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Abstract: This paper is concerned with the state estimation problem for a class of non-uniform
sampling systems with missing measurements where the state is updated uniformly and the
measurements are sampled randomly. A new state model is developed to depict the dynamics
at the measurement sampling points within a state update period. A non-augmented state estimator
dependent on the missing rate is presented by applying an innovation analysis approach. It can
provide the state estimates at the state update points and at the measurement sampling points within
a state update period. Compared with the augmented method, the proposed algorithm can reduce
the computational burden with the increase of the number of measurement samples within a state
update period. It can deal with the optimal estimation problem for single and multi-sensor systems in
a unified way. To improve the reliability, a distributed suboptimal fusion estimator at the state update
points is also given for multi-sensor systems by using the covariance intersection fusion algorithm.
The simulation research verifies the effectiveness of the proposed algorithms.

Keywords: modeling; non-uniform sampling; missing measurement; non-augmented estimator;
innovation analysis approach

1. Introduction

Recently, the estimation problems for multi-rate non-uniform sampling systems have attracted
much attention due to wide applications in parameter identification [1], industrial detection [2], target
tracking and signal processing [3–8]. Differently from the single-rate uniform sampling systems, the
design on multi-rate non-uniform sampling systems is more complex and challenging.

For multi-rate non-uniform sampling systems, the multi-sensor information fusion filters have
been presented based on the data block method in [3–5] where the effect of the system noise on
modeling is ignored, which brings the errors in modeling. By considering the system noise in modeling,
an optimal estimator in the linear minimum variance sense is presented in [6]. The modeling methods
in [4–6] are, respectively, adopted to obtain the distributed fusion filters by the weighting sums of
the local filters in [7,8]. In the literature above, the state models are all from weighted average of
states in a data block. When there are multiple measurement samples within a state update period, a
state estimator is designed by the measurement augmentation method in [9], which brings expensive
computational cost. The discretization of continuous systems is adopted in the multi-rate processing
in [10,11].

The distributed fusion filters are designed for multi-rate multi-sensor systems in [12,13]. In [12],
an estimator is proposed for systems with uncertain observations. In [13], a “dummy” measurement is
used to transform multi-rate into single-rate for each sensor and the packet dropouts are considered
when the measurements are transmitted by networks. For the multi-sensor networked systems
with packet dropouts, a two-stage distributed fusion estimation algorithm is proposed by using a
multi-rate scheme to reduce communication cost in [14], where sensors collect measurements from
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their neighbors to generate their own local estimates, and then local estimates are collected to form a
fused estimate. The multi-rate H8 filtering problem for the norm-bounded uncertain systems with
packet dropouts is investigated by the state augmentation method in [15]. The multi-rate filter in the
least mean square sense is designed in [16] and can obtain more accurate estimate than the H8 filter
in [15]. In these studies, the sampling periods of individual sensors are uniform and integer times
of the state update period though different sensors have different sampling rates. The two-sensor
multi-rate fusion estimation problem for wireless sensor networks is investigated in [17]. Then, the
results in [17] are improved and extended in [18]. However, the sampling period of each sensor is still
positive integer times of the state update period. A novel method that is named direct estimation of
sampling time in solving asynchronous track-to-track fusion problem in [19] is used to predict the
pseudo-synchronized state estimates of all the sensors that possess their own sampling rates for the
start of the next fusion period. A suboptimal hierarchical fusion estimator is designed in [20] for a
clustered sensor network by using covariance intersection fusion algorithm, where local estimators
and the fusion center are allowed to be asynchronous. Information fusion estimation problem in
multi-sensor networked systems is also explored in [21–24] where packet dropouts, random delays and
missing measurements are considered. However, the multi-rate asynchronous estimation problems
are not taken into account.

In practice, not only different sensors can have different sampling rates but also the same sensor
can also have asynchronous sampling rates. Moreover, the state estimators need to be obtained in real
time for many practical applications. Early work has been done in [25] where the real time estimation
can be obtained not only at the state update points but also at the measurement sampling points.
However, the single sensor optimal estimation problem is only considered in [25] in the case that the
sensor randomly samples the measurement once at most in a state update period. Motivated by the
above discussion, we carry out our work in this paper. For systems with the uniformly updated state
and randomly sampled measurements, where missing measurements are also considered, a new state
space model is developed to depict the dynamics at the measurement sampling points within a state
update period by weighting the endpoint states of a state update period. Differently from [25] where
sensor randomly samples one measurement at most in a state update period, sensor randomly samples
one or multiple measurements or nothing in a state update period in this paper. A non-augmented
recursive estimator at the measurement sampling points and at the state update points is designed
by applying projection theory. Compared with the augmented method [9], the proposed algorithm
can reduce the computational burden and provide the estimates at the measurement sampling points
within a state update period. At last, the optimal fusion and distributed suboptimal fusion estimators
are given to deal with the fusion estimation problems for multi-sensor systems.

