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Abstract: Recent studies on the influence of the anomalous gravity field in GNSS/INS applications
have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal
and vertical errors in the measurement of an object that is part of the observed scene; these errors can
vary from a few tens of centimetres to over one meter. The works reported in the literature refer to
vertical deflection values based on global geopotential model estimates. In this paper we compared
this approach with the one based on local gravity data and collocation methods. In particular, denoted
by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the
north and east directions, respectively), their values were computed by collocation in the framework
of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the
ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes
that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree
EGM2008 global geopotential model and compared with those obtained in the previous computation.
The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential
model estimate can be reliably used in aerial navigation applications that require the use of sensors
connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be
defined by simulations.
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1. Introduction

In recent years, the increasing use of sensors connected to a GNSS/INS system has led to deep
studies on the impact of the Earth’s actual gravity field [1–4].

In particular, the effect of the deflection of the vertical [5] has been investigated. Such analyses
have shown the importance of considering this signal both in terms of degradation of the accuracy [6]
and in terms of improvement of the observations [7–9].

Additionally, the most important companies specialized in GNSS/INS positioning (e.g., Applanix
or Novatel) suggested the necessity of using a proper (ξ, η) model in order to achieve high
performance results.

In most of the works reported in literature, the deflection of the vertical components are computed
at ground level, on the Digital Terrain Model (DTM). However, this approach is unsatisfactory when
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aerial applications are considered. As it is well known, the values of the deflection of the vertical vary
with altitude [10], decreasing while moving away from the ground level.

Thus, in order to evaluate the impact of the deflection of the vertical in aerial surveys, it is
important to define a rigorous approach to its calculation that takes into account its variation with
altitude. Thus, proper estimation formulas must be considered that allow computing (ξ, η) in any
given point in space, i.e.:

#

ξ “ fξ pϕ, λ, hq
η “ fη pϕ, λ, hq

(1)

In this paper, two different methods for estimating (ξ, η) are presented, i.e., collocation and
spherical harmonic representation. The collocation approach based on gravity data will be revised and
numerical results will be computed for some relevant cases.

These results will be then compared with the values obtained using the other proposed
estimation method based on one of the most recent and detailed Global Geopotential Model (GGM),
the EGM2008 [11].

2. Predicting the Deflection of the Vertical Using Gravity Data and the Collocation Method

The deflection of the vertical is the difference in direction between the direction of Earth’s gravity
vector and some reference direction, such as the direction perpendicular to a given reference ellipsoid
or the direction of some reference gravity field (the normal gravity) [4]. Considering the normal to the
ellipsoid as the reference direction, at the geoid surface we have the situation sketched in Figure 1,
where the angle is exaggerated to explain more clearly the physical aspect of the problem.
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Greenwich meridian.  
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Figure 1. The deflection of the vertical at geoid level.

The deflection of the vertical vector can be decomposed into two mutually perpendicular
components: the north-south or south (ξ), positive toward the north, and east-west or first vertical
(η), positive in the east direction. These two components are represented in Figure 2 with respect to
the unit sphere, centred at point P, having the z axis parallel to the Earth rotation axis, the equatorial
circle parallel to the Earth’s equatorial plane and the reference meridian in a plane parallel to the
Greenwich meridian.
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The two unit vectors
Ñ
n and
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indicate, respectively, the vertical direction and the direction of
the normal to the ellipsoid in a given point P.
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They are functions of the astronomical pΦ, Λq and geodetic pϕ, λq, latitude and longitude of
P, respectively:

#

Ñ
n “ pΦ, Λq
Ñ
n

1

“ pϕ, λq
(2)

In the so-called spherical approximation, the components ξ and η of the deflection of the vertical
are given by [12]:

$

&

%

ξ “ ´ 1
r¨γ
BT
Bϕ

ˇ

ˇ

ˇ

P
η “ ´ 1

r¨γ¨cosϕ
BT
Bλ

ˇ

ˇ

ˇ

P

(3)

where:

γ: normal gravity in P;
ϕ: latitude;
λ: longitude;
r: distance of P from the geocenter.

