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Abstract: Radio frequency identification (RFID) technology has already been explored for efficient
self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive
RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method
enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy,
sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the
size of antennas are important design parameters for realizing accurate and robust self-localization
using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial
for the accurate self-localization. This paper presents a novel design and arrangement of RFID
readers and tags for indoor mobile robot self-localization. First, by considering small-sized and
large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the
accuracy of self-localization. We also design a novel likelihood model by taking into consideration
the characteristics of the communication range of an RFID system with a large antenna. Second,
we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID
system configuration requiring much fewer readers and tags while retaining reasonable accuracy
of self-localization. We verify the performances of MCL-based self-localization realized using the
high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags
installed on the floor based on MCL in simulated and real environments. The results of simulations
and real environment experiments demonstrate that our proposed low-cost HF-band RFID system
realizes accurate and robust self-localization of an indoor mobile robot.

Keywords: HF-band RFID; self-localization; novel likelihood function; low production cost

1. Introduction

Most of the developed countries are facing the problems of the aging of the human population and
labor shortage. Then, intelligent mobile service robots have been developed with the main purpose of
solving these problems. Consequently, one of the tasks that needs to be accomplished on an urgent
basis is highly accurate and robust self-localization of robots. Many types of research have been
conducted on the self-localization of indoor mobile robots. Several of the systems developed for this
purpose employ vision sensors [1,2], lasers [3], ultrasonic sensors [4], infrared sensors [5], radar [6]
and ultrasonic technology [7]. However, these conventional approaches are not robust or accurate
enough to localize an indoor mobile robot, given the presence of several kinds of disturbances. Vision
sensors suffer from the change of illumination and environment conditions. Laser range finders (LRFs)
cannot locate a robot accurately if the robot is surrounded by many unknown moving obstacles or
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when transparent walls are widely used in the environment, because LRF fails to detect them. Further,
the performance of ultrasonic sensors is easily affected by obstacles around the robot.

A radio frequency identification (RFID) system has recently attracted attention as one of the
alternative sensing devices. RFID technology employs electromagnetic fields to transfer data between
an RFID tag and an RFID reader. Each RFID tag has its own unique ID information, and RFID tags are
inexpensive enough to be distributed in large densities among objects and environments. RFID systems
are widely used for applications, such as identification, transpiration tracking and inventory control.
These systems help to realize relatively robust wireless communication to exchange data between a
tag and a reader. Researchers in the field of robotics have investigated the use of an RFID system
for self-localization of a mobile robot. This can be achieved by two approaches. One is to use the
RFID system to compensate for another self-localization system based on a vision sensor, LRF or
GPS for instability or a huge exploration space [8–10]. However, the disadvantages of the base
self-localization system remain in this approach. The other approach is to use only an RFID system
for self-localization [11–16]. Various methods for making use of an RFID system for self-localization
have been proposed. One method is to use only kinematic constraints [13–15]. However, the accuracy
of self-localization depends on the density of tags; therefore, a high density of tags is required for
accurate self-localization. Another method is based on a machine learning approach [11]; however,
the RFID system is adversely affected by obstacles surrounding the reader and tags. Yet another
method entails the adaptation of probabilistic approaches [12,16]. In particular, the Monte-Carlo
localization (MCL) method [17] enables self-localization with relative accuracy. A previous study [12]
employed relatively large-tags and small readers. However, the large size of tags resulted in a large
localization error. Another study [16] employed small tags and a large number of readers with small
antennas. Figure 1 shows an omni-directional vehicle equipped with an HF-band RFID system, as
employed in the previous study [16]. In this RFID system, 96 RFID readers are installed at the bottom
of the robot. A high density of RFID tags is embedded in carpets on the floor. The RFID self-localization
system with 96 readers is quite robust, and it works flawlessly even in the case of stains or marker
tapes on the carpet. However, the production cost of this RFID system with 96 RFID readers is
relatively high. This drawback prevents widespread utilization of an RFID-based self-localization
system in service robots employed in public facilities, such as those serving in hospitals. There is a
high demand for a low-cost RFID system. Furthermore, although MCL enables robust self-localization,
the estimated initial position and posture are crucial for rapid recovery after the robot has lost its
position and posture.

This paper proposes a novel configuration of a high frequency (HF)-band RFID system that
employs fewer RFID readers, has a low density of passive tags and a low production cost and that
maintains the self-localization accuracy. We find through experiments with real robots that the
measurement model of the RFID system cannot be modeled by using a Gaussian distribution if
the antenna is enlarged in size. We show that a likelihood function that considers the antenna size
contributes to the accuracy of the self-localization. The key contributions of this study are as follows.

1. A novel particle reinitialization method based on MCL is proposed to enable rapid self-localization.
2. A likelihood function that considers the antenna size is proposed for accurate self-localization.
3. An HF-band RFID system with eight RFID readers placed in a new arrangement is developed by

increasing the antenna size of the RFID reader.

Eventually, the proposed RFID system provides highly robust self-localization of an indoor mobile
robot at low production cost.
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Figure 1. Self-localization of an indoor mobile robot using multiple RFID readers and RFID tags.
(a) Omni directional vehicle; (b) structure; (c) multiple readers; (d) self-localization model.

