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Abstract: Nowadays, label distribution learning is among the state-of-the-art methodologies in facial
age estimation. It takes the age of each facial image instance as a label distribution with a series
of age labels rather than the single chronological age label that is commonly used. However, this
methodology is deficient in its simple decision-making criterion: the final predicted age is only
selected at the one with maximum description degree. In many cases, different age labels may have
very similar description degrees. Consequently, blindly deciding the estimated age by virtue of the
highest description degree would miss or neglect other valuable age labels that may contribute a lot
to the final predicted age. In this paper, we propose a strategic decision-making label distribution
learning algorithm (SDM-LDL) with a series of strategies specialized for different types of age label
distribution. Experimental results from the most popular aging face database, FG-NET, show the
superiority and validity of all the proposed strategic decision-making learning algorithms over the
existing label distribution learning and other single-label learning algorithms for facial age estimation.
The inner properties of SDM-LDL are further explored with more advantages.
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1. Introduction

Recently, with the expanding popularity of Microsoft’s “How-old.net” [1] all over the world
and also the rapid development of computer vision, pattern recognition and biometrics, more and
more attention has been paid to human facial age estimation, which is utilized in the scenarios
where an individual’s age needs to be obtained without specifically identifying other irrelevant
personal information, such as electronic customer relationship management [2,3], human–computer
interaction (HCI) [4], security surveillance monitoring [5,6], age-based visual advertisement and
even entertainment.

Unlike other face-oriented problems, the difficulties of computer-based facial age estimation [7,8]
are reflected in the following aspects:

1. Difference of aging process: Different people have their own living environment, ethnic group,
gender, lifestyle, social contact, health condition and even gene diversity, which all together
determine the speed of aging.

2. Shape or texture: Different forms of aging will emerge at different age levels. For example, from
infancy to adolescence, the craniofacial growth (shape growth) is the main change. However, from
adult period to old age, the craniofacial change decreases remarkably and skin transformation
(texture change) would be the most prominent change.

3. Data insufficiency: It takes great effort to search and collect old photos which were taken years
ago. As a result, it is rather difficult for almost everyone to find one photo in each past year,
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let alone requiring the same shooting angle, lighting condition, resolution and background.
In addition, only the past and present photos might be available, which means it is quite infrequent
that a complete set of a person’s facial images with each age label can be gathered before his or
her life ends. On the other hand, aging is a process which takes place moment by moment, so it
is impossible to obtain multiple facial images for one person at the same time of different years.
In fact, we only have a very limited number of aging datasets, especially that can cover the entire
age range and are evenly distributed.

4. Disturbance: Some females tend to show their younger faces, so final estimation results will be
largely interfered with by using cosmetics and accessories.

A lot of facial age estimation approaches have been put forward, some of which are able to
obtain rather satisfying performance. Among them, most of the traditional approaches formulate
facial age estimation problem based on classification [9–12], regression [5,13–15] or a combination
of the two. Suppose we have a dataset of N training samples, {(xi, yi)|i = 1, ..., N}, in which xi
represents the ith face image and yi represents the corresponding age label. In multi-class classification,
every sample will be regarded as a single independent age label for training; as a result, we get a
multi-classifier to estimate a person’s age. However, the problem is, the age labels have no relationship
with each other, i.e., each age label is only treated as a separate entity in the training process while,
in essence, human age labels are sequential. Thus, this kind of multi-classification method may omit
some connotative information of the correlation among different age labels, which together compose
the fine-ordered age set. For instance, two images with adjacent age labels for the same person will
be more similar than those with far-apart labels. In short, multi-class classification cannot take full
advantage of the correlation among ordinal age labels. In contrast, the regression method aims to find
the best mapping from raw images to the corresponding ages and get a function for age estimation.
However, craniofacial and skin changes at different age levels would result in an unstable random
process in feature space, so the kernels used to assess the similarities among different ages could drift.
As for the estimation performance, it has been shown in the literature [5,14,16] that when different
datasets are used for training and testing, the regression method will show better or worse results than
the classification-based method. In addition, Guo et al. [5,17] proposed a hybrid method that combines
classification and regression approaches together to make use of both advantages. As a result, the
actual performance is further improved to some degree. However, it is well known that the aging
process is diversified for different age levels. As an analogy, the aging process from 22 to 25 would
have a different tendency compared to that from 62 to 65. Therefore, it is more credible to compare
two age labels’ relative sequence (smaller or larger) than the differences among labels. Inspired by
the aforementioned defects, ordinal hyperplanes ranker (OHRank) [18] based age estimation was
proposed based on an ordinal hyperplane ranking algorithm that splits the estimation task into several
cost-sensitive binary classification subproblems.

In spite of all the above merits, these algorithms fail to consider that age labels have a certain
relationship with each other to different degrees. More specifically, because aging is a slow and
gradually varied process, the adjacent labels around a certain age label X will necessarily have a
connection with label X and thus can inevitably describe the characteristics of label X to different
degrees. Thus, in [19], Yan et al. proposed a solution to the age ranking problem based on the training
samples with uncertain age labels: a small range (within one year) was set as the uncertain labels
for a given age label. In [20], the label sensitive concept was proposed for better exploitation of the
information of ordinal relationships among age labels. In their training phase, for a given age label,
samples belonging to their neighbouring age labels are also involved; in other words, the weight
of each sample in computing the quantities of a specific age label was assigned according to label
similarity. However, these two approaches only treat one facial image instance with a single age
label (not multiple age labels); as mentioned above, almost all age estimation algorithms also suffer
from insufficient training datasets. Inspired by these defects, Geng et al. [21,22] proposed the Label
Distribution Learning (LDL) for facial age estimation. This method takes full advantages of the
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similarities between the authentic age and its adjacent ages instead of regarding each age label as one
isolated entity; that is to say, this method better reveals the nature of the human aging process than
other existing age estimation algorithms.

