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Abstract: The identification accuracy of dynamic characteristics coefficients is difficult to guarantee
because of the errors of the measurement system itself. A novel dynamic calibration method of
measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate
the errors of the measurement system itself. Compared with the calibration method of suspension
quality, this novel calibration method is different because the verification device is a spring-mass
system, which can simulate the dynamic characteristics of sliding bearing. The verification device
is built, and the calibration experiment is implemented in a wide frequency range, in which the
bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude
errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase
errors increase along with the increasing of frequency. It is preliminarily verified by the simulated
experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz
that the calibration data in this frequency range can support the dynamic characteristics test of sliding
bearing in this frequency range well. The bearing experiments in greater frequency ranges need
higher manufacturing and installation precision of calibration device. Besides, the processes of
calibration experiments should be improved.

Keywords: sliding bearing; dynamic characteristics; stiffness and damping coefficients; measurement
system; calibration

1. Introduction

Research on the dynamic characteristics of sliding bearing became serious in the 1980s [1,2], and
it is generally understood that the dynamic characteristics of sliding bearing are important to the
stability of the rotor [3]. Under the linear theory, the dynamic relationships between the motivation and
response of bearings are usually described by stiffness and damping coefficients [4–7]. The dynamic
characteristics measurement of sliding bearing aims to obtain the inner relationships between the
motivation and response by analyzing the dynamical behavior data, which is the stiffness and damping
coefficients of sliding bearings [8–10]. There are many methods to measure the dynamic characteristics,
including time domain methods and frequency domain methods, such as dynamic excitation method,
influence coefficient method, hammering method, harmonic scanning method, and so on [11–15].
The measurement systems are different, but they all include force sensors, displacement sensors, data
collectors and other auxiliary components. Scholars at home and abroad have done a lot of theoretical
and experimental research on the dynamic characteristics measurement of sliding bearing [16–20].
However, the test results are usually very different from the theoretical results [20–23], and the repeated
accuracy of the test is not high.
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The measurement system incurs test errors itself. Some theoretical research shows that the 1˝

phase error of displacement test will cause over 10% identification errors of stiffness and damping
coefficients [24]. So the calibration of the measurement system is very important. There are two
types of calibration methods: static calibration and dynamic calibration. In the static calibration, the
functional relationships between the input signals and the output signals are given by experiments [25].
The static calibration methods of different sensors are almost the same in principle [26–28], and the
calibrations of sensors are usually accomplished by the manufacturing factories. The high quality
testing elements have a smaller test error after calibration. Generally, only amplitude data are given
because the phase data are not detected or the test data are not accurate. This type of calibration
only aims at the sensor itself, and cannot eliminate the test errors of other elements and error caused
by connection of components [29,30]. In the dynamic calibration, multiple test channels are jointly
calibrated at the same time, and the test errors of the whole measurement system can be eliminated to
some extent [31–33]. The measurement system is calibrated by using the vibration of a single quality
system in the calibration method of suspension quality [34]. However, the movements of mass point
cannot simulate the bearing vibration, which causes the ranges of amplitude and frequency after high
accuracy calibration to be small. The measurement system will cause large errors when used as the
bearing test in a wide range of amplitudes and frequencies.

A new device for implementing the dynamic calibration method is proposed in this paper. It uses
the movements of spring-mass system, and the movements can simulate the vibration of the bearing
to some extent. Then the amplitude and frequency ranges of measurement system in calibration
condition are basically the same with that in a working condition. A measurement system for dynamic
characteristic coefficients of the sliding bearing has been calibrated in this new calibration device, and
the calibration data are verified to be effective by simulation experiment.

2. Identification Theories and Methods for Dynamic Characteristic Coefficients of
Sliding Bearing

Taking the inversion test bed of sliding bearing as an example [35], the structure diagram is shown
in Figure 1. The rotor is supported by two rolling bearings, and it can rotate around the horizontal
axis. The test bearing (which is a sliding bearing) is installed on the rotor. It only has the freedoms
of translational motions in horizontal and vertical directions, and other freedoms of motions are
constrained by chains. There is an oil film between the rotor and test bearing. The test components
are installed outside the bearing pedestal, through which the dynamic excitation forces act on the test
bearing. Then the bearing vibrates, and so does the rotor because of the forces transferred through the
oil film.
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The dynamical model of the inversion test bed system is shown in Figure 2. F1, F2 are the exciting
forces in two directions respectively. X, Y are respectively the absolute displacements of bearing in
two coordinate directions with respect to static balance position. X1, Y1 are respectively the absolute
displacements of the rotor in two coordinate directions with respect to static balance position. X2, Y2

