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Abstract: The conventional channel estimation methods based on a preamble for filter
bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) systems in
mobile-to-mobile sensor networks are inefficient. By utilizing the intrinsicsparsity of wireless
channels, channel estimation is researched as a compressive sensing (CS) problem to improve the
estimation performance. In this paper, an AdaptiveRegularized Compressive Sampling Matching
Pursuit (ARCoSaMP) algorithm is proposed. Unlike anterior greedy algorithms, the new algorithm
can achieve the accuracy of reconstruction by choosing the support set adaptively, and exploiting the
regularization process, which realizes the second selecting of atoms in the support set although the
sparsity of the channel is unknown. Simulation results show that CS-based methods obtain significant
channel estimation performance improvement compared to that of conventional preamble-based
methods. The proposed ARCoSaMP algorithm outperforms the conventional sparse adaptive
matching pursuit (SAMP) algorithm. ARCoSaMP provides even more interesting results than the
mostadvanced greedy compressive sampling matching pursuit (CoSaMP) algorithm without a prior
sparse knowledge of the channel.

Keywords: FBMC/OQAM; channel estimation; compressive sensing; sparse adaptive;
greedy algorithm

1. Introduction

Filter bank multicarrier(FBMC) techniques have drawn increasing attention from many
researchers [1–3]. In recent years,it has become a competitive alternative to the most famous and
accepted Orthogonal Frequency Division Multiplexing (OFDM) schemes, particularly in wireless
communication systems. As a potential candidate multicarrier modulation scheme for next generation
wireless communication networks [4–8], filter bank multicarrier with offset quadrature amplitude
modulation (FBMC/OQAM) is a particular type of FBMC. It utilizes time frequency localization
(TFL) well and it employs a property pulse shaping based filter [9] bank, which has a theoretically
higher spectral efficiency [10,11]. FBMC/OQAM also demonstrates robustness to frequency offset
and Doppler spread. Besides, CP is not needed in FBMC/OQAM systems, which can provide higher
data rates than conventional OFDM [12]. FBMC/OQAM system has its root in the pioneering works
of Chang [13] and Saltzberg [14] who introduced multicarrier techniques over two decades ago.
However, with the conventional OFDM transmission complex-valued symbols in a given symbol
rate, FBMC/OQAM transmits real-valued symbols at the symbol rate of two times. The subcarrier
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functions are only orthogonal in the real field, therefore, an inherent imaginary interference among
neighboring subcarriers and symbols is always existed.

The intrinsic inter-carrier/inter-symbol interference will complicate channel estimation processing.
Hence, the existing OFDM channel estimation methods cannot be directly applied in FBMC/OQAM
systems. Many training schemes and related estimation methods have been recently researched in
literature [15–18]. The two classical preamble-based methods are interference approximation method
(IAM) [15,16] and interference cancellation method (ICM) [17,18]. They can be summed up as aiming at
avoiding the intrinsic interference or constructively utilizing it to improve the estimation performance.
However, it has been proved that the performance of estimator utilizing preamble-based method is
inefficient since it is difficult to fully avoid intrinsic interference.

A number of efforts have been devoted to improving the performance of channel estimation.
A coded auxiliary pilot channel estimation method for FBMC/OQAM has been proposed [19]. The
method is using coded auxiliary pilot symbols to eliminate the imaginary interference on each scatted
pilot. Semi-blind and blind symbol timing estimation methods for FBMC/OQAM system have also
been studied [20,21]. However, these schemes have a higher computational complexity, and the
phase ambiguity may occur and need longer observation data, which, to some extent, limits the
availability. A more attractive approach to obtain well channel estimation performance is the recently
researched compressive sensing (CS) method [22–27], where the wireless channels in practice tend
to exhibit a sparse multipath structure. Some channel estimation based on CS methods for OFDM
systems have been studied in the past few years [28–31]. However, there are only few literatures
about CS-based channel estimation for FBMC/OQAM systems. An improved IAM that reconstructs
channel impulse response by utilizing the orthogonal matching pursuit (OMP) algorithm based on
channel estimation for FBMC/OQAM has been proposed in [32]. It is proved that the OMP [33] based
method can get remarkable performance improvement compared with the conventional preamble
based method. For the most greedy CS algorithms, such as OMP and compressive sampling matching
pursuit (CoSaMP) [34], the sparsitylevel of the channel is given as a priori information. However, the
sparsity of the channel is usually unknown in most practical application scenarios.

In this paper, a novel channel estimation method named sparse adaptive regularized compressive
sampling matching pursuit (ARCoSaMP) is proposed for FBMC/QOAM transmission networks. To the
best of our knowledge, sparse adaptive CS-based channel estimation approach has not yet been studied
for FBMC/OQAM systems. The advantage of the proposed ARCoSaMP method is that it does not
need priori channel sparse information. Furthermore, the proposed algorithm is based on the idea of
regularization and the backtracking mechanism that attaches to CoSaMP algorithm, which removes the
unreliable support and refines the current approximation iteratively. Simulations verify the proposed
channel estimation scheme performs better than the conventional SAMP algorithm and the proposed
algorithm can obtain an approximate performance compared with the CoSaMP algorithm.

The purpose of this paper is to propose an efficient sparse adaptive channel estimation method.
We would like to convince the reader with the potential of the proposed method as a high performance
channel estimator.