In detail, Label Distribution Learning (LDL) [21] starts from the observation and intuitive common
sense that the faces at adjacent ages tend to have much similarity, which can be shown in Figure 1.
An extreme case is that a person’s face would look almost the same on the last day of his or her
at 20-years-old and the first day of being a 21-year-old. In other words, adjacent ages can make a
great contribution to the chronological (authentic) age. Actually in the real world, we are also more
accustomed to judge a person’s age by “about 30-year-old” or “around 40–50” rather than directly
telling the exact age. Thus, LDL allocates each facial image an “age label distribution with multi-label”
instead of the “chronological age as single-label”. Based on this idea, in order to represent the degree
that those adjacent age labels describe this facial image, LDL firstly introduces the concept of description
degree. Specifically, suppose we have a facial image x, then the description degree dy

x ∈ [0, 1] (y represents
a certain age label in the whole age range) and is the level at which the age y depicts this instance. In
addition, the description degree must satisfy the restricted condition ∑

y
dy

x = 1. Figure 2 demonstrates

three different types of label distributions for six-class labels. Type (a) shows the most traditionally
frequently-used and simplest case: single label. In the figure, the instance is allocated only one label y4

and thus y4’s description degree dy4
x = 1 while the description degree for y1, y2, y3, y5, y6 is 0, which

means the sole label y4 is able to totally describe this instance with other labels contributing nothing.
Figure 2b is another case called multiple label, in which multiple labels (two, three or more) would
have even description intensities. As can be seen, y3 and y6 are allocated evenly to describe the
instance and each takes up 0.5 (50%) as their description degree, accompanied by other remaining
labels contributing nothing with the corresponding description degrees of 0. A more general case is in
Figure 2c: each label is allocated a description degree dy

x ∈ [0, 1] with ∑
y

dy
x = 1.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 1. Facial image examples of one subject in sequential order of different age values in the FG-NET
database [23]. (a) 4; (b) 5; (c) 7; (d) 15; (e) 16; (f) 18; (g) 20; (h) 21; (i) 23; (j) 26; (k) 29; (l) 31; (m) 36;
(n) 38.
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Figure 2. Three different types of label distribution. (a) single label; (b) multiple label; (c) general label
distribution.

In general, label distribution is more flexible to represent the ambiguity. However, the learning
algorithms from label distribution [21,22] suffer from their simple decision-making criteria which
only blindly choose the age label with maximum description degree as the final predicted age and
fail to take the characteristics of aging process into account. Actually, in practice, when we finish the
step of learning from label distribution and head into the last step of decision-making, it is far from
being rare that many age labels would have very similar description degrees. Thus, in this case, rashly
assigning the one with the highest description degree would neglect all the other age labels with close
description degrees, which may consequently enlarge the final estimation deviation and degrade the
algorithm’s overall performance. In this paper, we propose a series of strategic learning algorithms for
decision-making to effectively solve this problem in the application of facial age estimation.

The rest of this paper is organized as follows: firstly, the label distribution learning in age
estimation and its decision-making criterion is briefly illustrated in Section 2. Then, a series of strategic
decision-making learning algorithms for label distribution learning are proposed in Section 3. After
that, the experiments and discussion on facial age estimation for different types of age label distribution
are reported in Section 4. Finally, Section 5 concludes the paper.

2. Label Distribution Learning and Its Decision-Making Criterion

Figure 3 shows the example of three different types of multiple labels for age representation,
in which Figure 3a,b are two primary age label distributions, namely Gaussian-like distribution
and triangle distribution; Figure 3c indicates the multiple label with the same description degrees.
In the first two distributions, the description degree of the chronological age (authentic age) is the
highest; for other age labels on both sides of the chronological age, description degrees decrease
symmetrically to the same extent. Particularly, the condition of Figure 3a is not called “Gaussian
distribution” but “Gaussian-like distribution” because Gaussian distribution is a continuous function
for the independent variable traversing the set of all real numbers. However, the age label is a series
of discrete integers with a limited domain. Thus, in the application of age estimation, we only use
the shape of Gaussian distribution and discretize the previous “probability density” to constitute
description degrees. In detail, firstly calculate pd f (y) for all possible age label y (pd f (·) stands for
probability density function) and then do the normalization dy

x = pd f (y)/ ∑y pd f (y) so that ∑y dy
x = 1

is guaranteed. Note that when generating the label distribution, the description degrees of all age
labels are greater than 0 for Gaussian-like distribution (Figure 3a), which means all age labels are
involved and contribute to the label distribution; however, in the condition of Figure 3b,c, only part of
the age labels contribute to the label distribution (the description degrees of other age labels are 0).
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Figure 3. Two primary age label distributions (a) Gaussian-like distribution (with seven-class labels);
(b) triangle distribution (with bottom length of six) and multiple age labels with same description
degrees (with seven-class labels) (c) for the chronological age a.

Generally, Label Distribution Learning (LDL) utilizes the methods in statistics to learn a
conditional probability mass function from the ready-made label distribution and get the corresponding
description degrees [21,22]. In detail, the description degree dy

x can be seen mathematically as
dy

x = P(y|x) ∈ [0, 1], which means that, for an instance x, the description degree of the label y
equals the conditional probability of y given x. Next, suppose the input space is denoted by ℵ = <w

and the label set Ψ = {y1, y2, y3, ..., yt} (t is the total number of labels) which contains all involving
labels. Then, given a training set with n instances = = {(x1, D1), (x2, D2), ..., (xn, Dn)}, where xi ∈ ℵ
is the ith instance and Di = {d

y1
xi , dy2

xi , ..., dyt
xi} is the label distribution for the ith instance, the objective

is to learn the approximated conditional probability mass function p(y|x) from the training set =,
in which x ∈ ℵ and y ∈ Ψ.

In order to solve the above-mentioned question, the parameter vector θ needs to be introduced as
p(y|x; θ). Then, the problem becomes: to find out a suitable θ that can generate a label distribution
approximating Di given xi. Then, Kullback–Leibler (KL) divergence is used as the measurement of
two distributions’ similarity, which can be represented by:

DKL = ∑
i

∑
j

(
d

yj
xi ln

d
yj
xi

p(yj|xi.θ)

)
(1)

Thus, the optimal solution θopt for the parameter vector θ should be obtained by minimizing the
KL divergence, namely

θopt = arg min
θ

∑
i

∑
j

(
d

yj
xi ln

d
yj
xi

p(yj|xi; θ)

)
= arg max

θ
∑

i
∑

j

(
d

yj
xi ln p(yj|xi; θ)

)
(2)

Then, p(y|x; θ) can be formulated by maximum entropy model [24] as

p(y|x; θ) =
1

∑y exp
(

∑k θy,kτk(x)
) exp

(
∑k θy,kτk(x)

)
(3)

where τk(x) represents the kth feature in x and θy,k is one element in the model parameter vector θ.
From Equations (2) and (3), the objective function Ω(θ) can be derived as

Ω(θ) =

(
∑
i,j

d
yj
xi ∑

k
θyj ,kτk(xi)

)
−
(

∑
i

ln ∑
j

exp
(
∑k θyj ,kτk(xi)

))
(4)
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IIS(improved iterative scaling)-LLD and BFGS(Broyden-Fletcher-Goldfarb-Shanno)-LLD [21,22]
are the main algorithms in dealing with the above optimization problem. After p(y|x; θ) is learned
from the training set, the label distribution of any new instance x′ is p(y|x′; θ). Then, the final predicted
age is obtained by the following decision-making criterion:

y f inal = arg max
y

p(y|x′; θ) (5)

which can be explained as choosing the age label with the maximum description degree in the
calculated label distribution of this new instance.