2. Related Works

A basic RFID system consists of three components, a transceiver (commonly known as the
RFID reader), a transponder (commonly known as the RFID tag) and an antenna. Depending on the
communication method, RFID systems can be divided into two types. One type uses radio waves,
and the other uses electromagnetic induction for communication between the transceiver and
the transponder. Ultra-high-frequency (UHF)-band and super-high-frequency (SHF)-band RFID
systems are based on the use of radio waves, which can realize long distance communication.
HF-bandand low-frequency (LF)-band RFID systems use electromagnetic induction. The communication
distance of HF-band and LF-band RFID systems is shorter than that of a UHF-band or SHF-band
RFID system; however, an HF-band or LF-band RFID system is much more stable and accurate for tag
detection and more robust against obstacles in the environment and environmental changes. LF-band,
HF-band or UHF-band RFID systems have already been utilized for mobile robot self-localization.
Details of related works on robot self-localization works are listed in Table 1.

Miguel Pinto et al. [18] used an omnidirectional camera and LRF sensors to realize
robot self-localization. Their self-localization system performed well, and the average self-localization
was less than 80 mm. However, in general, vision sensors suffer from the problem of illumination
changes, and LRF sensors are unable to accurately locate the robot when numerous transparent walls
are present in the robot’s environment.

Dirk Hahnel et al. [8] proposed a combination system composed of a UHF-band RFID reader
and an LRF. They used a probabilistic measurement model for RFID readers to locate RFID tags.
In their system, two RFID reader antennas were installed on the robot, and tags were attached
to walls, furniture, etc. The RFID system was used only to compensate for the global positioning
of the localization based on the LRF. Then, the accuracy of their system was dependent on the
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LRF-based self-localization system, which is sensitive to the condition of unexpected obstacles in the
robot’s environment. It is preferable to construct a single RFID system without any other sensors,
which can be used in a dark environment or in an environment containing several transparent walls,
such as in hospitals and other public facilities.

Lei Yang et al. [19] proposed a hybrid particle filter method for object tracking using a UHF-band
RFID system. This method is more computationally efficient than the particle filter while providing
the same accuracy. The limitation of their system is that it can locate only the position of the robot
and cannot estimate its orientation. However, for autonomous navigation of indoor mobile robots,
high accuracy localization of the position and orientation of the robot is necessary. The UHF-band
RFID system of Lei Yang [19] realized self-localization with an error of about 186 mm, in contrast to the
much higher accuracy of localization of the position and orientation achieved in our previous work,
where we propose the use of a novel particle reinitialization method based on MCL to enable
rapid self-localization. Instead of using the conventional Gaussian function (i.e., Gaussian model)
as the likelihood model, we newly design a likelihood model that is a combination of the Gaussian
distribution and the step function, which can improve the self-localization accuracy.

Both Park et al. [13] and Han et al. [14] proposed HF-band RFID systems for self-localization.
Park et al. [13] used only one RFID reader antenna in their system. However, it is difficult to estimate
the orientation of the robot with only one reader antenna. Han et al. [14] proposed a new triangular
pattern for arranging the RFID tags on the floor, instead of the conventional square pattern, and they
achieved accurate localization with an localization error of about 16 mm. However, their system
suffers from the same problem as that of Park et al. [13] because it also uses only one RFID reader.
A common approach to solving this problem is to combine these systems with other sensors [20,21].
They developed a new localization method that uses trigonometric functions to estimate the position
and orientation with only one RFID reader. Unfortunately, the system they developed cannot ensure
the reliability of localization, especially when the robot moves quickly or when no tags are detected.
HF-band RFID systems have also been utilized for object pose estimation [22] or communication
robots [23]; however, the objectives of these works were different from those of our study.

Yang et al. [24] used one HF-band RFID reader with a large antenna size of 660 × 300 mm2.
They derived an exponential-based function to reflect the relationship between RFID tag distribution
and localization precision. They proposed an approach of using sparsely-distributed passive RFID tags.
They used a simple and efficient localization algorithm proposed by Han et al. [14]. The RFID
system with sparse RFID button tag distribution patterns realized better localization with precisions
of about 36 mm and 38 mm in the x direction and y direction, respectively. However, this system
was unable to realize real-time localization. The robot stayed for 40 s at each point for localization.
In addition, the system could not estimate the orientation of the robot. Furthermore, installation of
their sparse RFID tag distribution patterns in an indoor environment was difficult. Yang and Wu [25]
proposed a particle filter algorithm using a position-information-based straight observation model
and a 2D Gaussian-based motion model to locate the robot. They used a dense tag distribution.
Other experimental conditions in their study were the same as those in Yang et al. [24]. They set the
localization accuracy as 100 mm and the localization precisions of about 27 mm and 46 mm in the x
direction and y direction, respectively. However, their system suffers from the same problems as did
that of Yang et al. [24]. In the present research, we designed a novel HF-band RFID system with eight
RFID readers having an appropriately-sized antenna to eliminate uncertainties and to realize real-time
position and orientation localization.

Mohd Yazed Ahmad et al. [26] proposed a novel triangular-bridge-loop reader antenna for
positioning and presented a method for the improvement of HF-RFID-based positioning. They used
an HF-band RFID reader with a large-sized antenna having dimensions of 320 × 230 mm2, which was
designed with a novel triangular-bridge-loop. In their system, passive RFID tags were sparsely
distributed at a distance of about 1300 mm. Their system performed quite well and achieved an
average positioning error of 40.5 mm, in contrast to the average positioning error of 124.1 mm in the
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case of a system employing a conventional reader antenna. However, their system has a limitation
in that the speed of the robot is set to be consistent to ensure successful reading of the tags by the
reader. If the robot moves faster, a faster reader and tag are required. If the robot moves slower
or if an emergent circumstance occurs where the speed is required to be reduced, the system may
not detect tags for a long time, as the distance between two tags is 1300 mm. Under this condition,
only encoder data can be used for localization, which could make the localization difficult. In our
proposed RFID system, there is no such speed limitation. We validate our proposed RFID system at
various speeds and, thus, demonstrate its overall efficiency.