In Equation (4), T is the anomalous or disturbing potential defined as [10,13]:

T pPq “ W pPq ´U pPq (4)

As it is well known, T is a harmonic function in space outside the masses. The anomalous
potential is related to the geoid undulation N, the distance between the geoid and the ellipsoid along
the ellipsoid normal (Figure 1), by the Bruns’ formula:

N pPq “
T pPq

γ
(5)

Additionally, one can define the gravity anomaly as:

∆g “ g pPq ´ γ pQq (6)

i.e., the difference between the magnitude of the actual gravity in point P onto the geoid and the
magnitude of the normal gravity in Q on the ellipsoid (Figure 1).

As for the components (ξ, η) of the deflection of the vertical, it can be proved that ∆g is functionally
related to the anomalous potential T by the following formula that holds in spherical approximation:

∆g “ ´
BT
Br
´

2
r

T (7)

These functions can be defined at ground level as well as in the space outside the Earth’s body.
In order to evaluate the impact of the deflection of the vertical on GNSS/INS, applied, e.g., to

photogrammetry, (ξ, η) are to be estimated at flight altitude using proper analytical methods.
One possible methodology for doing so is to apply collocation to gravity data in the framework
of the Remove-Compute-Restore (RCR) technique [14].

In the remove step, the long-wavelength component (provided by a Global Geopotential Model,
GGM) and the short-wavelength component (considered in the Residual Terrain Correction effect,
RTC) of gravity anomalies are removed from the original gravity data. Consequently, residual gravity
anomalies are obtained as:

∆gr “ ∆gobs ´ ∆gGGM ´ ∆gRTC (8)

where:

∆gr: residual gravity anomalies;
∆gobs: observed gravity anomalies;
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∆gGGM: contribution of a Global Geopotential Model;
∆gRTC: gravity anomalies correction due to terrain.

The residuals ∆gr are then used as input values in the Least Squares Collocation (LSC) procedure
to get the estimates of the residual deflection of the vertical components (ξr, ηr) [15]. The estimated
values are given by:

«

ξr

ηr

ff

“

«

Cξ∆g
Cη∆g

ff

”

C∆g∆g ` σ2
n I
ı´1

`

∆gr ` n
˘

(9)

with:

Cξ∆g and Cη∆g : cross-covariances between (ξr, ηr) and ∆gr;
C∆g∆g : auto-covariance of ∆gr;
n: noise in gravity;
σ2

n : noise variance.

We can then obtain the total components of the vertical deflection in a given point in space by
adding the (ξGGM, ηGGM) GGM signal and the (ξRTC, ηRTC) RTC effects (restore step). So, in the end,
the final estimated values are expressed as:

#

ξ “ ξGGM ` ξRTC ` ξr

η “ ηGGM ` ηRTC ` ηr
(10)

3. The Deflection of the Vertical by Spherical Harmonic Expansion: the EGM2008 GGM

As stated above, one can compute the (ξGGM, ηGGM) components using a GGM. Many different
models have been estimated and are currently used in geodetic applications. It is, thus, of interest to
compare the GGM estimates with the corresponding values obtained by using the procedure detailed in
the previous paragraph. Particularly, this will be done in the framework of the investigation proposed
in this paper to test if the collocation based estimates can significantly improve the aerial survey with
respect to the use of the GGM only.

To this aim, we considered one of the most accurate and high-frequency global geopotential
models, i.e., EGM2008. This geopotential model is estimated as a combination of GRACE (Gravity
Recovery and Climate Experiment) satellite data [16], a global gravity data grid and topographic
data [17]. It is complete to spherical harmonic degree and order 2159 and contains additional
coefficients to degree 2190 and order 2159.

The EGM2008 has been validated, in the central Mediterranean [18], comparing gravity data
and GPS/levelling data, while in Europe the model values were compared with those obtained by
astrogeodetic measurements [19]. This comparison has provided residuals, in terms of the vertical
deflection, of about 3 arc seconds (root mean square—RMS) that proves the high quality of this
geopotential model (furthermore, in [20] studies on the accuracy and quality of the EGM2008 model in
different parts of the world are described). At the NGA website the users can find the Fortran software
(Figure 3) which allows computing the values of ξ and η in a given point in space, as well as the file
(EGM2008_to2190_TideFree) associated with it, containing the spherical harmonics fcoefficients of the
EGM2008 model. This file contains the fully normalized, unit-less, spherical harmonic coefficients
tCnm, Snmu of the EGM2008 Earth’s gravitational potential and the associated (calibrated) standard
deviations tσCnm

, σSnm
u.