3. Strategic Decision-Making Label Distribution Learning (SDM-LDL) for Facial Age Estimation

So far, three main algorithms based on label distribution learning have been proposed, i.e.,
IIS-LLD, BFGS-LLD and CPNN (Conditional Probability Neural Network) [21,22]. However, these
algorithms seems to put more emphasis on dealing with pure mathematical problems (optimization
and parameter tuning) for obtaining the label distribution output p(y|x; θ); on the other hand, they only
pick the age label with the highest description degree and neglect the distribution of other labels with
similar description degrees which may also contribute much to decision making; in other words,
they fail to design more appropriate and complex decision-making criteria specialized for the
application of facial age estimation.

Fundamentally, the reason why the decision-making criterion of original LDL is deficient can be
explained as follows: the obtained distribution is not symmetrical along two sides of the maximum
description degree. In other words, the obtained age label distribution suffers from distributing
unevenly with the center of the maximum description degree; specifically, there exists the possibility
when the neighboring age labels with relatively high description degrees are located more intensively
on one side than the other side. For this condition, the decision-making rule should lean to the
abovementioned “more intensive” range/side. That is, more age labels on the “intense” side should
be involved in and contribute to the final estimation process than the ones on the “sparse” side
(the other side). Consequently, if we still simply pick the highest description degree, then the estimated
age will have larger deviations and all of the neighboring high description degrees only second to the
maximum value will become meaningless. Inspired by this defect, a series of strategic decision-making
algorithms for label distribution learning (SDM-LDL) are proposed for age estimation.

Now suppose that p(y|x; θ) has already been learned from the training set using IIS-LLD,
BFGS-LLD or CPNN. Then, the label distribution of a new instance x′ can be calculated by p(y|x′; θ) for
all y (age labels). In order to obviously compare the differences between these algorithms, both newly
proposed algorithms with different decision-making strategies and the original LDL decision-making
rule without any strategy are listed below.

3.1. Original Decision-Making Rule without Strategy

Scan through all age labels y and search for the maximum p(y|x′; θ), then the predicted age
would be chosen as yp = arg max

y
p(y|x′; θ), namely to directly select the age label with the maximum

description degree. It is worth noting that, in this method, only one age label gets involved in
determining the final predicted age.

3.2. Strategic Decision-Making Algorithm (SDM-LDL) with Strategy 1

As mentioned above, the initially obtained age label distribution does not distribute evenly along
two sides of the maximum description degree, so merely selecting the age label with the highest
description degree will lead to large deviation from the ground truth and suboptimal estimation
performance. Consequently, one natural and straightforward idea is to choose multiple age labels with
higher description degrees as the “age label base” and the final result (age) can be estimated as the
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mean value for this “base”. Then, here comes another question: how can the number of the chosen
age labels be determined? In Strategy 1, we manually select this value (hereinafter referred to as N).
The detailed procedure can be summarized as follows. Rank all description degrees in descending
order and extract the top N description degrees and their corresponding age labels {ys1 , ys2 , ..., ysN}.
Then, add these age labels up and obtain the mean value as the final age (note that here N is a positive
integer in the range 2–10 which is pre-chosen by us and the influence of different values for N would
be further shown and compared in the experiment section). Thus, in this strategy, the predicted age
could be mathematically expressed as

yp =
1
N
(ys1 + ys2 + ... + ysN ) (6)

This strategy involves N age labels in determining the final predicted age.

3.3. SDM-LDL with Strategy 2

In Strategy 1, the final estimated age is determined as the mean value of those selected top N
age labels. In essence, this action evenly (equally) considers all the N labels which have different
description degrees; in other words, the description degree information for these N labels is not
utilized. Then, how can we make use of both the above-mentioned description degree information
and the top N age labels? An effective solution is to calculate the weighted sum, in which the weights
are obtained by normalizing the corresponding description degrees of these pre-chosen N labels.
The concrete steps are as follows. Rank all description degrees in descending order and extract the top
N description degrees and their corresponding age labels {ys1 , ys2 , ..., ysN}. Then, for these N degrees,
do the normalization and get the normalized weights. Finally, accumulate the product of the weights
and their corresponding age labels. Note that here N is also pre-chosen and tested within the range
2–10 as in Strategy 1 in order to see which value in this range would get the best performance and
whether the value of N would have a regular impact for the final estimation result. In this strategy, the
predicted age could be formulated as

yp =

ysN

∑
ys=ys1

ys ×
p(ys|x′; θ)

ysN
∑

ys=ys1

p(ys|x′; θ)

(7)

This strategy involves N age labels and their corresponding description degrees in determining
the final predicted age.

3.4. SDM-LDL with Strategy 3

In Strategies 1 and 2, the number of age labels is manually chosen. Whether this value is properly
selected or not will have a direct impact on age estimation performance. Thus, another question comes
to our mind: can we find an appropriate adaptive value for the number of chosen age labels so that
Strategy 1 can be autonomously conducted without human interference? Driven by this question,
we focus on the differences between every two adjacent description degrees in descending order: to a
great extent, the largest difference is an indicator to distinguish the age labels with higher description
degrees from those with lower description degrees. The whole process can be described as follows.
Rank all description degrees in descending order {ys1 , ys2 , ..., yst} (t is the total number of age labels),
calculate the differences between adjacent description degrees and obtain the set {di1, di2, ..., dit−1},
where di1 = ys1 − ys2 , di2 = ys2 − ys3 , ..., dit−1 = yst−1 − yst . Then, find the maximum di (denoted
by diG; in other words, the sequence number of this maximum di is denoted as G) and calculate
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the mean value from the top G description degrees in descending order, namely {ys1 , ys2 , ..., ysG}.
Consequently, the predicted age could be described as

yp =
1
G
(ys1 + ys2 + ... + ysG ) (8)

In this strategy, G age labels directly contribute to the final determination of the predicted age.