Table 1. Related works: self-Localization.

Works Band Reader
Number

Arrangement
of Tags Sensors Method Localization Error

Miguel Pinto [18] × × × omni-camera,
LRF

based on
Kalman filter <80 mm

Dirk Hahnel [8] UHF 2 attached to objects LRF Monte Carlo
localization

much better than
only using LRF

Dany Fortin-Simard [9] UHF 4 attached to objects
different
sensors and
effectors

filters using an
elliptical model 141.2 mm

Lei Yang [19] UHF 1 uniformly
distributed × hybrid particle filter 186 mm

Kodaka [12] LF 2 lattice pattern,
16 tags/m2 × particle filter <100 mm

Sunhong Park [13] HF 1 grid-like pattern,
9 tags/m2 × trigonometric

functions

133 mm in
x-axis and
57 mm in y-axis

Soonshin Han [14] HF 1 triangular pattern,
400 tags/m2 ×

based on
motion-continuity
property

16 mm

Takahashi [15] HF 8 lattice,
100 tags/m2 × kinematics method <17 mm

Takahashi [16] HF 96 lattice, 100 tags/m2 × Monte Carlo
Localization

11.8 mm in x-axis
and 18.6 mm in
y-axis

Po Yang [24] HF 1 sparsely distributed ×
a simple and
efficient localization
method

36 mm in x-axis
and 38 mm in
y-axis

Po Yang [25] HF 1
dense passive RFID
tag distribution,
100 tags/m2

× particle filter
27 mm in x-axis
and 46 mm in
y-axis

Mohd Yazed
Ahmad [26] HF 1 sparsely distributed ×

using tag
information and
wheel encoder data

40.5 mm

An LF-band RFID system for indoor mobile robot self-localization has been proposed in some
studies [12,27]. For example, Kodaka et al. [12] used a vehicle equipped with two RFID readers.
In their study, RFID tags were installed on the floor, and the size of one tag was 260 × 260 mm2.
The distance between adjacent tags was 300 mm. The MCL method was used for robot self-localization,
and the localization error was less than 100 mm and 0.1 rad on average. Unfortunately, despite
developing an active self-localization method [28], the researchers faced difficulty in increasing the
localization accuracy given the dependence on the size of a tag. The communication range of RFID
readers also affects the accuracy of self-localization.

Takahashi et al. [15] proposed an RFID-based self-localization system having eight RFID reader
antennas at the bottom of the robot. In this system, the RFID tags were arranged in a lattice pattern,
and a simple kinematics was used to localize the robot. The accuracy of self-localization was highly
dependent on the density of the RFID tags. With eight RFID reader antennas and small-sized
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high-density RFID tags (100 tags/m2), the localization error was less than 17 mm and 0.12 rad
on average. However, if the reader failed to read the tag, the error became relatively large, and the
system faced a problem of latency in scanning the tags given that scanning needs to be performed
by one antenna after another. Therefore, the system became unstable at high speeds. Takahashi
and Hashiguchi [16] developed a new mobile robot self-localization system using MCL based on the
HF-band RFID system. This system included 96 RFID readers, and the density of the RFID tags was
100 tags/m2. They compared the performances of self-localization with an RFID system only and with
an RFID system equipped with LRFs and found that in the absence of obstacles, both RFID systems
were able to locate the robot accurately. However, in the presence of obstacles around the robot, the
system using LRFs could not locate the robot accurately and stably, which demonstrated the efficiency
of the RFID system used alone.

The limitation of their system is its high production cost. It is then necessary to redesign the
system, reduce the number of RFID readers, use a low density of RFID tags and establish an efficient
configuration of the system to cut down its production cost.

3. Self-Localization of an Indoor Mobile Robot by Using an RFID System with MCL

MCL, one of the probabilistic approaches [17], has been shown to be a good method
for real-time self-localization of robots. Takahashi and Hashiguchi [16] applied MCL to their
RFID-system-based self-localization. It is assumed that an RFID tag has a unique ID and that the tag ID
map is maintained with the position of each tag. RFID readers work independently and asynchronously
of each other. We briefly introduce the MCL using the RFID system [16] here. We define the world
coordinate system wΣ and the robot coordinate system rΣ as shown in Figure 2. The robot position and
orientation is defined in the world coordinate system at time t as wxt = (wxt,w yt,w θt). zt = (rt, tagt)

is the measurement output at time t, and tagt is the tag detected with the RFID reader rt. A motion
model wxt+1 = MotionModel(wxt) is defined to estimate the next robot position and orientation of
the robot, wxt+1 from wxt. A measurement model p(zt|wxt) is also defined to calculate the posterior
probability to receive the measurement output zt if the robot position and orientation are wxt. A set
of particles is defined as a set of hypotheses of the robot position and orientation denoted at time t
as Xt = (wx[1]t ,w x[2]t , · · · ,w xM

t ), where M is the number of particles. The algorithm of MCL is given
in Algorithm 1. The self-localization system updates the particles with a fixed sampling time ∆t.
If no RFID reader detects a tag within the sampling time, the procedure of belief calculation (Step 4
in Algorithm 1) is skipped.

The motion model of an omnidirectional vehicle is given by Equation (1):

wxt = wxt−1 + V∆t + ε∆t, ε ∼ N(0, σ) (1)

where V = (vx, vy, ω), ∆t and N(0, σ) denote the velocity of the robot, sampling time and Gaussian
distribution with the standard deviation σ = (σx, σy, σω), respectively.

