interval, principally corresponding to
talc signals; and in the 6000–4700 cm´1 interval, mainly influenced by PLA absorptions. Figure 2B
shows the same set of spectra after mathematical pretreatment. Raw spectra were pretreated with
a combination of Standard Normal Variate (SNV) and first derivative (Savitzky-Golay five points)
as mathematical pretreatments. SNV is a mathematical function applied to spectra with the aim of
reducing slope variation and minimizing scattering dispersion [32].

SNV removes the multiplicative interferences of scatter, particle size, and the change of light
distance. It corrects both multiplicative and additive scatter effects. To remove slope variations on an
individual spectrum basis, each element is transformed independently using the calculation suggested
by Brereton [33].

First derivative eliminates baseline drifts and small spectral differences are enhanced. Derivatives
in general are mainly used to resolve peak overlap (or enhance resolution) and eliminate constant and
linear baseline drift between samples, but at the expense of the signal-to-noise ratio, which usually
increases. Spectral first derivative has been calculated here by Savitzky-Golay polynomial fitting,
where the data within a moving window are fitted by a polynomial of a given degree in order to
generate a differential of a chosen degree. In this procedure, it is very important to select the proper
differentiation width of the moving window in the function. The width should not exceed one point
five times the half width of absorbance peak in the spectra [34].

The final choice of SNV followed by first derivative calculation was the result of trial and error,
as the best combination between highlighting spectral information and reducing noise.
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distinctive signals, due to the OH-stretching vibrations of Mg3OH, Mg2FeOH, MgFe2OH, and Fe3OH, 
respectively [35]. The general crystal structure of talc is a trioctahedral sheet, where each hydroxyl 
group is bonded to three cations; therefore, the OH-stretching absorption bands are affected by the 
nature of these cations [36]. The 7185 cm−1 half height bandwidths could be correlated with the 
fluorine content, which enters in the structure as substituting for OH. Band broadening has already 
been proven to be related to the degree of distortion of the crystal structure induced by the presence 
of extraneous elements. Here, this trend can be explained by a change in charge distribution within 
the octahedral structure due to the different electron-withdrawing strengths of F and OH, which 
modifies the inductive effect and generates an overall structure disorder [37]. A linear correlation 
between the number of fluorine atoms per unit crystal cell of talc and the half height width of the 
Mg3OH band at 7185 cm−1 has been proposed by Petit et al. [22]. Measuring half height bandwidths 
at 7185 cm−1 in our set of spectra corresponding to PLA-talc blends, a quite-good linear correlation 
has been confirmed (R2 = 0.785) (Figure 3), demonstrating that a positive relationship between an 
inorganic component (e.g., fluorine) and NIR signal exists, and could be properly exploited to obtain 
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Figure 2. (A) Original and (B) pretreated spectra of PLA–talc blend samples (at different ratios of
PLA/talc content) used in this application.

NIR spectra are dominated by the first OH-overtone region around 7200–7100 cm´1. In particular,
the prominent bands at 7185 cm´1 and the others at 7156, 7118, and 7073 cm´1 derived from talc
distinctive signals, due to the OH-stretching vibrations of Mg3OH, Mg2FeOH, MgFe2OH, and Fe3OH,
respectively [35]. The general crystal structure of talc is a trioctahedral sheet, where each hydroxyl
group is bonded to three cations; therefore, the OH-stretching absorption bands are affected by the
nature of these cations [36]. The 7185 cm´1 half height bandwidths could be correlated with the
fluorine content, which enters in the structure as substituting for OH. Band broadening has already
been proven to be related to the degree of distortion of the crystal structure induced by the presence of
extraneous elements. Here, this trend can be explained by a change in charge distribution within the
octahedral structure due to the different electron-withdrawing strengths of F and OH, which modifies
the inductive effect and generates an overall structure disorder [37]. A linear correlation between the
number of fluorine atoms per unit crystal cell of talc and the half height width of the Mg3OH band
at 7185 cm´1 has been proposed by Petit et al. [22]. Measuring half height bandwidths at 7185 cm´1 in
our set of spectra corresponding to PLA-talc blends, a quite-good linear correlation has been confirmed
(R2 = 0.785) (Figure 3), demonstrating that a positive relationship between an inorganic component
(e.g., fluorine) and NIR signal exists, and could be properly exploited to obtain quantitative analytical
information from the spectra.
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3.2. NIR Calibration and Validation

In the samples used for calibration, fluorine content ranged between 0 ppm in the pure PLA
sample, and 800 ppm in the pure talc sample. No outliers were found in the sample set. In blockwise
cross validation, all samples were used as the calibration set for quantitative calibrations except for a
small group, which is left out. Validation is accomplished by predicting the left out samples and by
systematically varying the selection of left out samples. The blockwise internal cross-validation was
performed by dividing the entire set in blocks of six spectra and randomly assigning four spectra to
the calibration set (C-set) and the remaining two to the validation set (V-set). The calibration curve
obtained with the PLS regression model (four factors), and the cross-validation curve are shown in
Figure 4. SEC = 34.77 and R2 = 0.9498, and SECV = 46.94 and R2 = 0.9247 were respectively obtained as
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statistics for calibration and validation (Table 1). No autocorrelation has been evidenced by the DW
statistics, and the predictive ability of the model appeared confirmed by the RPD values.

Table 1. Calibration and cross validation results for fluorine. C-set: calibration set; DW: Durbin–Watson;
NIR: near infrared; RPDcal: relative prediction deviation of calibration; RPDCV: relative prediction
deviation of cross-validation; SD: standard deviation; SEC: standard error of calibration; SECV: standard
error of cross-validation; SEL: standard error of the laboratory; WN: wavenumber.