3.5. SDM-LDL with Strategy 4

Inspired by Strategies 2 and 3, we are motivated to combine the advantages of these two
methods. Firstly, the proper G is obtained autonomously, then the normalization and weighted sum are
conducted to use both the age label and the corresponding description degree information. The specific
procedure is summarized as follows. Rank all description degrees in descending order {ys1 , ys2 , ..., yst}
(t is the total number of age labels), calculate the differences between adjacent description degrees
and obtain the set {di1, di2, ..., dit−1}, where di1 = ys1 − ys2 , di2 = ys2 − ys3 , ..., dit−1 = yst−1 − yst .
Then, find the maximum di (denoted by diG); for these G degrees, do the normalization and get the
normalized weights. Finally, accumulate the product of the weights and their corresponding age labels.
Consequently, the predicted age could be described as

yp =

ysG

∑
ys=ys1

ys ×
p(ys|x′; θ)

ysG
∑

ys=ys1

p(ys|x′; θ)

(9)

In this strategy, G age labels and their corresponding description degrees directly contribute to
the final determination of the predicted age.

It is worth mentioning that Strategies 3 and 4 utilize successive differences to seek out a specific
boundary distinguishing between the age labels with great contribution and small contribution,
so that the age labels with great contribution would be adopted for the final predicted age and those
with small contribution would be discarded.

3.6. SDM-LDL with Strategy 5

Strategies 1–4 adopt only partial age labels so that the complete description degrees are not
fully exploited (only part of description degrees involved). Thus, we design this strategy to take
advantage of all age labels and all the description degrees: multiply age labels by their corresponding
description degrees respectively and adopt the cumulative value of these product as the final result.
Then, the predicted age would be calculated by

yp =
yt

∑
y=y1

y× p(y|x′; θ) (10)

For a more distinct demonstration, we take an example for further illustration, as is shown in
Tables 1 and 2 and Figure 4. Suppose we have already learned p(y|x; θ) from the training set using
IIS-LLD, BFGS-LLD or CPNN. Now when a new facial image x′ comes in, the corresponding age label
distribution can be obtained as in Table 1 and Figure 4a. Then, on the basis of Table 1, we rank all these
description degrees in descending order and also calculate the successive differences di one by one,
which is shown in Table 2 and Figure 4b,c. Next, different types of age are listed as follows:
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Table 1. An example of the obtained age label distribution for a new facial image x′ (with the authentic
age of 16).

Age Label 0 1 2 ... 12 13 14 15 16

Description degree 0.0010 0.0017 0.0026 ... 0.0480 0.0570 0.0642 0.0738 0.0898
Age Label 17 18 19 20 21 22 ... 68 69

Description degree 0.0909 0.0913 0.0786 0.0667 0.0540 0.0389 ... 1.0667 ×10−5 2.7528 ×10−5

Table 2. Based on Table 1, the age label distribution with descending-order description degrees and
successive differences di.

Age Label 18 17 16 19 15 20 14 13 21 12 22 ...

Description degree
(descending order) 0.0913 0.0909 0.0898 0.0786 0.0738 0.0667 0.0642 0.0570 0.0540 0.0480 0.0389 ...

Difference (di) 4e-04 0.0011 0.0112 0.0048 0.0071 0.0025 0.0072 0.0030 0.0060 0.0091 ... ...
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Figure 4. Histogram illustrations for the example of Tables 1 and 2: (a) corresponds to Table 1; (b) and
(c) correspond to Table 2.

Table 3 shows the comparison of deviation from the authentic age 16 using the proposed
SDM-LDLs with all strategies as well as the original LDL. As can be seen from the table, all the
SDM-LDLs achieve smaller deviation compared to the original LDL without any decision-making
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strategy. Although it is only a possible example of the obtained age label distribution, this illustration
vividly shows the deficiency of original LDL’s decision-making criterion due to the obtained
distribution’s asymmetry along two sides of the maximum description degree. On the contrary,
the proposed SDM-LDL with various strategies is specially designed to suit the inner characteristics
of aging and also make up for this drawback, which takes full advantage of the whole age label
distribution and offsets the deficiency and deviations caused by the original LDL’s decision-making
rule to the greatest extent. As for the above example, the relatively high description degrees occur
more frequently on the left side of the maximum description degree (18 with the description degree of
0.0913) than on the right side (15, 16, 17 on the left side versus 19 on the right side). Thus, the predicted
age should lean to the direction of “smaller than 18” rather than 18, as obtained from the five strategies
of SDM-LDL.

Table 3. The comparison of deviations from authentic age based on the example of Table 1.

Deviation from Authentic Age (Absolute Value)

Original LDL 2.0000
SDM-LDL (Str 1) 0.5000
SDM-LDL (Str 2) 0.6732
SDM-LDL (Str 3) 1.0000
SDM-LDL (Str 4) 1.0055
SDM-LDL (Str 5) 0.2586

4. Experiments

4.1. Experimental Environment Settings

The aging database that our experiments are conducted on is the most popular facial aging
benchmark: FG-NET [23]. FG-NET has 1002 grayscale or color facial images of 82 people, which
includes comprehensive poses, expressions and lighting environments. Just as Table 4 shows, all of the
people’s age ranges are from 0 to 69, with the young and middle-aged taking up the majority and the
proportion of old people much smaller. In order to uniformly processing, all facial images in FG-NET
are converted to grayscale, aligned and normalized. Finally histogram equalization is conducted in
order to decrease the illumination influence.

Table 4. FG-NET’s age level distribution.

Range of Age FG-NET
#img. %

0–9 371 37.03
10–19 339 33.83
20–29 144 14.37
30–39 79 7.88
40–49 46 4.59
50–59 15 1.50
60–69 8 0.80
Total 1002 100

In order to increase the accuracy of the final predicted age, three feature models for information
extraction were used from FG-NET raw images: Active Appearance Model (AAM) [25], local binary
patterns (LBP) and Bio-inspired feature (BIF) [26], which would be combined together for a total
dataset. Active Appearance Models (AAM) can represent both shape and texture information instead
of only facial geometry, which is also popularly selected by other age estimation methods. LBP is
also a widely-used feature for texture classification in computer vision. BIF was selected because of
its high age estimation accuracy. The information extracted from the above three feature models can
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complement each other; together, they were combined as a total dataset. For AAM features, the feature
dimension was set to retain 95% of variability. For BIF features, the number of bands was set at eight
(16 scales totally) with four orientations each. In addition, to reduce the entire feature space, principal
component analysis (PCA) was used to reduce the dimension. More specifically, all three of the feature
models would be reduced to 100 dimensions, respectively. Particularly, the AAM model includes
both shape and texture information, so these two sub-properties would be reduced to 50 dimensions
respectively (in total 100 dimensions). Furthermore, leave-one-person-out (LOPO), a popular test
procedure, was utilized for the test strategy, which was suggested in [5,10,19,27,28].