The position of tagj detected by RFID reader antenna ri in world coordinates is
wxtagj = (wxtagj ,

w ytagj ,
w ztagj)

T . The position of RFID reader ri at time t in world coordinates
wxri = (wxri ,

w yri ,
w zri )

T is estimated by Equation (2):(
wxri
wyri

)
=

(
cos wθt − sin wθt

sin wθt cos wθt

)(
rxri
ryri

)
+

(
wxt
wyt

)
(2)

where (rxri ,
ryri )

T is the position of the RFID reader antenna ri in the robot coordinate system and it is
known in advance. We assume wztagj and wzri to be constant.
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Algorithm 1 Monte Carlo localization.

1: Initialize particles X̄t = Xt = (wx[1]t ,w x[2]t , · · · ,w xM
t )

2: for m = 1 to M do
3: Update particles with the motion model: wxm

t = MotionModel(wxm
t−1)

4: Calculate the belief of each particle with the measurement model: wm = p(zt|wxm
t )

5: X̄t = X̄t+ < wxm
t , wm

t >
6: end for
7: for m = 1 to M do
8: draw wxm

t from X̄t with probability ∝ wm
t

9: add wxm
t to Xt

10: end for
11: for m = 1 to M do
12: if wm

t < α(a constant), re-initialize wxt
13: end for
14: return Xt

reader: 

tag: 

Figure 2. World coordinate system wΣ and robot coordinate system rΣ.

Then, the weight of each particle, wm, is calculated using the measurement model p(zt|wxm
t ).

p(zt|wxm
t ) is a likelihood function defined in Section 5. After the weights wm are calculated,

the algorithm estimates the position of the robot as the weighted mean of the particles.

wxt =
∑M

m=1
wxm

t wm

∑M
m=1 wm

(3)

As shown in Steps 7–10 of Algorithm 1, particles are updated with a probability proportional to
the weight wm.

Particle Reinitialization

In conventional studies, in scenarios where the initial position of the robot was unknown or
the weights of all particles became too small during the transportation because of an unexpected
disturbance in the robot’s movement, the particles were distributed uniformly randomly in the possible
exploration space. However, it is obviously undesirable to distribute the particles uniformly if the
possible exploration space is too large. Once the robot detects one of the tags, it can narrow down its
own possible position immediately according to the position of the detected tag and the reader that
detects it. Figure 3 shows examples of the possible poses of the robot when it detects a tag if its own
position is unknown.
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Figure 3. Possible poses of the robot when one reader detects a tag: Positions 1, 2 and 3 are possible
poses of the robot when it detects the tag by means of its reader.

We propose a novel particle reinitialization method that is specific to the RFID system and that is
aimed at the realization of highly efficient and accurate self-localization. The particle reinitialization
process is performed from Step 11 onward in Algorithm 1. Once wm becomes too small for the
robot’s self-localization, particles wxt = (wxt,w yt,w θt) will be reinitialized as given in Equation (4):(

wxt
wyt

)
=

(
wxtagj
wytagj

)
−
(

cos wθt − sin wθt

sin wθt cos wθt

)(
rxri
ryri

)
(4)

where wθt is generated using a uniform random function from −π to π. The re-sampling indicates that
the robot is at a position where the RFID reader ri is just above the detected tag tagj. The proposed
re-sampling leads the self-localization system to localize the robot itself quickly and stably because it
can eliminate unnecessary particles distributed over the possible exploration space. In our research,
the number of particles is set as 500.

4. HF-Band RFID Systems

In this study, we use multiple HF-band RFID readers to realize highly accurate and stable real-time
localization. Generally, an RFID reader with a large antenna could provide a large area for tag detection.
However, using a large antenna would also increase uncertainty during the localization. To eliminate
uncertainty and realize highly accurate real-time localization, we first used 96 HF-band RFID readers
with a small antenna.

4.1. System with 96 HF-Band RFID Readers

As shown in Figure 4a, the 96 small-sized HF-band RFID readers are arranged in a cross pattern.
The RFID reader is small, with the size of one reader antenna being 30 × 30 mm2. Our RFID reader
antenna is much smaller than the large antenna (660 × 300 mm2) employed in a previous work [24].
In this system, l1 = 44.5 mm and l2 = 37.5 mm. Figure 4b shows the 96 RFID readers designed and
developed by us previously [16]. The RFID system makes the self-localization stable and accurate.
However, the production cost is too high for a service robot being applied to public facilities.
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Figure 4. The 96 HF-band RFID readers. (a) Arrangement; (b) installation.

To cut down the production cost while maintaining the high accuracy of the self-localization,
we attempted to configure a low-cost HF-band RFID system by increasing the antenna size
appropriately and reducing the number of RFID readers. We first reduced the number of readers
to 24 (Figure 5a), which is a quarter of the original 96 RFID readers. This is because we increased
the size of one antenna to 60 × 60 mm2, which is four-times the antenna size in the case of using
96 RFID readers. The 24-RFID-reader system performed well; further details of this system can be
found elsewhere [29]. Then, we made a slight adjustment by reducing the number of readers to 20,
as shown in Figure 5b. Specifically, we reduced the number of readers by four and instead placed four
readers at the center in order to test the system. Further details have been reported elsewhere [30].
Both the 24-RFID-reader and the 20-RFID-reader systems were able to locate the robot accurately
and stably. We wished to continue reducing the number of readers to six, i.e., a quarter of the 24 RFID
readers. However, due to the robot, the readers have to be arranged in a cross pattern. Given the
difficulty in arranging six readers in a cross pattern, we made a slight adjustment and used eight RFID
readers instead.
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Figure 5. Arrangements of the 24 and 20 RFID readers. (a) the 24 readers; (b) the 20 readers.
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4.2. System Using Eight HF-Band RFID Readers

Figure 6 shows the newly-designed and built eight-RFID-reader system. The size of one RFID
reader antenna in this system is 60 × 60 mm2, which is the same as the size of the antenna in the
24-RFID-reader system. For this new system, the intervals shown in Figure 6 are as follows: l1 = 100 mm
in the x direction and l2 = 100 mm in the y direction.