Parameter Fluorine

Units ppm
SEL-reproducibility 17.34
#samples 39
Outliers 0
Min 0.00
Mean 346.92
Max 800.00
SD 260.17
WN range/step (cm´1) 9000–4500/8
Pretreatments SNV/D1
Regression method PLS
Number of factors 4
SEC 86.14
R2

cal 0.9471
SECV 76.83
R2

CV 0.9464
NIR repeatability 0.20
DW 2.29
C-Set Durbin–Watson in range 1.5 to 2.5? yes
Q-value 0.85
RPDcal 2.62
RPDCV 3.60

As expected, the error of NIR prediction (SEC) is higher than the error of reference data (SEL).
NIR is a secondary technique on which always burdens errors of the primary technique (reference
data). Otherwise, the rapidity of NIR analysis is worth mentioning in comparison with alkali digestion
and chromatography, and the complete removal of reagents has to be considered in the overall balance.

Owing to the small data set, a permutation test with 1000 random rearrangements has been carried
out on y-vector of NIR predicted data. The empirical distribution of the regression coefficients given
from permutations N was centered in ´0.0013, with a standard deviation, 0.1501), in permutations
tests, the null hypothesis is defined as: the labels assigning samples to classes are interchangeable [40].
Significantly, low p-values indicate that the labels are not interchangeable and that the original label
configuration is relevant with respect to the data. Performing all possible permutations, and computing
the fraction of permutation values that are at least as extreme as the test statistic obtained from the
unpermuted data, the level of significance was p < 0.00001.

The interpretation of the results of the calibration model is usually carried out by visualizing the
score plot. Figure 5 shows the two dimensional (2D) principal components (PCs) score plot using
the first two score vectors (PC1 and PC2), derived from pretreated spectra of the samples. The initial
two factors, which account for the most spectral variation, 99.48% (98.99% and 0.48% for the first two
principal components, PC1 and PC2, respectively). The score plot depicts the distribution between
samples within the C-set and V-set for fluorine concentration (ppm).



Sensors 2016, 16, 1216 8 of 11
Sensors 2016, 16, 1216 8 of 11 

 

 
Figure 5. Score plot of the first and second principal components (PCs) of pretreated spectra, in 

calibration (●) and validation (×) sets 

The loadings resulting from PLS were considered as an indication of the effective wavenumbers 
that were responsible for the specific features that appeared in the corresponding scores and 
contributed to the quantification of the property of interest. Figure 6 shows that wavenumbers at  
7185 cm−1, corresponding to fluorine, and in the range 5900–4500 nm, related to PLA, have the 
strongest effect on the model, because they bring the most analytical information. 

 
(A)

 
(B)

Figure 6. Wavelengths selection from loadings of the first two PCs derived from PLS: (A) PC 1 
loadings and (B) PC 2 loadings. 

3.3. External Validation of the Model 

To obtain a reliable model to be applied with unknown samples, the external validation step is 
fundamental. In fact, the cross-validation procedure is not sufficient to prove the predictive ability 
and the robustness of the calibration, especially when multi-components and solid samples have to 
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The loadings resulting from PLS were considered as an indication of the effective wavenumbers
that were responsible for the specific features that appeared in the corresponding scores and contributed
to the quantification of the property of interest. Figure 6 shows that wavenumbers at 7185 cm´1,
corresponding to fluorine, and in the range 5900–4500 nm, related to PLA, have the strongest effect on
the model, because they bring the most analytical information.
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3.3. External Validation of the Model

To obtain a reliable model to be applied with unknown samples, the external validation step
is fundamental. In fact, the cross-validation procedure is not sufficient to prove the predictive
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ability and the robustness of the calibration, especially when multi-components and solid samples
have to be analysed. Matrix effects, structural complexity and non-homogeneous samples surface,
sample composition, and low concentration of parameter of interest could strongly influence the
model performance. External validation has to demonstrate the performance of the chosen model for
future (unknown) samples, using an independent validation set consisting of samples that have not be
used in the creation of the calibration [41]. Accordingly, 15 other new PLA-talc blend samples were
created, as described above, and NIR spectra acquired and then analysed with the reference analytical
method. In Figure 7, external validation results are shown in terms of NIR-predicted fluorine values
vs. concentration obtained with alkali digestion method.
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Figure 7. External validation of NIR calibration model for the prediction of fluorine content in unknown
samples of PLA-talc blends.

Statistical parameters (R2
EX.V = 0.8955 and RMSEP = 61.08) have validated the NIR technique to

be used for fluorine analysis in PLA–talc blends (Table 2).

Table 2. Statistics of validation during external tests for fluorine. RMSEP: root mean standard error of
prediction; V-set: validation set.

Parameter Fluorine

Units ppm
#samples 15
Outliers 0
Min 0.00
Mean 413.20
Max 800.00
SD 258.46
RMSEP 61.08
R2

EX.V 0.8955
NIR repeatability 0.20
Bias 0.05
Intercept 37.46
Slope 0.85
DW 1.84
V-Set Durbin-Watson in range 1.5 to 2.5? yes

4. Conclusions

NIR spectra of PLA and talc blends before melting clearly evidenced the presence of both
components. In particular, fluorine occurrence in talc generated variations on spectra that can account
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for measured band broadening. Chemometric results have demonstrated that NIRS could be a suitable
tool to rapidly and accurately predict fluorine concentration in PLA-talc blends, avoiding traditional
labour-intensive and hazardous methods. The step forward will surely be to apply this technique
to PLA manufacts, so as to develop a robust analytical method to measure fluorine content in each
sample, in real-time, without destroying it.
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