2. Problem Formulation

Consider the following non-uniform sampling discrete time-invariant linear stochastic system
with missing measurements.

xpk` 1q “ Φxpkq ` Γwpkq (1)

ypk jq “ ξpk jqHxpk jq ` vpk jq (2)

where xpkq P Rp is the system state at the moment kT, the Italic T is the state sampling period, and
ypk jq P Rq is the measurement of the sensor at the moment k j. xpk jq is the state measured by ypk jq.
wpkq P Rr and vpk jq P Rq are the system noise and measurement noise. Φ, Γ and H are constant
matrices with suitable dimensions. k j is the sampling time of the jth measurement. The variable
ξpk jq is a Bernoulli distributed stochastic variable that takes values on 1 and 0 with the probability
Prob

 

ξpk jq “ 1
(

“ γ, γ P r0, 1s. ξpk jq “ 1 means that the measurement is received, while ξpk jq “ 0
means that the measurement is missing. In the whole text, E denotes the mathematical expectation
and the superscript Roman T denotes the transpose. We easily obtain the results:



Sensors 2016, 16, 1155 3 of 15

Etξpk jqu “ γ, Etpξpk jq ´ γq2u “ γp1´ γq, Etξpk jqp1´ ξpk jqqu “ 0,
Etξpkiqξpljqu “ γ2pki ‰ ljq

(3)

For brevity of notations, only linear time-invariant systems are considered. However, the
results derived later can be easily extended to linear time-varying systems. We adopt the following
standard assumptions.

Assumption 1. wpkq and vpk jq are uncorrelated white noises with zero means and covariance matrices Qw

and Qv.

Assumption 2. The initial state xp0q is uncorrelated with wpkq, vpk jq and ξpk jq, and satisfies

E txp0qu “ µ0, E
!

pxp0q ´ µ0qpxp0q ´ µ0q
T
)

“ P0 (4)

Assuming that the sampling time of the sensor is known, we consider a class of non-uniform
sampling discrete-time systems with missing measurements where the state updates uniformly and
the sensor samples randomly in this paper. An example of sampling time versus sensor map is
depicted in Figure 1. It can be seen from Figure 1 that there are two cases when the sensor samples
the measurement data. Case 1 is that there are the measurement samples in a state update period
ppk´ 1qT, kTs, for example, only one measurement sample at the time instants T, 2T, 3T, 4T, 9T, 10T
and within the interval p4T, 5Ts with the sampling time instants k1 “ 1, k2 “ 2, k3 “ 3, k4 “ 4, k11 “ 9,
k12 “ 10, k5 “ 4.85, two samples in p7T, 8Tswith the sampling time instantsk9 “ 7.6, k10 “ 8, and three
samples within p5T, 6Ts with the sampling time instants k6 “ 5.35, k7 “ 5.65, k8 “ 6. Case 2 is that
there are no samples within the state update period ppk´ 1q T, kTs, for example, not any measurement
sample within p6T, 7Ts.
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Our aim is to find the state filters at state update points and measurement sampling points based
on the received measurements.

3. System Modeling

Assume that the sensor starts to sample the measurement at the initial moment. When the sensor
samples a measurement at the state update point, it is natural to take the system state at the state
update point as the state at the measurement sampling point. When the sensor samples a measurement
between the two state update points, we adopt the method in [9] where the weighted value of the two
adjacent states is taken as the state at the measurement sampling point.

In order to facilitate the algorithm, let Nk is the number of measurement samples within a
state update interval ppk´ 1q T, kTs, and Sk “

řk
l“1 Nl is the total number of measurement samples

before the moment kT. The i (1 ď i ď Nk) denotes the ith sample within the interval ppk´ 1q T, kTs.
k “

Q

kSk´1`i{T
U

where r˚s denotes the minimal integer not less than ˚. Let α
pkq
i “ k´ kSk´1`i{T, and
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then we have kSk´1`i “ k´ α
pkq
i . It is easily known that 0 ď α

pkq
i ă 1. To simplify the expression, the

sampling period T will be omitted under no confusion in the subsequent text.
The state at the measurement sampling point within the interval pk´ 1, ks is given by

xpk´ α
pkq
i q “ p1´ α

pkq
i qxpkq ` α

pkq
i xpk´ 1q (5)

Accordingly, the measurement equation is expressed as

ypk´ α
pkq
i q “ ξpk´ α

pkq
i qHxpk´ α

pkq
i q ` vpk´ α

pkq
i q (6)

Especially, when the measurement is sampled at the state update point, we have α
pkq
i “ 0. Then

the state at the measurement sampling point can be reduced as xpkq. The measurement equation can
be reduced as ypkq “ ξpkqHxpkq ` vpkq.