are respectively the relative displacements of the bearing in two coordinate directions with respect to
the rotor.
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where k0, c0, k1, c1 are all the 2 ˆ 2 matrixes, and k0, c0 are the coupling stiffness and damping
coefficients. k1, c1 are the supporting stiffness and damping coefficients of rotor, and can be obtained
by the stiffness and damping superposition of the two supporting bearings. k, c are the stiffness and
damping coefficients of bearing oil film. m is the mass of test bearing. m1 is the mass of rotor.

In Equation (1), the masses are known, and the exciting forces and displacements can be acquired
by sensors. So the eight stiffness and damping coefficients of the bearing can be solved theoretically by
only four groups of forces and displacements test data. However, in practice, the experiment system
is disturbed by environmental active disturbance forces, temperature drift of measurement system,
roundness of journal, and so on, which cause it to be difficult to identify the dynamic characteristic
confidents of sliding bearing in time domain conditions.

Considering the periodicity or near time-invariance of these influencing factors, they can be
eliminated by solving the equation in frequency domain condition after the Fourier transform.
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The common methods for applying exciting forces include the single frequency excitation method

and multi-excitation method. In the multi-excitation method, two sinusoidal exciting forces with
different frequencies are simultaneously applied on the test bearing in two vertical directions. Then the
responses are plugged into the equation, and the Equation (2) is transformed as follows:
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The Equation (3) is the measurement equation of the multi-excitation method. The masses,
coupling stiffness and damping confidents are all known. The equation can be solved by plugging the
amplitude ratio and the phase difference between the forces and displacements into it.

3. Constitution and Dynamic Calibration Method of the Measurement System

3.1. Constitution of the Measurement System

According to Equation (3), the measurement system for dynamic characteristic coefficients of
sliding bearing in the inversion test bed should contain four displacement test channels and two force
test channels at least, which is shown in Figure 3.

The voltage signals of force sensors and displacement sensors are acquired by DAQ Card
after being amplified or modulated, and are sent to the computer. Then the voltage signals will
be transformed into force signals and displacement signals by test software.
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3.2. Error Propagation Analysis of Test Signals

From the Equation (3) and Figure 3, the two physical quantities of force and displacement should
be tested at first, and the force and displacement signals acquired are analyzed in frequency domain
conditions. Then the stiffness and damping coefficients of the bearing can be identified by plugging
the amplitude ratio and the phase difference between the forces signals and displacements signals into
Equation (3). So the ratio between the displacement signal and force signal is defined as the transfer
function of the sliding bearing.

H pωq “
X pjωq
F pjωq

(4)

where H(ω) is the transfer function of sliding bearing. It represents the relationships between the
exciting force and displacement response of the bearing. The transfer function of sliding bearing is
a plural flexibility, and its value is related to the frequency and amplitude of the exciting force. F(jω) is
the real force signal, X(jω) is the real displacement response signal of the sliding bearing.

In the practical test process, the forces acting on the bearing by the exciter are transformed into
voltage signals by force sensors. These signals are usually slight, and are amplified by the signal
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amplifier before being acquired by the DAQ Card. It is assumed that the transformation coefficient
between the test force signal F1 pjωq and the real force signal F pjωq is HF pjωq, which is defined as the
transfer function of the force test channel. It is shown in Figure 4.
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The transfer function of the force test channel is related to the materials and structures of the
sensor itself, and is the intrinsic property of the sensor. So the test signals can be converted to the real
signals though the following equation:

F1pjωq “ FpjωqHFpjωq (5)

In a similar way, the relationship between the real displacement signal X pjωq and the test signal
X1 pjωq of the sliding bearing is as follows:

X1pjωq “ XpjωqHXpjωq (6)

where HX pjωq is the transfer function of displacement test channel.
Then the transfer function of the sliding bearing is deduced by jointing the Equations (4)–(6):

H pωq “
X1pjωq
F1pjωq

¨
HFpjωq
HXpjωq

(7)

It is defined as follows:
$

&

%

G pjωq “ HXpjωq
HFpjωq

H1 pωq “ X1pjωq
F1pjωq

(8)

and the transfer function of sliding bearing is converted to:

H pωq “
H1 pωq
G pjωq

(9)

where G pjωq is the relative transfer function between the force test channel and displacement test
channel. H1 pωq is the ratio between the test displacement signal and test force signal.