-300

-150

 0

 150

 300

-300 -150  0  150  300

y
[m

m
]

x[mm]

l1

l2

(a) (b)

Figure 6. A new scheme for eight RFID readers. (a) Arrangement; (b) installation.

4.3. Configurations of RFID Tags with Different Densities

The production cost depends on not only the configuration of the readers, but also the
configuration of the tags embedded in the robot’s environment. A configuration with fewer tags
is less expensive. Figure 7a shows a small passive RFID tag used by us. The size of the passive
RFID tag is 10 × 20 mm2. As shown in Figure 7, the RFID tags are arranged in a lattice pattern. We
investigated the performances of RFID systems in the case of using RFID tags arranged in a lattice
pattern with different densities: 400 tags/m2, 100 tags/m2, 25 tags/m2 and 16 tags/m2. Figure 7b,c
shows the configurations of RFID tags with densities of 100 tags/m2 and 16 tags/m2, respectively.

(a)
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 0  200  400  600  800  1000

y
 [

m
m

]

x [mm]

(b)

 0

 500

 1000

 0  500  1000

y
[m

m
]

x[mm]

(c)

Figure 7. RFID tags in a lattice pattern. (a) Passive RFID tag; (b) 100 tags/m2; (c) 16 tags/m2.
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5. Likelihood Models for Tag Detection

5.1. RFID Tag Detection Model

An HF-band RFID reader detects a tag reliably if the tag is in the detection range. We model the
detection range as follows. Figure 8 shows the model for ID tag detection. In this figure, the detection
area is represented by the sphere drawn using the solid black line. Specifically, this sphere represents
the detection range of one RFID reader. The radius of the detection range is denoted by R. The red dot
represents the center of the detection range, which is just below the RFID reader antenna at a distance
of hc. The height of one RFID reader antenna is given as wzri = ha. Tags are embedded in the carpet on
the floor. A tag is detected if and only if it is within the detection range of one RFID reader antenna,
which is illustrated in Figure 8 and expressed in Equation (5). In the simulation part, we use this tag
detection model to simulate the RFID reader.

(wxri −
w xtagj)

2 + (wyri −
w ytagj)

2 + (wzri − hc −w ztagj)
2 < R2 (5)

Figure 8. ID tag detection model for a small-sized RFID reader antenna.

Figure 9 shows the tag detection area of one RFID reader antenna whose size is 60 × 60 mm2.
Figure 10 shows the cross-sectional views of the tag detection area and the success rates at heights of
15 mm and 20 mm. The z-axis represents the tag detection rate when the tag is located at (x, y). Use of a
likelihood function for the measurement model is crucial for ensuring the accuracy of self-localization.
Conventional studies employed a Gaussian distribution as the likelihood function. Figure 10 illustrates
that the detection rate is almost 100% if the tag is in the detection range and almost 0% if the tag
is outside the range. This suggests that a Gaussian distribution is unsuitable for the RFID system.
Therefore, we investigated two likelihood functions: a Gaussian distribution and a combination of the
Gaussian distribution and step function.
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Figure 9. Detection area of the RFID reader antenna (data provided by Art Finex Co., Ltd., 6-1-33,
Kamikoubata, Sabae, Fukui, Japan).

 0

 30-60
-30

 0
 30

 60

 0

 50

 100

x[mm]

y[mm]

(a)

 0

 30-60
-30

 0
 30

 60

 0

 50

 100

x[mm]

y[mm]

(b)

Figure 10. Tag detection rate at different heights (data provided by Art Finex Co., Ltd.). (a) 15 mm;
(b) 20 mm.

5.2. Two Different Likelihood Models

We establish two different likelihood functions for the measurement models of MCL, as shown
in Figure 11. One likelihood function is defined by the distance between a reader and the ID tag
detected by it. This likelihood function often uses the Gaussian model, as shown in Figure 11a.
Particles tend to gather around the center of the Gaussian distribution because the weights of the
particles are calculated by the Gaussian distribution function N(µ, σ), and the closer a particle to µ,
the higher is its assigned weight. Figure 11b shows a combination of the Gaussian distribution and
the stepwise function, hereafter referred to as the combination model, newly designed in this study.
The combination likelihood function is defined as given in Equation (6):

p(tagj, ri) =

1 if ||wxtagj −w xri || < σ

β exp
(
− 1

2σ2 (
wxtagj −w xri )

T(wxtagj −w xri )
)

else
(6)

where β is a constant. The weight of the particles in the range defined between the center and σ is one.
Otherwise, the weight of the particles reduces according to the distance between the reader and the tag.
We evaluate these two different likelihood function models in both a simulation and a real environment.
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Figure 11. Likelihood functions for the measurement model of tag detection. (a) Gaussian model;
(b) combination model.

5.3. Simulations of Self-Localization by a 96 HF-Band RFID Reader System Using Two Likelihood Models

In the simulations of the 96 HF-band RFID reader system, the height ha of the antenna is set to
20 mm, and the detection radius R is 15 mm. The center of the detection area of a reader antenna is
just below the antenna at a distance hc of 8 mm. Table 2 presents the simulation results obtained using
the 96 HF-band RFID readers with the two different likelihood models. The RFID tags are arranged in
a lattice pattern with four different densities, as described in Section 4.3.