Assuming i and i´ 1 are two adjacent sampling points in pk´ 1, ks. From Equation (5), we have

xpkq “
1

1´ α
pkq
i´1

xpk´ α
pkq
i´1q ´

α
pkq
i´1

1´ α
pkq
i´1

xpk´ 1q (7)

Substituting Equation (7) into Equation (5) yields

xpk´ α
pkq
i q “

p1´ α
pkq
i q

p1´ α
pkq
i´1q

xpk´ α
pkq
i´1q `

pα
pkq
i ´ α

pkq
i´1q

p1´ α
pkq
i´1q

xpk´ 1q (8)

Next, we construct the state space model at the measurement sampling points within a state
update period. The following Theorem 1 gives the result.

Theorem 1. Under Assumptions 1 and 2, the state space model at the measurement sampling points within the
interval pk´ 1, ks can be set up as follows:

xpk´ α
pkq
i q “ Φpkqi xpk´ 1q ` Γpkqi wpk´ 1q (9)

ypk´ α
pkq
i q “ ξpk´ α

pkq
i qHxpk´ α

pkq
i q ` vpk´ α

pkq
i q (10)

where the coefficient matrices Φpkqi and Γpkqi are defined by

Φpkqi “

i´1
ź

m“0

β
pkq
i´mΦ`

i´1
ÿ

l“0

˜

l´1
ź

m“0

β
pkq
i´m

¸

p1´ β
pkq
i´lqI, Γpkqi “

i´1
ź

m“0

β
pkq
i´mΓ (11)

with β
pkq
i “ p1´ α

pkq
i q{p1´ α

pkq
i´1q, pi ą 1q, β

pkq
1 “ 1´ α

pkq
1 and

ś´1
m“0 β

pkq
i´m “ 1.

Proof. From Equation (8), we have

xpk´ α
pkq
i q “ β

pkq
i xpk´ α

pkq
i´1q ` p1´ β

pkq
i qxpk´ 1q (12)

From Equation (5), we obtain

xpk´ α
pkq
1 q “ β

pkq
1 xpkq ` p1´ β

pkq
1 qxpk´ 1q (13)

By iterating Equation (12) and using Equation (13), we have
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xpk´ α
pkq
i q “ β

pkq
i xpk´ α

pkq
i´1q ` p1´ β

pkq
i qxpk´ 1q

“ β
pkq
i β

pkq
i´1xpk´ α

pkq
i´2q ` β

pkq
i p1´ β

pkq
i´1qxpk´ 1q ` p1´ β

pkq
i qxpk´ 1q

“ ¨ ¨ ¨ “ β
pkq
i β

pkq
i´1 ¨ ¨ ¨ β

pkq
1 xpkq ` β

pkq
i β

pkq
i´1 ¨ ¨ ¨ β

pkq
2 p1´ β

pkq
1 qxpk´ 1q ` ¨ ¨ ¨ `

β
pkq
i p1´ β

pkq
i´1qxpk´ 1q ` p1´ β

pkq
i qxpk´ 1q

“
śi´1

m“0 β
pkq
i´m pΦxpk´ 1q ` Γwpk´ 1qq `

ři´1
l“0

´

śl´1
m“0 β

pkq
i´m

¯

p1´ β
pkq
i´lqxpk´ 1q

“ Φpkqi xpk´ 1q ` Γpkqi wpk´ 1q

(14)

where Φpkqi and Γpkqi are defined by Equation (11). The proof is completed.

Remark 1. The model proposed in Theorem 1 establishes the relationship between the state at the measurement
sampling points within the interval pk´ 1, ks. It includes the single rate uniform sampling system as the special
case, i.e., Nk “ 1 and α

pkq
1 “ 0. Thus, it generalizes the standard single rate discrete-time state space model.

To design the filtering algorithm, we first give a lemma to be used in the subsequent sections.

Lemma 1. For system Equation (9) under Assumptions 1 and 2, the state second-order moment matrix
qxpk´ α

pkq
i q “ E

!

xpk´ α
pkq
i qxTpk´ α

pkq
i q

)

is computed by

qxpk´ α
pkq
i q “ Φk

i qxpt´ 1q
´

Φk
i

¯T
` Γk

i Qw

´

Γk
i

¯T
(15)

The initial value is qxp0q “ µ0µT
0 ` P0.