From Equation (9), if the G pjωq is known, then the transfer function of sliding bearing H pωq
can be acquired by the test signals F1 pjωq and X1 pjωq. Theoretically, the transfer functions HYF pjωq
and HX pjωq of force sensors and displacement sensors in the measurement system are all known.
However, in fact, there are many other errors caused by elements and connection of components in the
test channels except for sensors. The transfer function of each test channel is no longer known, and
cannot even be detected individually. The purpose of the dynamic calibration for the measurement
system in this paper is to detect the relative transfer function G pjωq by uniting the force test channel
and displacement test channel synthetically. After the G pjωq is confirmed, the transfer function of
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sliding bearing H pωq can be obtained by test signals F1 pjωq and X1 pjωq and Equation (9), and then
the dynamic characteristic coefficients of sliding bearing can be identified by plugging H pωq into
Equation (3).

3.3. Dynamic Calibration Method of Measurement System

According the analysis above, the dynamic calibration of the measurement system is to acquire
the transfer function G pjωq between the force test channel and displacement test channel, which
usually proceeds by creating a calibration device with a known transfer function. It is assumed that
the transfer function of the calibration device is H0 pjωq, on which the exciting force F pjωq is acted.
The displacement is X pjωq. The force signal and displacement signal obtained by the measurement
system are F1 pjωq and X pjωq. Then the transfer function between the test force and displacement is as
follows:

H0
1pjωq “

X1pjωq
F1pjωq

“
XpjωqHXpjωq
FpjωqHFpjωq

“
Xpjωq
Fpjωq

¨
HXpjωq
HFpjωq

“ H0pjωq ¨ Gpjωq (10)

where H0 pjωq is the transfer function of calibration device. It is a known physical quantity. H0
1 pjωq

can be obtained by the test force and displacement signals.
According to Equation (7), the transfer function of measurement system is as follows:

Gpjωq “
H0
1pjωq

H0pjωq
(11)

As the dynamic characteristic confidents test is carried out under frequency domain conditions,
the transfer function and test signals are usually expressed by amplitude and phase. It is assumed that
the test force and displacement signals obtained in calibration are as follows:

#

F1pjωq “ AFpωqejpωt`ϕFpωqq

X1pjωq “ AXpωqejpωt`ϕxpωqq

If the transfer function of measurement system is: Gpjωq “ Apωqejpϕpωqq, and the transfer function
of calibration device is: H0pjωq “ AH0pωqejpϕ0pωqq.

According to the Equations (10) and (11), the transfer function of measurement system can be
expressed as:

Gpjωq “
H0
1pjωq

H0pjωq
“

X1pjωq
F1pjωq

¨
1

H0pjωq
“

AXpωq

AH0pωqAFpωq
ejpϕxpωq´ϕFpωq´ϕ0pωqq (12)

So the amplitude and phase of transfer function of measurement system are as follows:

#

Apωq “ AXpωq
AH0pωqAFpωq

ϕpωq “ ϕXpωq ´ ϕFpωq ´ ϕ0pωq
(13)

4. Dynamic Calibration Device and Experiment

4.1. Dynamic Calibration Device

The scheme of dynamic calibration device proposed in this paper is shown in Figure 5.
The embedded loading technique is introduced into this scheme to act the static and dynamic forces
on the rotor. The embedded loading technique is implemented by piezo-actuator, which can generate
dynamic loads, such as harmonic, square wave and pulse forces.
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Figure 5. Scheme of dynamic calibration device.

A set of loading devices of piezo-actuator is installed on the ´45˝ direction of the test bed.
The fixed pad is a slot with two grooves on the ˘45˝ direction to set the disc spring components, of
which the stiffness is 106 ~107 N/m order of magnitude. The main parameters of the disc spring are
as follows: the inner diameter is 25.4 mm, the outer diameter is 50 mm and the thickness is 3 mm.
The stiffness of disc spring components is 6.2ˆ 107 N/m. Two eddy current sensors are respectively set
in horizontal and vertical directions. The loading forces are measured by the force sensor set between
the tilting pad and the bearing base. The calibration device and the test points placement are shown in
Figure 6.
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The dynamical model of calibration device is shown in Figure 7. The sinusoidal excitation
generated by piezo-actuator acts on the rotor through a loading pad. Because of the stiffness of the
disc springs and the damping of the junction surfaces, the differential equation of rotor’s motion is
as follows:

M

« ..
X
..
Y

ff

` C

« .
X
.