Thus, the model implying gravitational potential is described via the coefficients Cnm, Snm, and
can be derived as [21]:

V pϕ, λ, rq “
GM

r

«

1`
Nmax
ÿ

n“2

´ a
r

¯n n
ÿ

m“0

`

Cnmcosmλ` Snmsinmλ
˘

Pnm psinϕq

ff

(11)
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where:

ϕ, λ, r: spherical geocentric coordinates;
a: semi-major axis of Earth;
GM: gravitational constant times mass of Earth;
n, m: degree and order of spherical harmonic;
Pnm: fully normalized Legendre functions;
Cnm, Snm: fully normalized coefficients.
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In the EGM2008 model the scaling parameters tGM, au have the following numerical values:

a “ 6, 378, 136.3 m

GM “ 3, 986, 004.415ˆ 108

Thus, one can obtain, by spherical harmonic synthesis, the two vertical deflection components at
any point on and outside the Earth as implied by this model.

Using Equation (11) and the software mentioned above, we computed the model values to be
used in the comparisons described in the following.

4. Comparison between Vertical Deflection Models Derived by Collocation and EGM2008 in the
Central Mediterranean Area

The estimates, obtained by the RCR/LSC method and the EGM2008 model have been compared
in the central Mediterranean area (37˝ N ď ϕ ď 47˝ N, 7˝ E ď λ ď 19˝ E) whose topography is shown
in Figure 4 [22].
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The gravity signal of this region has sharp variations due to the mountain ranges of the Alps and
the Apennines, and to strong geophysical features (e.g., the Calabrian Arc). Thus, the comparison
between the two estimates is particularly relevant due to the rough structure of the gravity field in the
selected area. The deflection of the vertical components, computed by the RCR/LSC procedure, have
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been estimated starting from the Italian gravity database, the same used for estimating the ITALGEO05
geoid [23]. This gravity database consists of about 440,000 gravity values that are quite homogeneously
distributed in the estimation area.

In order to account for the low-frequency features of the gravity field, the EIGEN-6C3 model [24]
to degree and order 1000 was considered. The residual terrain effect has been computed using the
3” SRTM DTM [25] with respect to a mean elevation surface obtained by filtering the detailed DTM
with a 101 moving average window which has been optimized with respect to the GGM used in the
remove step.

The GGM and terrain effects have been, subsequently, subtracted from the gravity data and the
reduced gravity values have been then gridded on a 21 ˆ 21 resolution grid by LSC [23].

Based on this gravity grid, the vertical deflection residuals were computed, by RCR/LSC, using
the GRAVSOFT package (DTU, Copenhagen, Denmark) [26], on the same 21 ˆ 21 grid, at different
altitudes, namely 1000 m, 2000 m, 3000 m, 4000 m, 5000 m, and 7000 m.

The model and the RTC vertical deflection components were then added, in the same points,
for each selected scenario. The final estimates (ξCOLLO, ηCOLLO), at different altitudes, are shown in
Figure 5.
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As expected, the estimated values are smoother while increasing the grid height. Table 1 contains
the statistics of the model, RTC, and residual components at the three different altitudes.
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Table 1. RCR/LSC procedure: statistics of vertical deflection values at 1000, 4000, and 7000 m altitudes.

1000 m

Geopotential Model Component (EIGEN-6C3) Residual Component Terrain Component

ξ (") η (") ξ (") η (") ξ (") η (")

Mean ´1.920 2.004 0.204 0.042 ´0.007 0.007
Standard Deviation 7.588 6.998 1.286 1.014 2.931 2.654

Min ´39.123 ´29.447 ´9.4459 ´6.5066 ´28.2366 ´24.4967
Max 28.991 39.688 8.6725 5.8911 32.2476 21.8262

4000 m

Geopotential Model Component (EIGEN-6C3) Residual Component Terrain Component

ξ (") η (") ξ (") η (") ξ (") η (")

Mean ´1.905 ´1.983 0.200 0.041 ´0.006 0.004
Standard Deviation 6.192 6.370 0.965 0.764 1.517 1.250

Min ´33.768 ´24.727 ´6.723 ´4.724 ´15.062 ´14.141
Max 25.411 35.244 5.939 4.261 17.658 15.280

7000 m

Geopotential Model Component (EIGEN-6C3) Residual Component Terrain Component

ξ (") η (") ξ (") η (") ξ (") η (")

Mean ´1.891 1.963 0.197 0.042 ´0.005 0.004
Standard Deviation 6.368 5.866 0.760 0.611 0.907 0.697

Min ´29.512 ´20.946 ´4.8791 ´3.5069 ´7.9262 ´5.6898
Max 22.443 31.604 4.1568 3.3674 7.8965 6.1959
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The analysis of these statistics highlights that the component related to terrain decreases more
rapidly than the other components.