Proof. Substituting Equation (9) into qxpk ´ α
pkq
i q “ E

!

xpk´ α
pkq
i qxTpk´ α

pkq
i q

)

, we easily obtain
Equation (15).

4. Optimal State Estimator

In this section, we will present our estimation algorithm at the state update points and
measurement sampling points based on the developed model in Theorem 1.

4.1. Estimator Design

Theorem 2. For system Equations (9) and (10) under Assumptions 1 and 2, the optimal estimators at the state
update point and measurement sampling points in the interval pk´ 1, ks(Nk ‰ 0) are computed by

x̂pk´ α
pkq
i |k´ α

pkq
i´rq “ Φpkqi x̂pk´ 1|k´ α

pkq
i´rq ` Γpkqi ŵpk´ 1|k´ α

pkq
i´rq, r “ 0, 1 (16)

where it is a filter for r “ 0 or a predictor for r “ 1. The fixed-point smoothers for the state and white noise are
respectively computed by

x̂pk´ 1|k´ α
pkq
i q “ x̂pk´ 1|k´ α

pkq
i´1q ` Kxpk´ 1|k´ α

pkq
i qεpk´ α

pkq
i q (17)

ŵpk´ 1|k´ α
pkq
i q “ ŵpk´ 1|k´ α

pkq
i´1q ` Kwpk´ 1|k´ α

pkq
i qεpk´ α

pkq
i q (18)

where the innovation sequence εpk´ α
pkq
i q and its covariance Qεpk´ α

pkq
i q are computed by

εpk´ α
pkq
i q “ ypk´ α

pkq
i q ´ γHx̂pk´ α

pkq
i |k´ α

pkq
i´1q (19)
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Qεpk´ α
pkq
i q “ γ2HPxpk´ α

pkq
i |k´ α

pkq
i´1qH

T ` γp1´ γqHqxpk´ α
pkq
i qHT `Qv (20)

The smoothing gain matrices Kxpk´ 1|k´ α
pkq
i q for the state and Kwpk´ 1|k´ α

pkq
i q for the white noise

are computed by

Kxpk´ 1|k´ α
pkq
i q “ γrPxpk´ 1|k´ α

pkq
i´1qΦ

pkqT
i ` Pxwpk´ 1|k´ α

pkq
i´1qΓ

pkqT
i sHTQ´1

ε pk´ α
pkq
i q (21)

Kwpk´ 1|k´ α
pkq
i q “ γrPwxpk´ 1|k´ α

pkq
i´1qΦ

pkqT
i ` Pwpk´ 1|k´ α

pkq
i´1qΓ

pkqT
i sHTQ´1

ε pk´ α
pkq
i q (22)

The smoothing error covariance matrices Pxpk ´ 1|k ´ α
pkq
i q and Pwpk ´ 1|k ´ α

pkq
i q, and the

cross-covariance matrix Pxwpk´ 1|k´ α
pkq
i q for the state and white noise are computed by

Pxpk´ 1|k´ α
pkq
i q “ Pxpk´ 1|k´ α

pkq
i´1q ´ Kxpk´ 1|k´ α

pkq
i qQεpk´ α

pkq
i qKT

x pk´ 1|k´ α
pkq
i q (23)

Pwpk´ 1|k´ α
pkq
i q “ Pwpk´ 1|k´ α

pkq
i´1q ´ Kwpk´ 1|k´ α

pkq
i qQεpk´ α

pkq
i qKT

wpk´ 1|k´ α
pkq
i q (24)

Pxwpk´ 1|k´ α
pkq
i q “ Pxwpk´ 1|k´ α

pkq
i´1q ´ Kxpk´ 1|k´ α

pkq
i qQεpk´ α

pkq
i qKT

wpk´ 1|k´ α
pkq
i q (25)

The filtering (r “ 0) and prediction (r “ 1) error covariance matrices Pxpk´ α
pkq
i |k´ α

pkq
i´rq for the state

are computed by

Pxpk´ α
pkq
i |k´ α

pkq
i´rq “ Φpkqi Pxpk´ 1|k´ α

pkq
i´rqΦ

pkqT
i ` Γpkqi Pwpk´ 1|k´ α

pkq
i´rqΓ

pkqT
i `

Φpkqi Pxwpk´ 1|k´ α
pkq
i´rqΓ

pkqT
i ` Γpkqi Pwxpk´ 1|k´ α

pkq
i´rqΦ

pkqT
i , r “ 0, 1

(26)

The initial values are Pxpk´ 1|k´ α
pkq
0 q “ Pxpk´ 1|k´ 1q, Pwpk´ 1|k´ α

pkq
0 q “ Qw, Pxwpk´ 1|k´

α
pkq
0 q “ 0, x̂pk´ 1|k´ α

pkq
0 q “ x̂pk´ 1|k´ 1q and ŵpk´ 1|k´ α

pkq
0 q “ 0.