Y

ff

` K

«

X
Y

ff

“

« ?
2{2

´
?

2{2

ff

F (14)

where M is the mass of rotor; K is the stiffness of disc springs on the direction of the exciting force; C is
the damping on the direction of the exciting force.
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After Fourier transform:

´

K´Mω2 ` jωC
¯

«

X pjωq
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“

« ?
2{2

´
?

2{2

ff

F pjωq (15)

So the transform functions between the exciting force and two displacements are as follows:

$

&

%

HFX pjωq “
Xpjωq
Fpjωq

“ 1?
2pK´Mω2`jωCq

HFY pjωq “
Ypjωq
Fpjωq

“ ´ 1?
2pK´Mω2`jωCq

(16)

Their amplitudes and phases are as follows:

$

’

&

’

%

AHX pωq “
1

c

2
”

pK´Mω2q
2
`pωCq2

ı

ϕHX pωq “ arctan
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ωC
Mω2´K

¯

;

$

’

&

’

%

AHY pωq “
1

c

2
”

pK´Mω2q
2
`pωCq2

ı

ϕHY pωq “ 180˝ ` arctan
´

ωC
Mω2´K

¯

(17)

Plugging Equation (17) into Equation (13), the amplitudes and phases of the transform functions
between the force test channel and two displacement test channels of the measurement system for
dynamic characteristic coefficients are as follows:
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˘2
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ı

¨
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´

ωC
Mω2´K

¯

(18)

4.2. Analysis of Experiment Results Analysis

4.2.1. Damping Identification of Calibration Device

There is low damping in the junction surfaces of disc springs. In order to eliminate the
influence of the damping on the calibration data, the frequency scanning test is implemented on
the calibration device. The exciting forces of frequency 10 Hz–150 Hz act on the rotor by piezo-actuator.
The amplitude-frequency curves of the rotor vibrations on the X and Y directions acquired though the
measurement system are shown in the Figure 8.
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Figure 8. Amplitude-frequency curves of the rotor vibrations on the X and Y directions.

Because the calibration device is a system of high stiffness and low damping, there exists
a significant resonance phenomenon. The system damping can be identified though Equation (19):

C “ M pω2 ´ω1q (19)

where M is the mass of rotor, and M = 7.32 kg; ω1 and ω2 are the two corresponding frequencies of
the half-power points on the curve. The system damping identified on the two directions are equal,
and C = 146 N/(m¨s–1).

4.2.2. Calibration Data of the Measurement System under Different Frequencies

The exciting forces of 10 Hz–100 Hz frequencies act on the calibration device, which is repeated
five times. The values of mass, stiffness and damping are plugged into Equation (18) along with the
test forces and displacements. Taking an average of the five tests, the calibration data of measurement
system under different frequencies are shown in Figures 9 and 10.

In the excitation frequency range of 10 Hz–100 Hz, the amplitudes of the transfer function are
in the range of 1% ˘ 15%, and the phases increase along with the increasing of excitation frequency.
The amplitudes and phase differences of the transfer function between force test channel and two
displacement test channels are small (amplitudes difference 5%, phases difference 5˝).

In the frequency range of 10 Hz–30 Hz, the amplitude and phase of test results using this
measurement system need to be amended respectively less than 10% and 3˝. The calibration data in
this frequency range can support the dynamic characteristics test of sliding bearing in this frequency
range well.
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When using the multi-excitation method, the measurement equations are as follows: 
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It is important to note that the excitation frequencies should be equal to the corresponding
frequencies of the data points in Figures 9 and 10, when this measurement system is used to identify
the dynamic characteristic coefficients of a sliding bearing. Moreover, the test results are amended
by the corresponding amplitudes and phases in calibration data. Otherwise, other errors will be
introduced by interpolation of calibration data, and the reliability of analysis results will decline.