4.2. Methodology and Experimental Results

In age estimation, the most popular performance measurement is the mean absolute error (MAE),
which can be described by

MAE =
T

∑
m=1
|ym
∗ − ym| /T (11)

where ym
∗ is the estimated age, ym is the authentic age and T is the number of test images.

Just as mentioned above, when initially generating the age label distribution for a given
chronological age, there are three different ways, i.e., Gaussian-like distribution, triangle distribution
and multi-label distribution with equal description degrees (Figure 3a–c). These three conditions
have their respective features and thus the final predicted ages based on them are different from each
other. Consequently, these three conditions will firstly be analyzed separately and then compared
with each other to obtain the overall conclusion. Note that our proposed algorithm is applicable to
all existing LDL methods (IIS-LLD, BFGS-LLD, CPNN); however, for all the following LDL-based
experiments (including original LDL and the proposed SDM-LDL), we only utilize the BFGS-LLD
method in computing p(y|x; θ) to maintain consistency.

4.2.1. Gaussian-Like Distribution

First of all, when generating the Gaussian-like age label distribution, the controlled variable is
the standard deviation σ. Thus, in the following experiment of this section, when realizing every
strategy mentioned above, we will assign an integer range 1–10 to the standard deviation and make
comparisons of the final predicted age with different standard deviations. Note that for the standard
deviation σ, the integer range 1–10 is quite a broad range because for σ = 5, 6, 7 and even greater,
the age label distribution tends to become “flatter and flatter”, which means description degrees of
different age labels would get closer to the description degree of the actual age and the description
degrees’ disparities among different age labels become less and less obvious. However, the standard
deviation is given a great range in order to more clearly display the rule and tendency of the standard
deviation’s impact on the overall estimation performance.

Table 5 shows the comprehensive comparisons including different strategies used in the proposed
SDM-LDL algorithms and different standard deviations σ when age label distribution is generated as
Gaussian-like. In the vertical direction, for every value of σ, almost all of the SDM-LDL algorithms
with different strategies obtain smaller MAE than the original LDL algorithm, which demonstrate the
validity and superiority of the proposed algorithms with all strategies. In addition, when σ varies,
different strategies show their respective advantages. For example, when σ = 1, Strategy 1 gets the best
performance; when σ = 2, 6, 10, Strategy 2 gets the optimal results; when σ = 7, 8, 9, Strategy 4 gets the
smallest MAEs and when σ = 3, 4, 5, Strategy 5 outperforms all other strategies. Horizontally, when σ

increases from one to 10, MAEs of all LDL-based algorithms (including original LDL and SDM-LDL)
exhibit the general tendency of first decreasing and then increasing, which indicates that there exists
an optimal value (or a small range) of σ to suit different algorithms and for different algorithms, such
an optimal value varies. For instance, if using SDM-LDL with Strategy 5, then the optimal value for
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σ is four; however in the utilization of SDM-LDL with Strategy 3, the optimal value for σ is seven.
More intuitionally from Figure 5, most parts of the fold lines of Strategy 1–5 fall below that of the
original LDL algorithm and this means our proposed algorithms get superior accuracy compared
to the original one. In addition, in general, almost all fold lines in Figure 5 follow the tendency of
first going down and then going up. Moreover, the fold line located in the bottom is changing with
the variation of σ, indicating the best strategy varies for different standard deviations. Noticing that
for Strategy 5, when σ gets bigger, the MAE firstly drops quickly and then rises dramatically, so the
appropriate σ value for Strategy 5 can be selected from 2,3,4,5. In fact, the reason why the Strategy 5
fold line drastically climbs afterwards is obvious: when σ becomes very large and extends a certain
range, the description degrees for all age labels will get very close. In this case, when we accumulate all
the products of age labels and their corresponding description degrees according to Strategy 5, the final
obtained age would approach the median of the whole age label range, which, as a result, makes the
deviation bigger and bigger. Just imagine in extreme cases when σ approaches to infinity so that the
description degrees of all age labels are equivalent, then if using Strategy 5, the calculated age result
will be the median value in the age label range. In particular, for the most commonly used standard
deviation σ ranging from 1 to 5, the fold line of the original LDL falls steeply and does not tend to
become stable, which means the original LDL is not robust enough for typical values of standard
deviation. In addition, in this range of σ, the original LDL does not reach the optimal MAE. In contrast,
the proposed SDM-LDL with Strategies 1,2,5 all reach the lowest value of MAE for σ ∈ [1, 5] with big
advantages over the “Original” fold line as well as more robustness. In addition, chances are greater
that one is going to use the LDL-based algorithms in facial age estimation and does not have so much
time to conduct a series of trials seeking for the optimal standard deviation: he or she only chooses
from the most commonly used values 1–5. In this case, our proposed SDM-LDL with Strategies 1,2,5
are more likely to obtain optimal results or the results approaching the optimal MAE. Furthermore,
the SDM-LDL with Strategies 1 and 2 shows robustness with their more stable and flatter fold lines as
evidence: throughout the range σ ∈ [1, 10], the MAE of Strategies 1 and 2 always remains a relatively
low value with no sharp fluctuations. Note that for SDM-LDL with Strategies 1 and 2, only the best
results are presented in the table along with the value of N at that time, so one natural question comes:
when N traverses from two to 10, what will the variation trend of the MAE be, or how does the value
of N influence the estimation performance?

Standard Deviation <
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Figure 5. The line chart (variation tendency) of MAEs with respect to different standard deviations for
the original LDL algorithm and the proposed SDM-LDL algorithms with different strategies when age
label distribution is generated as Gaussian-like.
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Table 5. Mean Absolute Errors (MAEs) of the compared original LDL algorithm without
decision-making strategy and the proposed SDM-LDL algorithms with different strategies on the
condition that age label distribution is generated as Gaussian-like (σ from 1 to 10; for Strategies 1
and 2, best results are shown in the table along with the value of N then; for every σ, the optimal MAEs
are marked in bold).