At 1000 m, the contribution of the topography is relevant, having values comparable to those of
the geopotential model.

At an altitude of 4000 m a significant reduction of the terrain component occurs since the related
values are about half than those obtained at 1000 m altitude.

At 7000 m, the terrain component is about one fourth of the 1000 m effect, both in minimum and
maximum values. In particular, the vertical deflection components, relative to the contribution of
the terrain (short wavelength) assume values close to zero, and minimum and maximum values of
a few seconds.

On the contrary, the model contribution is smoothly decreasing with altitude and the same holds,
even though to a less extent, for the residual component.

Thus, from this analysis it can be concluded that the model component gives the main contribution
at high altitude while the RTC is relevant when approaching the ground level. So, it can be argued
that the impact of the high-frequency terrain effect on navigation sensors could be significant mostly
at low flight altitude.

Subsequently, the vertical deflection values (ξGGM, ηGGM), obtained by the EGM2008 geopotential
model, were estimated on the same grids and compared with those of the ITALGEO05 model
(ξCOLLO, ηCOLLO), thus giving the discrepancies:

#

∆ξ “ ξCOLLO ´ ξEGM2008
∆η “ ηCOLLO ´ ηEGM2008

(12)

Statistics of these discrepancies are shown in Table 2.

Table 2. Statistic of (∆ξ, ∆η) values at different altitudes.

1000 m 2000 m 3000 m

∆ξ (") ∆η (") ∆ξ (") ∆η (") ∆ξ (") ∆η (")

Mean 0.199 0.065 0.198 0.063 0.195 0.063
Standard Deviation 2.088 2.055 1.622 1.607 1.109 1.099

Min ´22.946 ´20.088 ´20.390 ´19.005 ´15.667 ´16.617
Max 21.858 28.769 19.148 26.360 13.539 21.816

4000 m 5000 m 7000 m

∆ξ (") ∆η (") ∆ξ (") ∆η (") ∆ξ (") ∆η (")

Mean 0.195 0.062 0.194 0.062 0.192 0.061
Standard Deviation 0.789 0.764 0.626 0.597 0.483 0.454

Min ´12.166 ´10.902 ´7.899 ´6.000 ´3.526 ´2.411
Max 8.600 14.306 5.134 9.566 3.251 4.269

The discrepancies are smaller and smaller while increasing the grid height since the two estimates
of the deflection of the vertical become smoother. This behaviour is coherent with the results of Table 1
and is physically consistent being that the gravity field is more regular at larger distances by the
causative masses.

To understand the impact of the two different estimates of the deflection of the vertical on
GNSS/INS instruments in aerophotogrammetric applications, we computed the horizontal and vertical
position errors induced by neglecting these discrepancies. As proved in [9], the δh error in the horizontal
position and the δv error in the vertical position, introduced neglecting the deflection of the vertical
(DOV), are given by:

δh “ H sin pDOVq (13)
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δv “ H tg
ˆ

FOV
2

˙

sin pDOVq (14)

where H is the flight altitude, FOV is the camera field of view and DOV is the component of deflection
of the vertical in the vertical plane orthogonal to the flight direction. The DOV, in a given direction
having azimuth α, is related to the (ξ, η) component by the formula [10]:

DOV “ ξ cosα` η sinα (15)

Thus, in order to evaluate the maximum difference in (δh, δv) induced by the difference between
the DOVs computed using the collocation procedure and the EGM2008 GGM, one can compute:

∆DOV “ ∆ξcosα` ∆η sinα (16)

and, for each grid knot, find the maximum of:

∆ pδhq – H ¨ ∆DOV (17)

∆ pδvq – Htg
ˆ

FOV
2

˙

¨ p∆DOVq (18)

with respect to α (in the reasonable hypothesis that sin p∆DOVq – ∆DOVq.
This computation has been carried out at the three different flight altitudes used in computing the

(ξ, η) values and for two different FOV angles, 45˝ and 70˝.
The results are summarized in Table 3 where the maxima of the absolute values of ∆δh and ∆δv

are listed for the considered cases.