Table 2. Self-localization performances of the 96 HF-band RFID reader system using two
likelihood models.

Tag Density Likelihood Error by Mean Error by Max Variance

(tags/m2) Model x (mm) y (mm) θ (rad) x (mm) y (mm) θ (rad) x (mm2) y (mm2) θ (rad2)

400 Gaussian 1.6 1.5 0.003 9.4 8.3 0.015 2.6 2.5 0.000
400 Combination 1.3 1.2 0.005 7.0 6.9 0.019 1.2 1.2 0.000
100 Gaussian 2.2 1.9 0.003 9.5 9.1 0.018 2.9 2.6 0.000
100 Combination 1.7 1.5 0.004 7.7 7.7 0.022 1.6 1.4 0.000
25 Gaussian 4.4 4.4 0.010 16.5 33.8 0.120 8.6 20.0 0.000
25 Combination 4.0 4.2 0.011 12.4 28.6 0.099 8.4 18.7 0.000
16 Gaussian 3.8 3.7 0.007 13.3 20.7 0.055 6.6 6.6 0.000
16 Combination 3.8 3.0 0.006 13.3 14.2 0.085 6.1 4.8 0.000

The results in the table illustrate that the 96 HF-band RFID reader system performs highly accurate
self-localization with average errors of less than 5 mm in both the x and y directions, irrespective of
whether the Gaussian model or the combination model is used. The variances and maximum errors
listed in Table 2 also demonstrate that the proposed system is quite stable. Though the data in the table
show that both the likelihood models provide almost the same accuracy of self-localization, the average
errors in the case of using the combination model are slightly smaller than those in the case of using the
Gaussian model. This result supports the hypothesis that the combination model works better than the
Gaussian model. In general, the self-localization accuracy decreases when the tag density decreases,
and from the data in Table 2, it is seen that the density of 400 tags/m2 provides the best accuracy.
Further, the density of 100 tags/m2 is better than densities of 25 tags/m2 and 16 tags/m2. However,
Table 2 reveals that the average error for the density of 16 tags/m2 is slightly smaller than that for the
density of 25 tags/m2. The self-localization performance is easily affected by the configurations of
the readers and tags and the likelihood models. Additionally, the routes of the robot also affect the
accuracy, especially under conditions of using low densities of tags, such as 25 tags/m2 and 16 tags/m2,
because the self-localization is based on the reading of the tags’ information by the RFID readers.
This is the reason why the average errors in the case of 16 tags/m2 are slightly smaller than those in
the case of 25 tags/m2.
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Table 3 presents the simulation results for the 96 HF-band RFID reader system without the
particle reinitialization. The simulations were performed with a tag density of 100 tags/m2 and
using the two likelihood models. The average errors, maximum errors and variances in this
simulation are much larger than the values listed in Table 2. This is because the particles would
be reinitialized under the condition that their weight is too small for the system to estimate the position
of the robot. Unnecessary particles also would be eliminated to make the system locate the robot
quickly and accurately. This proves that our proposed particle reinitialization method enables more
accurate and stable self-localization.

Table 3. Self-localization performances of the 96 HF-band RFID reader system without reinitialization.

Tag Density Likelihood Error by Mean Error by Max Variance

(tags/m2) Model x (mm) y (mm) θ (rad) x (mm) y (mm) θ (rad) x (mm2) y mm2) θ (rad2)

100 Gaussian 21.6 21.3 0.490 169.6 153.3 1.494 737.8 750.6 0.211
100 Combination 21.8 21.5 0.504 163.3 152.3 1.515 717.6 719.6 0.201

5.4. Simulations of Self-Localization by the Eight HF-Band RFID Reader System Using Two Different
Likelihood Models

In the simulation with the eight HF-band RFID reader system, R = 30 mm, hc = 24 mm
and wzri = 24 mm. Table 4 lists the simulation results in the case of using the eight HF-band RFID
reader system. The average errors in the simulation are less than 10 mm in both the x and y directions
for both the Gaussian and the combination models. As was the case with the self-localization using the
96 HF-band RFID reader system, the self-localization using the eight HF-band RFID reader system
was also highly accurate and stable, despite the reduction in the number of readers from 96 to eight.
Furthermore, as was the case with the simulation using the 96 HF-band RFID reader system, in
this case, as well, the density of 400 tags/m2 provided the best self-localization accuracy. Further, the
density of 100 tags/m2 provided better accuracy than did the densities of 25 tags/m2 and 16 tags/m2.
The simulation results show that the average self-localization errors when using the combination model
are smaller than those when using the Gaussian model under all of the tag arrangement conditions.
This also proves our hypothesis that the combination model performs better self-localization than does
the Gaussian model. It is found from Table 4 that the average errors for 25 tags/m2 are slightly larger
than those for 16 tags/m2, which is the same as the result seen in Table 2. As described in Section 5.3,
this result can be attributed to the routes of the robot selected by us.

Table 4. Self-localization performances of the eight HF-band RFID reader system using two
likelihood models.