4.2.3. Identification Experiment of Dynamic Characteristic Coefficients Using the Calibration Data

In order to verify the calibration data of the measurement system, the simulated experiment
is implemented on the calibration device. The dynamic characteristic coefficients of the sliding
bearing are simulated by the stiffness of disc springs and the damping of junction surfaces, and the
exciting forces act on the rotor by piezo-actuator, which forms a simulated erected test bed for the
dynamic characteristic coefficients of the sliding bearing [36]. The dynamic model is shown in Figure 7,
and the differential equations of motion are as follows:
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When using the multi-excitation method, the measurement equations are as follows:
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Acting the exciting forces of frequency 20 Hz and 30 Hz on the test bed respectively, the exciting
forces and the displacements acquired by the measurement system are shown in Table 1.

Table 1. Exciting forces and the displacements test by multi-excitation method.

Physical
Quantities

First Excitation Second Excitation

Exciting
Force F1

Displacement
on X Direction

Displacement
on Y Direction

Exciting
Force F2

Displacement
on X Direction

Displacement
on Y Direction

Units N µm µm N µm µm
Frequencies 19.54 19.6 19.53 29.33 29.32 29.32
Amplitudes 22.1 4.54 4.72 90.87 16.95 17.52

Phases ´83.82 ´83.43 ´82.72 150.9 ´27.85 154.56
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Without considering the test errors of the measurement system, the test data of forces and
displacements are plugged into the measurement Equation (18) of the erected test bed. The stiffness
and damping coefficients of the simulated bearing are identified. After the measurement system
is calibrated, the test errors of the measurement system are separated from the test data using the
calibration data in Figures 9 and 10. Then the stiffness and damping coefficients of the simulated
bearing are identified though the amended data. The comparisons between identification results and
the given values are shown in Table 2.

Table 2. Comparisons between identification results of dynamic characteristic coefficients and the
given values.

Simulated Dynamic
Characteristic
Coefficients

Units Given
Values

Identification Results

Not
Calibrated Error % After

Calibrated Error %

kxx (ˆ106) N/m 4.09 3.724 ´8.95 3.993 ´2.36
kxy (ˆ106) N/m 0 ´0.055 - ´0.071 -
kyx (ˆ106) N/m 0 ´0.075 - ´0.103 -
kyy (ˆ106) N/m 4.09 3.598 ´12.02 3.944 ´3.58
cxx N/(m¨s´1) 146 ´347.463 ´337.99 173.126 18.58
cxy N/(m¨s´1) 0 167.316 - 68.165 -
cyx N/(m¨s´1) 0 343.945 - 87.227 -
cyy N/(m¨s´1) 146 ´866.497 ´693.49 156.923 7.48

According to the comparisons in Table 2, the identification results of dynamic characteristic
coefficients are obviously different form the given values when the measurement system is not
calibrated. The identification errors of principal stiffness are respectively ´8.95% and ´12.02%.
The identified values of principal damping are negative, and the absolute value is 3–7 times the given
values. These errors are too large for the research on dynamic behavior of sliding bearing, because
they may cause a very big deviation of the research result.

However, the identification results of principal stiffness using the calibration data of the
measurement system are close to the given values, of which the identification errors are respectively
´2.36% and ´3.58%. The identification errors of principal damping are slightly larger than the
given values, and the errors are 18.58% and 7.48%. These identification errors are in the permitted
ranges. So it is verified that the calibration data of the measurement system in the frequency range of
10 Hz–30 Hz can support the dynamic characteristics test of sliding bearing well.

5. Conclusions

(1) For the measurement system for dynamic characteristics coefficients of sliding bearing, a novel
dynamic calibration method by jointly calibrating multiple test channels is proposed in this
paper. The calibration device contains a spring-mass system, which can simulate the dynamical
characteristics of the sliding bearing.

(2) The dynamic calibration device, including the piezo-actuator, force sensor and eddy current
displacement sensor is designed and built. The dynamic calibration experiment in a wide
frequency range simulating the bearing stiffness by disc springs is implemented. The experimental
results show that the amplitude errors of this measurement system are small (less than ˘15%) in
the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing
of frequency.

(3) The simulated experiment of dynamic characteristics coefficients identification is implemented
on this calibration device using the calibration data of this measurement system in the frequency
range of 10 Hz–30 Hz. The identification errors of principal stiffnesses are respectively ´2.36%
and ´3.58%, and the identification errors of principal dampings are 18.58% and 7.48%, which are
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all far smaller than the identification errors without calibration. It is preliminarily verified that
the calibration data in this frequency range can support the dynamic characteristics test of sliding
bearing in this frequency range well.
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