Table 3. Maximum absolute values of ∆δh and ∆δv at different altitudes.

1000 m 2000 m 3000 m

Max |∆δh| (m) 0.142 0.259 0.318

Max |∆δv| (m)
FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 70˝

0.059 0.099 0.107 0.181 0.132 0.223

4000 m 5000 m 7000 m

Max |∆δh| (m) 0.277 0.232 0.145

Max |∆δv| (m)
FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 45˝ FOV = 45˝ FOV = 45˝

0.115 0.194 0.096 0.162 0.060 0.102

At flight altitude higher than 3000 m these values are quite small if compared with the full δh
and δv effects (Formulas (13) and (14)) obtained using DOV = 20” (see Figures 6 and 7 and Table 4).
According to [9], this can be considered the value above which the position errors δh and δv become
critical and corrections for the DOV should be taken into account.

On the contrary, up to 3000 m in flight altitude, the values in Table 3 are higher than those in
Table 4 and, thus, the discrepancies (∆δh, ∆δv) are of the same order of magnitude of the vertical and
horizontal errors. As already pointed out, this is a direct consequence of the higher discrepancies
between the collocation and the EGM2008 estimates of (ξ, η).

Thus, based on our computations, (ξCOLLO, ηCOLLO) should be used up to 3000 m in flight
altitude, given that the RCR/LSC procedure is a more refined method able to better reproduce
high-frequency details.
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Table 4. Absolute values of δh and δv at different altitudes based on DOV = 20”.

1000 m 2000 m 3000 m

|δh| (m) 0.097 0.194 0.291

|δv| (m)
FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 70˝

0.040 0.068 0.080 0.136 0.120 0.204

4000 m 5000 m 7000 m

|δh| (m) 0.388 0.485 0.679

|δv| (m)
FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 70˝ FOV = 45˝ FOV = 70˝

0.161 0.272 0.201 0.339 0.281 0.475

5. Conclusions

Two different estimates of the deflection of the vertical have been compared to assess their impact
on aerophotogrammetry. This has been done in the central Mediterranean area where (ξ, η) have been
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computed using EGM2008 GGM and RCR/LSC based on local gravity data. This test is quite relevant
since, in the selected area, the gravity field is rough due to the strong gravity signatures coming
from the rugged topography of the Alps and the Apennines and the geodynamic signals present in
the region (e.g., the Ivrea Body). In terms of the impact on navigation systems, the discrepancies
between the two estimates proved to be relevant up to 3000 m in flight altitude. Below this altitude,
the differences in the two estimates lead to horizontal and vertical errors that are larger than critical
values defined in [9]. This is mostly related to the topographic signal that is not properly modelled by
the EGM3008 model. Thus, in this case, in order to effectively correct for these distortion effects, it
should be required to estimate (ξ, η) through the more complex RCR/LSC procedure based on local
gravity data. As the flight altitude increases, the discrepancies between the EGM2008 model estimate
and the one based on RCR/LSC become smaller and smaller. As a consequence, the errors in vertical
and/or horizontal positions implied by the differences between the two estimates can be neglected
since they are smaller than the critical values given in the literature. Hence, based on the results in this
paper, above 3000 m in flight altitude, in aerophotogrammetry and remote sensing applications, the
deflection of the vertical values estimated based on EGM2008 can be safely used for improving the
position and the attitude of the sensors.
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The following abbreviations are used in this manuscript:

ITALGEO05 Italian Geoid
EGM2008 Earth Gravitational Model 2008
GNSS/INS Global Navigation Satellite System/Inertial Navigation System
DTM Digital Terrain Model
GGM Global Geopotential Model
RCR Remove-Compute-Restore
RTC Residual Terrain Correction
GRACE Gravity Recovery and Climate Experiment
GPS Global Positioning System
RMS Root Mean Square
NGA National Geospatial-Intelligence Agency
EIGEN-6C3 European Improved Gravity model of the Earth by New techniques
SRTM Shuttle Radar Topography Mission
LSC Least Squares Collocation
DOV Deflection Of the Vertical
FOV Field Of View
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