Tag Density Likelihood Error by Mean Error by Max Variance

(tags/m2) Model x (mm) y (mm) θ (rad) x (mm) y (mm) θ (rad) x (mm2) y (mm2) θ (rad2)

400 Gaussian 3.1 2.2 0.007 13.1 8.9 0.027 5.2 2.5 0.000
400 Combination 2.5 2.2 0.010 12.2 10.7 0.038 3.4 2.8 0.000
100 Gaussian 5.2 3.1 0.012 22.3 13.9 0.127 16.7 5.0 0.000
100 Combination 4.4 3.1 0.014 18.3 16.1 0.086 14.3 6.8 0.000
25 Gaussian 7.4 5.9 0.022 23.5 28.3 0.075 23.1 21.7 0.000
25 Combination 6.7 5.3 0.020 39.7 32.7 0.089 33.1 22.8 0.000
16 Gaussian 6.7 5.0 0.015 24.8 21.9 0.055 26.0 14.3 0.000
16 Combination 6.2 4.9 0.019 31.3 50.1 0.120 22.9 23.8 0.000

6. Experiments in a Real Environment

The eight RFID reader system (Figure 6) was attached at the bottom of our omnidirectional vehicle,
as shown in Figure 12. As mentioned earlier, Figure 9 shows the tag detection area of one RFID reader
antenna of the eight HF-band RFID reader system, and Figure 10 shows the cross-sectional view of the
tag detection area and the success rate at heights of 15 mm and 20 mm. Figure 10 demonstrates that
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the combination likelihood model is more suitable than the Gaussian likelihood model at the heights
of 15 mm and 20 mm. This also proves our hypothesis in simulations that the combination model
performs better than the Gaussian model. Next, we verified whether or not the combination model
performs better than the Gaussian model in a real environment.

(a) (b)

Figure 12. Installation of eight HF-band RFID readers at the bottom of an omni-directional vehicle.
(a) An RFID reader; (b) bottom view.

As shown in Figure 13a, we verified the eight HF-band RFID reader system using the two different
likelihood models in the real environment. The height of the readers was set as 15 mm because the
reader antenna has a better tag detection success rate.
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Figure 13. Experimental environment: (a) the installation of ID tags with a density of 100 tags/m2 and
(b) the installation of ID tags with a density of 16 tags/m2. The red dots represent the ID tags, and the
blue lines represent the experimental routes. The black dots represent statistic points.

The speed of the robot was set as 100 mm/s. The eight RFID readers and the 96 RFID readers
detected ID tags every 50 ms. The frequency of the eight RFID readers and 96 RFID readers was the
same, i.e., 13.56 MHz. ID tags were embedded in the carpet on the floor with densities of 100 tags/m2

and 16 tags/m2 in the lattice pattern. We made the robot run the path shown in Figure 13, from Point
1 to Point 8. It was difficult to determine the localization error for every position along which the
robot moved. To calculate the localization errors, we marked eight points at which the positions were
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already known, as shown in Figure 13. The robot stayed for 20 s at each of the eight points to perform
self-localization, so that it could collect enough data to calculate the self-localization errors. We first
verified our new eight HF-band RFID reader system. We also performed a comparison experiment
with the 96 HF-band RFID reader system. To analyze the self-localization errors, we acquired a large
amount of data through calculations at the eight points shown in Figure 13.

The experimental results for the 96 HF-band RFID reader system are presented in Table 5. At the
density of 100 tags/m2, the average self-localization errors are smaller than 15 mm in the x direction
and smaller than 25 mm in the y direction for both likelihood function models. The comparison of these
two likelihood models reveals that in the x direction, the average self-localization error when using
the combination model is 8.2 mm, which is smaller than that when using the Gaussian model. In the y
direction, both the likelihood models perform self-localization with almost the same accuracy, with
errors of 22.3 mm and 23.8 mm for the Gaussian and combination models, respectively. At the density
of 16 tags/m2, the combination model performs better than the Gaussian model, where, as shown
in Table 5, the average self-localization errors are 26.2 mm in the x direction and 18.0 mm in the y
direction for the Gaussian model and 17.7 mm in the x direction and 13.5 mm in the y direction for the
combination model. From these average self-localization errors, it can be said that the self-localization
at the density of 16 tags/m2 is accurate enough: in the x direction, the errors at this density are
only slightly larger than those at 100 tags/m2, and in the y direction, the errors at this density are
smaller than those at 100 tags/m2. However, the self-localization at this density was not stable, as the
maximum errors and variance were very large, as seen in Table 5. This is because the system could not
detect tags at some places when the density of the ID tags became as low as 16 tags/m2. The detection
area of one RFID reader is narrow so that the size of the 96 RFID reader antenna is small. Eventually,
the self-localization errors increase correspondingly. With the configuration of 96 small RFID readers
and the ID tag density of 16 tags/m2, the system is unable to locate the robot stably.

Table 5. Self-localization errors with 96 HF-band RFID reader systems.

Density Likelihood Error by Mean Error by Max Variance

(tags/m2) Model x (mm) y (mm) θ (rad) x (mm) y (mm) θ (rad) x (mm2) y (mm2) θ (rad2)

100 Gaussian 14.2 22.3 0.030 37.5 44.4 0.068 98.7 128.8 0.000
100 Combination 8.2 23.8 0.032 30.4 43.0 0.084 59.0 93.1 0.000
16 Gaussian 26.2 18.0 0.107 1867.3 562.4 0.402 4331.3 601.2 0.009
16 Combination 17.7 13.5 0.061 2699.0 820.2 0.248 7075.5 731.1 0.002

Table 6 presents the results of self-localization errors in the case of the eight HF-band RFID
reader system. The results show that the eight HF-band RFID reader system with large antennas
performs highly accurate self-localization. As is seen from the table, the average self-localization errors
in the case of both of the likelihood models at the density of 100 tags/m2 are almost the same. However,
as can be seen from the table, even though both of the likelihood models perform well at the density
of 16 tags/m2, the combination model performs better than the Gaussian model. The maximum errors
and variance at the density of 16 tags/m2 are much larger than those at 100 tags/m2; however, the
system still maintains stable localization.