It is clear that we have the estimator at the state update point as x̂pk|kq “ x̂pk ´ α
pkq
Nk
|k ´ α

pkq
Nk
q when

α
pkq
Nk
“ 0 or x̂pk|kq “ x̂pk´ α

pkq
Nk`1

|k´ α
pkq
Nk
q with α

pkq
Nk`1

“ 0, and β
pkq
Nk`1

“ 1{p1´ α
pkq
Nk
q when α

pkq
Nk
‰ 0.

Proof. See Appendix A.

Remark 2. In Theorem 2, if Nk “ 1 and α
pkq
1 “ 0, we have the filtering algorithm at the state update points for

single-rate systems. If Nk “ 0, i.e., no samples in the interval pk´ 1, ks, the predictor is used to estimate the
state at the state update point k based on the estimator at the state update point k´ 1.

Remark 3. It can be easily known that the proposed non-augmented recursive estimator has the computational
order of magnitude OpNk p3q in the interval pk´ 1, ks. Compared with the augmented estimator [9] with the
computational order of magnitude OpN3

k q3q, our algorithm can obviously reduce the computational cost with
the increase of the number Nk of measurement samples in the interval pk´ 1, ks for a deterministic system with
the fixed p and q. Meanwhile, it is more important that our filter can give the estimates not only at the state
update points but also at the measurement sampling points within a state update period in real time. However,
the estimator of [9] can only give the estimates at the state update points.

4.2. Computational Procedures of the Estimator

Based on Theorem 1 and Theorem 2, the computational procedures of our estimator at the state
update points and at the measurement sampling points are addressed as follows:

Step 1. k “ 1, set the initial values x̂p0|0q “ µ0, Pxp0|0q “ P0, Pwp0|0q “ Qw, Pxwp0|0q “ 0 and
qxp0q “ µ0µT

0 ` P0.
Step 2. Construct the model within a state update period pk´ 1, ks by Theorem 1.
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Step 3. Compute the state estimators at the state update points and at the measurement
sampling points:

(a) If Nk ‰ 0 (i.e., there are samples within a state update period), obtain the state estimates
x̂pk´ α

pkq
i |k´ α

pkq
i q and the covariance matrices Pxpk´ α

pkq
i |k´ α

pkq
i q by Theorem 2.

(b) If Nk “ 0 (i.e., no sample within a state update period), obtain the estimate by prediction method
in Remark 2, i.e., x̂pk|kq “ Φx̂pk´ 1|k´ 1q, Pxpk|kq “ ΦPxpk´ 1|k´ 1qΦT ` ΓQwΓT.

Step 4. k “ k` 1, set Pxpk´ 1|k´ α
pkq
0 q “ Pxpk´ 1|k´ 1q, Pwpk´ 1|k´ α

pkq
0 q “ Qw, Pxwpk´ 1|k´

α
pkq
0 q “ 0, x̂pk´ 1|k´ α

pkq
0 q “ x̂pk´ 1|k´ 1q and ŵpk´ 1|k´ α

pkq
0 q “ 0.

Go to Step 2.

5. Multi-Sensor Case

In the preceding section, we have presented a non-augmented optimal recursive estimator for
single sensor system. In this section, we will discuss how to use the proposed algorithm to solve the
multi-sensor case.

For a multi-sensor system, the state equation is the same as Equation (1) and the measurement
equations are given as follows:

yplqpkplqj q “ ξplqpkplqj qH
plqxpkplqj q ` vplqpkplqj q (27)

where the superscript l denotes the lth sensor, L is the number of sensors, yplqpkplqj q is the measurement

at the sampling time kplqj for the lth sensor, kplqj is the sampling time of the jth measurement, vplqpkplqj q is

the measurement noise with zero mean and covarianceQvplq , and Hplq is the measurement matrix. The

variable ξplqpkplqj q is a Bernoulli distributed stochastic variable that takes values on 1 and 0 with the

probability Prob
!

ξplqpkplqj q “ 1
)

“ γplq, γplq P r0, 1s. We assume that ξplqpkplqj q is independent of wpkq

and vplqpkplqj q and xp0q. Moreover ξplqpkplqj q satisfies that

Etξplqpkplqj u “ γplq, Etpξplqpkplqj ´ γplqq
2
u “ γplqp1´ γplqq, Etξplqpkl

jq ´ γplqu “ 0,

Etξplqpkplqj qp1´ ξplqpkplqj qqu “ 0, Etξplqpkplqi qξ
psqpmpsqj qu “ γplqγpsqpl ‰ s or kplqi ‰ mpsqj q

(28)

We will adopt two types of methods to deal with the estimation problem of multi-sensor case:
optimal fusion estimator and suboptimal fusion estimator.