σ 1 2 3 4 5

MAE (Ori) 6.261 5.868 5.573 5.462 5.431
MAE (Str 1) 5.471 (N = 8) 5.251 (N = 9) 5.219 (N = 9) 5.159 (N = 9) 5.190 (N = 9)
MAE (Str 2) 5.588 (N = 10) 5.246 (N = 10) 5.180 (N = 10) 5.127 (N = 10) 5.139 (N = 10)
MAE (Str 3) 6.084 5.753 5.478 5.290 5.225
MAE (Str 4) 6.088 5.760 5.473 5.280 5.226
MAE (Str 5) 5.513 5.080 4.938 4.920 5.023

σ 6 7 8 9 10

MAE (Ori) 5.321 5.366 5.322 5.320 5.330
MAE (Str 1) 5.186 (N = 9) 5.192 (N = 9) 5.172 (N = 5) 5.173 (N = 7) 5.192 (N = 7)
MAE (Str 2) 5.153 (N = 9) 5.166 (N = 9) 5.171 (N = 5) 5.168 (N = 7) 5.187 (N = 7)
MAE (Str 3) 5.181 5.112 5.125 5.184 5.321
MAE (Str 4) 5.161 5.098 5.089 5.130 5.252
MAE (Str 5) 5.157 5.344 5.550 5.828 6.126

Table 6 shows the results of different Ns (from 2 to 10) impacts on MAEs using the proposed
SDM-LDL algorithms with Strategies 1 and 2. As can be seen, for both Strategies 1 and 2, the MAE
generally tends to be smaller when N is bigger, no matter what value of σ is. For example, for Strategy 2,
when N takes the value of relatively big integers, like 7, 9 and 10, the majority of results are optimal
whatever σ is. Therefore, normally taking a value greater than 5 for N will get better performance.

Table 6. The impacts of different values of N (2–10) on MAEs using the proposed SDM-LDL algorithms
with Strategies 1 and 2 when age label distribution is generated as Gaussian-like (σ from one to 10; for
every σ, the optimal MAEs are marked in bold).

σ 1 2 3 4 5 6 7 8 9 10

MAE (Str 1)

N = 2 5.978 5.725 5.500 5.384 5.414 5.286 5.339 5.264 5.279 5.278
N = 3 5.741 5.592 5.397 5.327 5.358 5.275 5.303 5.221 5.237 5.226
N = 4 5.569 5.528 5.362 5.301 5.339 5.258 5.306 5.205 5.222 5.229
N = 5 5.508 5.401 5.335 5.252 5.263 5.233 5.248 5.172 5.193 5.201
N = 6 5.484 5.362 5.286 5.226 5.278 5.206 5.246 5.196 5.196 5.208
N = 7 5.511 5.307 5.233 5.195 5.219 5.189 5.209 5.181 5.173 5.192
N = 8 5.471 5.285 5.245 5.200 5.224 5.199 5.211 5.213 5.188 5.254
N = 9 5.531 5.251 5.219 5.159 5.190 5.186 5.192 5.207 5.189 5.223

N = 10 5.627 5.263 5.241 5.196 5.205 5.241 5.245 5.260 5.226 5.305

MAE (Str 2)

N = 2 6.025 5.741 5.501 5.385 5.413 5.287 5.339 5.265 5.280 5.278
N = 3 5.870 5.623 5.408 5.328 5.359 5.274 5.303 5.222 5.238 5.228
N = 4 5.782 5.568 5.373 5.300 5.337 5.257 5.303 5.203 5.221 5.229
N = 5 5.724 5.473 5.343 5.256 5.266 5.233 5.247 5.171 5.191 5.200
N = 6 5.689 5.422 5.296 5.223 5.270 5.199 5.238 5.191 5.191 5.204
N = 7 5.647 5.367 5.251 5.194 5.215 5.181 5.201 5.174 5.168 5.187
N = 8 5.621 5.323 5.224 5.180 5.200 5.175 5.192 5.195 5.175 5.240
N = 9 5.599 5.284 5.203 5.143 5.161 5.153 5.166 5.185 5.171 5.208

N = 10 5.588 5.246 5.180 5.127 5.139 5.170 5.189 5.216 5.193 5.273

4.2.2. Triangle Distribution

Just as Figure 3b shows, unlike Gaussian-like distribution, triangle distribution only takes
advantage of partial age labels that are located on both sides near the chronological age; in other
words, it only allocates the description degree to the “neighboring" age labels of the authentic age
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while description degrees of other age labels remain 0. Furthermore, the description degree reaches
the peak value at the chronological age, of which it drops linearly and symmetrically on both sides.

When generating the triangle age label distribution, the controlled variable is the bottom length.
Figure 6 demonstrates three examples of different bottom lengths, i.e., 4, 6 and 8. As can be seen from
this figure, when the bottom length becomes greater, the description degree of the chronological age
is smaller and the differences between the chronological age and other neighboring age labels are
smaller. Intuitively from the “shape”, the triangle becomes flatter with the increase of the bottom length
(from Figure 6a to b,c). In experiments, the bottom length is given a broad value range of {2, 4, 6, ..., 30}
to examine its impact and variation tendency for the estimated age.

a-2 a-1 a a+1 a+2

d y
x

Age
Label

(a)

a-3 a-2 a-1 a a+1 a+2 a+3

d y
x

Age
Label

(b)

a-4 a-3 a-2 a-1 a a+1 a+2 a+3 a+4

d y
x

Age
Label

(c)

Figure 6. Different bottom lengths when generating the triangle age label distribution for the
chronological age a. (a) bottom length of 4; (b) bottom length of 6; (c) bottom length of 8.

Table 7. MAEs of the compared original LDL algorithm without decision-making strategy and the
proposed SDM-LDL algorithms with different strategies on the condition that age label distribution are
generated as triangle (bottom lengths from 4 to 30; for Strategies 1 and 2, best results are shown in the
table along with the value of N then; for every bottom length, the optimal MAEs are marked in bold).