Table 6. Self-localization errors with the eight HF-band RFID reader systems.

Density Likelihood Error by Mean Error by Max Variance

(tags/m2) Model x (mm) y (mm) θ (rad) x (mm) y (mm) θ (rad) x (mm2) y (mm2) θ (rad2)

100 Gaussian 5.7 24.3 0.020 18.1 40.0 0.053 13.2 39.2 0.000
100 Combination 4.7 22.8 0.019 16.8 38.3 0.075 11.3 52.1 0.000
16 Gaussian 33.3 12.9 0.056 88.3 40.0 0.105 502.8 84.0 0.001
16 Combination 13.0 8.7 0.046 94.0 42.5 0.097 249.2 57.9 0.001
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From Tables 5 and 6, it can be seen that at the density of 100 tags/m2, the average errors in the
x direction are much smaller than those in the y direction. At the density of 16 tags/m2, the average
errors in the x direction are larger than those in the y direction. As the arrangement of the RFID reader
antennas is the same in both the x and y directions, we consider that these differences in average errors
were caused by the ID tag installation. Because it is difficult to ensure the installation of every two
adjacent tags at the same interval, the installation errors cannot be prevented.

From a comparison of the two RFID systems, we found that both systems performed highly
accurate self-localization at the density of 100 tags/m2 and that there was only a slight difference in
the average self-localization errors when the combination model was used. The eight HF-band RFID
reader system performed slightly better than the 96 HF-band RFID reader system. The difference
between the two RFID systems was that the eight HF-band RFID reader system could locate the robot
accurately and stably under the condition of using a low density of ID tags, 16 tags/m2, whereas the
system with the 96 small RFID readers could not. This is because the eight RFID readers are equipped
with enlarged antennas in order to widen the tag detection range of a single RFID reader. The efficient
RFID readers of the two RFID systems that detect ID tags are almost the same. Moreover, we used
MCL for self-localization, which could enable the robot to be located precisely even if only one or
two tags were detected. The experimental results demonstrate the efficiency of our newly-developed
eight HF-band RFID reader system with large antennas. This system performs robot self-localization
stably and accurately, which proves that eight RFID readers with large antennas, instead of 96 RFID
readers, can provide sufficient self-localization accuracy for robot localization. Moreover, because we
use eight RFID readers, the production cost of the system can be reduced significantly in comparison
to that of the 96 HF-band RFID reader system.

Trajectory of Real-Time Self-Localization

To verify the real-time self-localization performance of the developed eight HF-band RFID
reader system, we obtained the statistics of the real-time localization of the robot. Figure 14 shows
the trajectories of our proposed eight HF-band RFID reader system. Figure 14a shows the real-time
self-localization trajectory obtained using the conventional Gaussian model, whereas Figure 14b shows
that obtained using our proposed likelihood model. The comparison of Figure 14a,b reveals that the
proposed likelihood model works better than the conventional method employing the Gaussian model.
As seen in both figures, Figure 14a,b, the robot could not perform high-accuracy localization in the
area indicated by the circle. This is because the system could not detect ID tags, since they had an
installation error. On the other side, our eight RFID reader antenna is small; once tags are distributed
in the gap of the detection area, the system could not detect tags. The reader detection area is shown
in Figure 9, and the installed RFID tags are shown in Figure 13.

In our experiments, we also validated the performance of the proposed eight HF-band RFID
reader system at different speeds. Figure 14b shows the real-time localization at a speed of 100 mm/s.
Figure 15 shows the real-time localization at speeds in the range of 50 mm/s to 350 mm/s at intervals
of 50 mm/s. From Figure 15a to 15f, it is clear that the localization accuracy does not decrease with
an increase in the speed. Furthermore, as shown in Figure 15, to a certain extent, the system even
performs better at high speeds. This is because when the robot moves at low speeds, the noise of
the motors has a much greater effect on the system performance. In contrast, when the robot moves
at high speeds, the noise of the motors has less time to have an effect on the system performance.
Above all, the proposed RFID system was able to realize highly accurate and stable localization at
various speeds. This proves the efficiency and stability of the proposed RFID system.
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Figure 14. Real-time self-localization trajectory obtained using (a) the eight HF-band RFID reader system
using the conventional Gaussian model and (b) the eight HF-band RFID reader system using the proposed
likelihood model. The density of the ID tags was 100 tags/m2, and the robot speed was 100 mm/s.
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Figure 15. Real-time self-localization trajectories at different speeds. (a) 50 mm/s; (b) 150 mm/s;
(c) 200 mm/s; (d) 250 mm/s; (e) 300 mm/s; (f) 350 mm/s.
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7. Conclusions

In this study, we achieved stable and accurate self-localization of an indoor mobile robot by
using a newly-developed RFID system and investigated the self-localization performance at different
configurations of the RFID system. We eventually determined a novel configuration of the RFID
system that has low production cost and provides highly accurate and stable self-localization.
In order to make the self-localization realized by the proposed RFID system more accurate
and efficient, we applied an efficient particle reinitialization method to MCL. We designed two different
likelihood models, a Gaussian model and a combination model (a combination of the Gaussian
distribution and the step function), to investigate their influence on the self-localization performance.
We verified both of the likelihood models experimentally in a real environment. The experimental
results proved our hypothesis that the combination model performs better than the Gaussian
model. Results of both simulations and real environment experiments demonstrate that the
proposed configuration consisting of eight HF-band RFID readers provides sufficiently high accuracy
of self-localization.
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