5.1. Optimal Fusion Estimator

In fact, we can reorder the measurements yplqpkplqj q of all sensors in each state update period

pk´ 1, ks according to the order of sampling time kplqj . If the sampling time of measurements from
some sensors is same, i.e., sampling at the same time point, they will be combined to an augmented
measurement at this sampling time. These reorder measurements can be considered from a certain
single sensor. Then, our estimation algorithm in Section 4 can be applied to the optimal fusion
estimation problem of multiple sensors.

When all sensors work healthily, the proposed optimal fusion algorithm can obtain the best
accuracy. However, it has bad reliability, which means that a faulty sensor can lead to the optimal fusion
estimator to diverge [26]. To improve the reliability, we give the following distributed suboptimal
fusion algorithm.
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5.2. Suboptimal Fusion Estimator

Firstly, apply our estimation algorithm in this paper to obtain the local estimators at the state
update points based on the measurements from individual sensors, and then apply the covariance
intersection (CI) fusion algorithm [27,28] to obtain the distributed suboptimal fusion estimator at
the state update points. The reason that we adopt CI algorithm is that it avoids the computation of
cross-covariance matrices between any two local estimators [26]. The CI fusion estimator can be given
as follows [27,28]:

x̂CIpk|kq “
L
ÿ

l“1

ωplqpkqPCIpk|kq
”

Pplqx pk|kq
ı´1

x̂plqpk|kq (29)

PCIpk|kq “

«

L
ÿ

l“1

ωplqpkqrPplqx pk|kqs
´1

ff´1

(30)

where PCIpk|kq is the upper bound of variance of the CI fusion estimator. The optimal weighted
coefficients ωplqpkq satisfy 0 ď ωplqpkq ď 1 and

řL
l“1 ωplqpkq “ 1, and can be obtained by solving the

following optimization problem:

min
řL

l“1 ωplqpkq“1,0ďωplqpkqď1
trpPCIpk|kqq (31)

The nonlinear optimization problem Equation (29) does not generally have the analytical solutions. It
can be solved by numerical methods, which can be carried out by the function “fmincon” in Matlab
optimization toolbox. It only involves the scalar optimization problem.

The proposed distributed CI fusion estimator has the advantage of good robustness and flexibility,
i.e., good reliability since it has the distributed parallel structure that is convenient for detection and
isolation of a faulty sensor. Certainly, when all sensors work healthily, it has worse accuracy than the
optimal fusion estimator. However, it has better accuracy than local estimators [27,28].

Remark 4. The proposed optimal fusion algorithm is a non-augmented method. Certainly, we can also use the
centralized fusion way [9] that combines the measurements from all sensors within a state update period into an
augmented measurement and then use standard Kalman filter to solve. However, it is well known that this way
has the expensive computational burden with the increase of the number of sensors [26].

6. Simulation Research

In this section, a spring-mass system that has been widely adopted in many studies [29–31] will
be used to verify the effectiveness of our algorithms:

.
xptq “

»

—

—

—

–

0 0 1 0
0 0 0 1

´
k1`k2

M1

k2
M1

´
µ

M1
0

k2
M2

´
k2
M2

0 ´
µ

M2

fi

ffi

ffi

ffi

fl

xptq `

»

—

—

—

–

0
0
1

M1
1

M2

fi

ffi

ffi

ffi

fl

wptq (32)

where xptq “
”

x1ptq x2ptq
.
x1ptq

.
x2ptq

ıT
, x1 and x2 are the positions of mass M1 and mass M2,

respectively; k1 and k1 are the spring constants of spring 1 and spring 2, respectively; and µ denotes
the viscous friction coefficient between the mass blocks and the horizontal surface. Moreover, the
measurement equations are given as Equation (27) with L = 3. vpiqpkpiqj q, i “ 1, 2, 3 are independent
Gaussian noises with zero means and variances Qvpiq and uncorrelated with the process noise wpkqwith

zero-mean and variance Qw. We set Qw “ 2, Qvp1q “ 2, Qvp2q “ 1, Qvp3q “ 3, Hp1q “
”

1 1 1 0
ı

,

Hp2q “
”

0 1 0 0
ı

, Hp3q “
”

0 0 1 1
ı

, γp1q “ 0.7, γp2q “ 0.9, γp3q “ 0.8, M1 “ 1, M2 “ 0.5,
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k1 “ 1, k2 “ 1, µ “ 0.5, and the sampling period T “ 0.1 s, we obtain the following system parameter
matrices by discretization:

Φ “

»

—

—

—

–

0.9902 0.0049 0.0972 0.0002
0.0096 0.9903 0.0003 0.0948
´0.1941 0.0969 0.9416 0.0047
0.1891 ´0.1894 0.0095 0.8955

fi

ffi

ffi

ffi

fl

, Γ “

»

—

—

—

–

0.0049
0.0097
0.0975
0.1900

fi

ffi

ffi

ffi

fl

(33)

We set the initials as xp0q “ 0 and P0 “ 0.1I4. We take 100 sampling data.
Figure 2 gives the sketch map of the sampling data of the three sensors within the time interval

0–20. Figure 3 gives the tracking performance of the optimal fusion estimator, where the solid curves
denote the true values and the dashed ones denote the estimators. Figure 4 gives the comparisons
curves of the traces of variances for local estimators and the fusion estimators. From Figure 4, we can
see that our optimal fusion estimator has best accuracy and CI fusion estimator has better accuracy
than local estimators.
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Then Monte Carlo simulation is carried out to compare the algorithms in our paper and [9].

The mean square errors (MSEs): MSEi,spkq “ 1
N

N
ř

j“1
pxj

ipkq ´ x̂j
i,spk|kqq

2
, i=1, 2, 3, 4; s=our paper, [9]) will

be used to evaluate the estimation performance of the two estimation algorithms, where the subscript i
denotes the ith components and s denotes our filter or that in [9], respectively, and N is the number of
Monte Carlo runs.
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In Figure 5, the sensor 1 is randomly employed to compare the algorithms in our paper and [9]. The
comparison of MSEs simulated by 100 Monte Carlo runs is shown in Figure 5. Because Yan, L. et al. [9]
does not consider the effect of missing measurements, from Figure 5, we can see that the proposed
algorithm has better accuracy than the one in [9] when the missing measurements occur in sensors.
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of M1; and (d) MSEs of the velocity estimators of M2.

Next, we will make the comparison with [9] when there are no missing measurements.
The sensor 1 is employed with γp1q “ 1 in simulation. Figure 6 gives the comparison of MSEs
simulated by 100 Monte Carlo runs for the estimators in this paper and [9]. In Figure 6, the estimates
at the state update points and the measurement sampling points within a state update period are all
shown by using the our proposed algorithm. Moreover, from Figure 6, we can see that the proposed
algorithm has the same accuracy as the augmented one in [9] at the state update points when there
are no missing measurements. It is also significant from Remark 3 that our estimator has smaller
computational burden than [9]. To compare the computation time between the two algorithms, we use
the “unifrnd” function in Matlab to sample 2, 3, 4, and 5 measurements within a state update period,
respectively, and give the average of 50 run time of the two algorithms in Table 1. The used computer
is Lenovo with the CPU speed of 3.20 GHz (Intel (R) Core (TM) i5-3470 CPU) and the used Matlab
version is Matlab R2012a. From Table 1, we can see that our proposed algorithm can save the run
time compared with that in [9] with the increase of the number of sampling points within a state
update period.
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Table 1. Average time of 50 runs.

Number of Samples Our Algorithm [9]

2 0.062064 s 0.066064 s
3 0.078872 s 0.086958 s
4 0.092339 s 0.112633 s
5 0.103354 s 0.146654 s

7. Conclusions

A non-augmented recursive estimator has been designed for a class of non-uniform sampling
systems with missing measurements, where the system state is updated uniformly and the
measurements are sampled randomly. A state space model is constructed to depict the dynamics at
the measurement sampling points within a state update period. The proposed estimator dependent
on the missing rate can provide the state estimates not only at the state update points but also at the
measurement sampling points within a state update period. Compared with [9], our algorithm has
better accuracy when there are missing measurements and the same accuracy at the state update points
when there are no missing measurements. For multi-sensor systems with missing measurements, our
algorithm can also deal with the optimal fusion estimation by reordering the measurements from all
sensors. A distributed suboptimal fusion estimator is also given using the covariance intersection (CI)
fusion algorithm.
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Appendix A. The Proof of Theorem 2

By using the projection theory [32], we readily have Equations (16)–(19), where the filtering gain
matrices for the state and input white noise are, respectively, defined as

Kxpk´ 1|k´ α
pkq
i q “ E

!

xpk´ 1qεTpk´ α
pkq
i q

)

Q´1
ε pk´ α

pkq
i q (A1)

Kwpk´ 1|k´ α
pkq
i q “ E

!

wpk´ 1qεTpk´ α
pkq
i q

)

Q´1
ε pk´ α

pkq
i q (A2)

Substituting Equation (10) into Equation (19), the innovation εpk´ α
pkq
i q can be rewritten as

εpk´ α
pkq
i q “ pξpk´ α

pkq
i q ´ γqHxpk´ α

pkq
i q ` γHrxpk´ α

pkq
i |k´ α

pkq
i´1q ` vpk´ α

pkq
i q (A3)

where the prediction error rxpk ´ α
pkq
i |k ´ α

pkq
i´1q “ xpk ´ α

pkq
i q ´ x̂pk ´ α

pkq
i |k ´ α

pkq
i´1q. Substituting

Equation (A3) into the innovation sequence covariance Qεpk ´ α
pkq
i q “ E

!