Bottom Length 4 6 8 10 12 14 16

MAE (Ori) 6.310 6.144 5.994 5.856 5.623 5.574 5.556
MAE (Str 1) 5.536 (N = 7) 5.398 (N = 7) 5.338 (N = 8) 5.266 (N = 7) 5.199 (N = 9) 5.175 (N = 10) 5.206 (N = 10)
MAE (Str 2) 5.903 (N = 10) 5.617 (N = 10) 5.397 (N = 10) 5.252 (N = 10) 5.191 (N = 10) 5.156 (N = 10) 5.159 (N = 10)
MAE (Str 3) 6.247 6.038 5.887 5.178 5.551 5.440 5.438
MAE (Str 4) 6.242 6.041 5.890 5.723 5.549 5.439 5.436
MAE (Str 5) 5.890 5.582 5.318 5.127 5.016 4.953 4.928

Bottom Length 18 20 22 24 26 28 30

MAE (Ori) 5.486 5.366 5.458 5.492 5.564 5.491 5.479
MAE (Str 1) 5.188 (N = 9) 5.170 (N = 9) 5.187 (N = 9) 5.228 (N = 7) 5.219 (N = 9) 5.250 (N = 9) 5.244 (N = 7)
MAE (Str 2) 5.155 (N = 10) 5.148 (N = 9) 5.153 (N = 10) 5.169 (N = 10) 5.196 (N = 10) 5.217 (N = 9) 5.239 (N = 9)
MAE (Str 3) 5.360 5.234 5.292 5.312 5.295 5.277 5.234
MAE (Str 4) 5.353 5.229 5.284 5.301 5.290 5.259 5.231
MAE (Str 5) 4.925 4.938 4.966 5.012 5.081 5.156 5.208

Table 7 shows the MAE results with different bottom lengths (from 4 to 30) using the original
LDL and the proposed SDM-LDL algorithms with all strategies. As can be seen clearly, when firstly
generating the age label distribution as triangle, the proposed SDM-LDL algorithm with Strategy 5
almost outperforms all the other strategies, especially when the bottom length is not very small; in
addition, similar to the conclusion from Gaussian-like age label distribution, vertically for every value
of the bottom length, MAEs of all the proposed strategies are smaller without exception, indicating the
validity and superiority of the proposed SDM-LDL in the case of triangle distribution. On the other
hand, Figure 7 can also be used as a corroboration of this conclusion: for almost all the ranges of the
bottom length, the fold line of Strategy 5 remains the lowest except from 4 to 8, where it only lags
behind the fold line of Strategy 1. Moreover, the proposed SDM-LDL algorithms with all strategies are
superior to the original LDL algorithm with all fold lines falling below the original line. As for the
triangle age label distribution, when the bottom length becomes greater, the MAE also has the trend of
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firstly decreasing sharply and then increasing slightly (or becoming stable). Moreover, the SDM-LDL
algorithms are more robust than the original LDL, especially for Strategies 1 and 2.
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Figure 7. The line chart (variation tendency) of MAEs with respect to different bottom lengths for the
original LDL algorithm and the proposed SDM-LDL algorithms with different strategies when age
label distribution is generated as triangle.

Table 8 shows the variation trends of MAEs with N from 2 to 10 using Strategies 1 and 2 of the
proposed SDM-LDL on the condition that age label distribution is generated as a triangle. For both
Strategies 1 and 2, small values of N (2–6) yield inferior performance against bigger values (7–10).
Particularly for Strategy 2, whatever the bottom length is, the best performance always happens when
N equals 9 and 10. As a conclusion, for Strategies 1 and 2, if the age label distribution is initially
generated as the triangle style, then it is better to allocate N a relatively big value (7–10) for better
estimation performance, especially for Strategy 2, where N should be given the value of 9 and 10.

Table 8. The impacts of different values of N (2–10) on MAEs using the proposed SDM-LDL algorithms
with Strategies 1 and 2 when age label distribution is generated as triangle (bottom lengths from 4 to
30; for every value of bottom length, the optimal MAEs are marked in bold).

Bottom Length 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MAE (Str 1)

N = 2 5.861 5.802 5.833 5.640 5.549 5.486 5.477 5.453 5.373 5.445 5.438 5.444 5.414 5.436
N = 3 5.656 5.646 5.692 5.524 5.456 5.402 5.402 5.385 5.358 5.395 5.398 5.409 5.364 5.403
N = 4 5.640 5.578 5.523 5.449 5.421 5.309 5.384 5.374 5.326 5.375 5.351 5.382 5.365 5.369
N = 5 5.553 5.463 5.444 5.338 5.324 5.302 5.300 5.293 5.247 5.289 5.276 5.304 5.324 5.326
N = 6 5.542 5.423 5.388 5.323 5.260 5.269 5.309 5.261 5.258 5.250 5.245 5.305 5.314 5.313
N = 7 5.536 5.398 5.341 5.266 5.217 5.229 5.258 5.248 5.207 5.199 5.228 5.250 5.261 5.244
N = 8 5.673 5.438 5.338 5.276 5.221 5.208 5.234 5.227 5.201 5.209 5.230 5.258 5.258 5.259
N = 9 5.774 5.437 5.344 5.275 5.199 5.181 5.237 5.188 5.170 5.187 5.234 5.219 5.250 5.268

N = 10 5.845 5.485 5.386 5.307 5.231 5.175 5.206 5.211 5.222 5.215 5.235 5.259 5.314 5.300

MAE (Str 2)

N = 2 6.071 5.888 5.838 5.663 5.554 5.485 5.483 5.451 5.371 5.443 5.439 5.444 5.416 5.434
N = 3 5.984 5.793 5.729 5.567 5.481 5.417 5.414 5.388 5.357 5.396 5.398 5.410 5.367 5.402
N = 4 5.964 5.743 5.634 5.496 5.456 5.339 5.391 5.374 5.319 5.375 5.353 5.383 5.366 5.368
N = 5 5.941 5.706 5.562 5.431 5.384 5.332 5.321 5.301 5.244 5.296 5.283 5.312 5.327 5.327
N = 6 5.929 5.673 5.496 5.370 5.330 5.294 5.313 5.265 5.246 5.251 5.244 5.301 5.308 5.309
N = 7 5.919 5.648 5.457 5.334 5.289 5.263 5.270 5.250 5.207 5.202 5.223 5.247 5.256 5.242
N = 8 5.912 5.640 5.438 5.309 5.252 5.229 5.229 5.218 5.184 5.194 5.207 5.236 5.237 5.241
N = 9 5.908 5.629 5.416 5.280 5.221 5.193 5.208 5.176 5.148 5.166 5.199 5.199 5.217 5.239

N = 10 5.903 5.617 5.397 5.252 5.191 5.156 5.159 5.155 5.151 5.153 5.169 5.196 5.242 5.243
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4.2.3. Multi-Label Distribution with Equal Description Degrees

As Figure 3c shows, in this situation, description degrees are evenly distributed to the
chronological age and the adjacent age labels. Thus, when initially generating age label distribution in
this style, the controlled variable is the number of age labels. Figure 8 shows the example of different
number of age labels: if the number of age labels is 5 and 7, then the description degrees for all involved
age labels are 1/5 and 1/7, respectively. In other words, when the number of age labels increases,
the description degrees for all involved age labels will reduce accordingly. In experiments, to explore
its influence for the estimation performance, the number of age labels is allocated as 3, 5, 7, ..., 15.
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a-3 a-2 a-1 a a+1 a+2 a+3

1/7

d y
x

Age
Label

(b)
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Figure 8. Different number of age labels when generating age label distribution as multi-label with
equal description degrees for the chronological age a. (a) number of age labels: 5; (b) number of age
labels: 7; (c) number of age labels: 9.