εpk´ α
pkq
i qεTpk´ α

pkq
i q

)

leads to Equation (20).
Subtracting Equation (16) with r “ 1 from Equation (9) yields the prediction error equation

rxpk´ α
pkq
i |k´ α

pkq
i´1q “ Φpkqi rxpk´ 1|k´ α

pkq
i´1q ` Γpkqi rwpk´ 1|k´ α

pkq
i´1q (A4)

where the smoothing errors rxpk´ 1|k´ α
pkq
i´1q “ xpk´ 1q ´ x̂pk´ 1|k´ α

pkq
i´1q and rwpk´ 1|k´ α

pkq
i´1q “

wpk´ 1q´ ŵpk´ 1|k´ α
pkq
i´1q. Using Equations (A3) and (A4), we have

E
!

xpk´ 1qεTpk´ α
pkq
i q

)

“ γE txpk´ 1q
´

Φpkqi rxpk´ 1|k´ α
pkq
i´1q `Γpkqi rwpk´ 1|k´ α

pkq
i´1q

¯T
*

HT

“ γrPxpk´ 1|k´ α
pkq
i´1qΦ

pkqT
i ` Pxwpk´ 1|k´ α

pkq
i´1qΓ

pkqT
i sHT

(A5)

where xpk ´ 1q “ x̂pk ´ 1|k ´ α
pkq
i´1q ` rxpk ´ 1|k ´ α

pkq
i´1q, x̂pk ´ 1|k ´ α

pkq
i´1qKrxpk ´ 1|k ´ α

pkq
i´1q and

x̂pk´ 1|k´ α
pkq
i´1qK rwpk´ 1|k´ α

pkq
i´1q have been used, where the symbol K denotes orthogonality.

Substituting Equation (A5) into Equation (A1) yields Equation (21). Similarly, we prove Equation (22) holds.
Subtracting Equation (17) from xpk´ 1q yields the smoothing error equation

rxpk´ 1|k´ α
pkq
i q “ rxpk´ 1|k´ α

pkq
i´1q ´Kxpk´ 1|k´ α

pkq
i qεpk´ α

pkq
i q (A6)

The smoothing error covariance matrix is derived as follows:

Pxpk´ 1|k´ α
pkq
i q “ E

!

rxpk´ 1|k´ α
pkq
i qrxTpk´ 1|k´ α

pkq
i q

)

“ Pxpk´ 1|k´ α
pkq
i´1q `Kxpk´ 1|k´ α

pkq
i qQεpk´ α

pkq
i qKT

x pk´ 1|k´ α
pkq
i q

´E
!

rxpk´ 1|k´ α
pkq
i´1qε

Tpk´ α
pkq
i q

)

KT
x pk´ 1|k´ α

pkq
i q

´Kxpk´ 1|k´ α
pkq
i qE

!

εpk´ α
pkq
i qrxTpk´ 1|k´ α

pkq
i´1q

)

(A7)

Using Equation (A1) and note that
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E
!

rxpk´ 1|k´ α
pkq
i´1qε

Tpk´ α
pkq
i q

)

“ E
!

xpk´ 1qεTpk´ α
pkq
i q

)

“ Kxpk´ 1|k´ α
pkq
i qQεpk´ α

pkq
i q (A8)

Substituting Equation (A8) into Equation (A7) leads to Equation (23). Similarly, we can prove
Equations (24) and (25) hold.

Subtracting Equation (16) with r “ 0 from Equation (9) yields the filtering error equation

rxpk´ α
pkq
i |k´ α

pkq
i q “ Φpkqi rxpk´ 1|k´ α

pkq
i q ` Γpkqi rwpk´ 1|k´ α

pkq
i q (A9)

Substituting Equations (A4) and (A9) into Pxpk ´ α
pkq
i |k ´ α

pkq
i´rq “ Etrxpk´ α

pkq
i |k´ α

pkq
i´rq

rxTpk´ α
pkq
i |k´ α

pkq
i´rqu, r “ 0, 1 leads to Equation (26). This proof is completed.
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