Table 9 demonstrates the estimation performance of all compared LDL-based algorithms with
different number of age labels (from three to 15) when initially generating age label distribution as
multi-label with equal description degrees. Again, all the proposed methods outcompete the existing
original LDL algorithm. In addition, when the number of age labels is small (3–7), Strategy 1 obtains
the best results; however, as the number of age labels gets bigger (9–15), Strategy 5 shows advantages
over the others in performance. Figure 9 also supports this argument: when the number of age labels
are small (3–7), the lowest fold line is Strategy 1; when the coordinates of the horizontal axes are
larger, the lowest line becomes Strategy 5. In the end, the fold lines of all methods tend to be stable.
In addition, Strategy 1 shows more robustness with the evidence of remaining the relatively low MAE
for a different number of age labels.

As for different N impacts on the final estimated age for Strategies 1 and 2, the conclusion is
the same as in the “Triangle distribution" part. Thus, the detailed experimental data are omitted
for simplicity.

Table 9. MAEs of the compared original LDL algorithm without decision-making strategy and the
proposed SDM-LDL algorithms with different strategies on the condition that age label distribution
is generated as multi-label with equal description degrees (number of age labels from 3, 5, 7, ... to
15; for Strategies 1 and 2, best results are shown in the table along with the value of N then; for every
number of age labels, the optimal MAEs are marked in bold).

Number of Labels 3 5 7 9 11 13 15

MAE (Ori) 6.312 5.998 5.830 5.700 5.698 5.732 5.690
MAE (Str 1) 5.541 (N = 5) 5.343 (N = 8) 5.219 (N = 7) 5.175 (N = 8) 5.169 (N = 7) 5.137 (N = 9) 5.139 (N = 9)
MAE (Str 2) 5.979 (N = 10) 5.638 (N = 10) 5.312 (N = 10) 5.219 (N = 10) 5.145 (N = 10) 5.127 (N = 10) 5.132 (N = 10)
MAE (Str 3) 6.242 5.952 5.742 5.645 5.540 5.537 5.530
MAE (Str 4) 6.245 5.957 5.737 5.650 5.542 5.548 5.528
MAE (Str 5) 5.974 5.626 5.263 5.143 5.017 5.002 5.009
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Figure 9. The line chart (variation tendency) of MAEs with respect to different number of age labels for
the original LDL and the proposed SDM-LDL with different strategies when age label distribution is
generated as multi-label with equal description degrees.

4.2.4. Overall comparison of the Proposed SDM-LDL Algorithms and Other Popular Algorithms

The preceding parts discussed the respective estimation results in detail when age label
distribution is initially generated by three different patterns, namely Gaussian-like, triangle and
multi-label with equal description degrees. In the following, these three patterns are compared as a
whole to see which one is the best choice when generating the age label distribution.

As can be apparently seen from Table 10, for almost all LDL-based methods, including original
LDL and the proposed SDM-LDL with different strategies, generating Gaussian-like age label
distribution yields highest precision and thus achieves best performance, followed by triangle
distribution; the worst choice is using multi-label distribution with equal description degrees.

Table 10. MAEs of the compared three different patterns in generating age label distribution
(the controlled variables in each pattern are traversed within the whole given range and best results are
reported; for every row in the table, the optimal MAEs are marked in bold).

Gaussian-Like Triangle Multi-Label with Equal Description Degrees

MAE (Ori) 5.320 5.366 5.69
MAE (Str 1) 5.159 5.170 5.137
MAE (Str 2) 5.127 5.148 5.127
MAE (Str 3) 5.112 5.178 5.530
MAE (Str 4) 5.089 5.229 5.528
MAE (Str 5) 4.920 4.925 5.002

Table 11 demonstrates the performance of proposed SDM-LDL algorithm with different strategies
compared with other existing popular facial age estimation algorithms [5,10,18,26,29–37] and the
conventional single classification methods Support Vector Machine (SVM) and k-Nearest Neighbors
(kNN). From the table, our proposed SDM-LDL with all strategies outperforms the original LDL;
when compared with other existing popular methods, SDM-LDL can also achieve relatively good or
even superior performance, which proves SDM-LDL’s validity and advantages.
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Table 11. MAEs of different facial age estimation algorithms.

Method MAE

SDM-LDL(Str 1) 5.137
SDM-LDL(Str 2) 5.127
SDM-LDL(Str 3) 5.112
SDM-LDL(Str 4) 5.089
SDM-LDL(Str 5) 4.920
Original LDL 5.32
Hierarchical Framework [29] 4.97
LBP Kernel Density Estimate [30] 5.09
Local radon Features [31] 6.18
Cumulative Attribute SVR [32] 4.67
Grassmann Manifold [33] 5.89
Hierarchical Model [34] 4.89
Ordinal Hyperplanes Ranker (OHRank) [18] 6.27
Shape-based age estimation [35] 6.2
Regression using a learned distance metric [36] 5.04
Bio-inspired Features [26] 4.77
Synchronized Submanifold Embedding [37] 5.21
Manifold Learning and Locally Adjusted Robust Regressor [5] 5.07
Facial Aging Patterns (AGES) [10] 6.77
SVM 7.25
kNN 8.24

5. Conclusions

This paper proposes a novel strategic decision-making algorithm with a series of strategies for
label distribution learning in facial age estimation. All strategies are specially designed to suit the
characteristics of aging problem. Comprehensive experiments for three different kinds of age label
distribution (Gaussian-like, triangle and multi-label with equal description degrees) prove the validity,
superiority and robustness of the proposed SDM-LDL algorithms against the original LDL and other
existing facial age estimation algorithms. In addition, the respective advantages and properties for
each strategy in SDM-LDL are summarized. Further experiments discover the performance’s variation
tendencies within each kind of age label distribution so that the most suitable values (or ranges) of
those uncertain variables are obtained.

In future work, we plan to expand our approach to one or two more larger-scale aging databases,
such as the MORPH Album 2 and FRGC databases, which contain many more facial images and
different age structures.
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