The remainder of this paper is organized as follows. The FBMC/OQAM transmission system
model is described in Section 2. Section 3 reviews some conventional channel estimation methods
(including preamble-based methods and conventional CS recovery algorithms) and presents the
proposed scheme. In Section 4, the performances of the proposed scheme associated with the
conventional preamble-based and CS-based schemes are compared and simulation results are shown.
Finally, Section 5 gives the concluding remarks.
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2. System Model

In FBMC/OQAM systems, the transmitted signal is given in the following form [15]:

xptq “
N´1
ÿ

m“0

ÿ

n
dm,ngm,nptq (1)

where dm,n are real valued OQAM symbols, and gm,nptq denotes the synthesis basis, which can be
obtained by the prototype function gptq in the following way:

gm,nptq “ gpt´ nτ0qei2πmF0tejφm,n (2)

where N is an even number of sub-carriers, the sub-carrier spacing of F0 “ 1{T0 “ 1{2τ0, and φm,n an
additional phase term. T0 denotes OFDM symbol duration, and τ0 denotes the time offset between the
real and imaginary parts of the OQAM symbols. m is the sub-carrier index and n is the OQAM symbol
time index.

The design of pulse g enables the associated sub-carrier functions gm,n to be orthogonal in the
real field,

<t
@

gm,n
ˇ

ˇgp,q
D

u “ <t
ÿ

t
gm,nptqg˚p,qptqu “ δm,pδn,q (3)

where δi,j denotes Kronecker delta, δm,p “ 0 if m ‰ p and δm,p “ 1 if m “ p. We can find that, even
in the distortion-free channel and with perfect time and frequency synchronization, some purely
imaginary inter-carrier interference at the output still be existed, thus, we set interference weights

xgyp,q
m,n “ ´j

@

gm,n
ˇ

ˇgp,q
D

(4)

where
@

gm,n
ˇ

ˇgp,q
D

denotes a purely imaginary term for pm, nq ‰ pp, qq.
Through the channel, with an additive noise, the received signal can be expressed as

rptq “
M´1
ÿ

m“0

ÿ

n
dm,ngm,nptqHm,nptq ` ηptq (5)

with

Hm,nptq “

τmax
ż

0

hpt, τqe´2jπmF0τdτ (6)

where hpt, τq denotes the channel impulse response, and Hm,nptq denotes a complex response of the
channel at instant t. Figure 1 shows an implementation diagram of the FBMC/OQAM system.
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Figure 1. Implementation diagram of the FBMC/OQAM system [35]. 
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Figure 1. Implementation diagram of the FBMC/OQAM system [35].

3. Compressive Sensing Based Preamble Channel Estimation

In this section, we present a novel sparse adaptive channel estimation method based on CS
for FBMC/OQAM systems. We first review the two classical preamble structures and CS theory
for channel estimation. We briefly introduce the conventional CS signal recovery algorithms, OMP,
CoSaMP and SAMP [36]. Then, we propose the new CS algorithm. Along with the algorithm process,
we present numerical evidence showing that our proposed algorithm provides attractive results.

3.1. Preamble Structures

In FBMC/OQAM, the preamble pilots exist in all sub-carriers, the preamble sequence is
superimposed on the data. Figure 2a,b show the IAM and ICM preamble structures. Assuming
that a pilot symbol Pm0,n0 is transmitted at a prior known position pm0, n0q to the receiver, the LS
estimation is

Ĥm0,n0 “
rm0,n0

Pm0,n0

“ Hm0,n0 ` j
ÿ

pm0,n0q‰pm,nq

dm,n

Pm0,n0

xgym0,n0
m,n (7)

where j
ř

pm0,n0q‰pm,nq

dm,n
Pm0,n0

xgym0,n0
m,n is imaginary interference.
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3.2. CS Theory for Channel Estimation

CS theories [37–39] state that a sparse signal h can be recovered steadily from linear measurement

y “ Φh` η (8)

where Φ is the measurement matrix, and denotes the matrix with Mˆ N; here, M ! N, and η denotes
the noise, by minimizing the `1-norm of h. The prerequisite is that Φ satisfies the Restricted Isometry
Property (RIP), that is, for all K-sparse signal h,

1´ δK ď
‖ Φh ‖2

2

‖ h ‖2
2

ď 1` δK (9)

where δK is the RIP parameter, 0 ă δK ă 1.
The signal rptq in Equation (5) can be given in matrix form as [31]

R “ XH `Φ (10)

where X “ diagpxp0q, xp1q, ..., xpN ´ 1qq, R “ rrp0q, rp1q, ..., rpN ´ 1qsT , and H denotes the multipath
channel frequency response sampling value, H “ FNLh. FNL denotes a L row discrete Fourier
Transform matrix, L is the channel length; and Φ denotes the noise matrix, with zero mean and
variance of σ2, and the matrix with N ˆ N.

We set P for the number of pilots, ϕ “
`

es1 , es2 , . . . , esP

˘

denotes a pilot selection matrix with
Pˆ N, and ϕ is utilized to seeking the pilots position from the whole sub-carriers. si pi “ 1, 2, . . . , Pq
indicate the ith pilot’s position. Rewrite Equation (10) as

RP “ XPFph` ZP (11)

where RP “ ϕR is received pilot signal; in this paper, RP is the LS estimation channel values, ΦP “ ϕΦ,
with P column vectors. FP “ ϕFNL, and XP “ ϕXϕT denotes a diagonal matrix, where the diagonal
elements are pilot values.

Let us assume that F “ XPFP, rewrite Equation (11) as

RP “ Fh` ZP (12)

where h denotes sparse multipath channel response, and we can obtain RP and F in the transmission
process. Then, we can use the CS recovery algorithm to recover sparse signal h.

3.3. Adaptive Regularized Compressive Sampling Matching Pursuit Algorithm

3.3.1. CS Algorithms Overview

A number of CS recovery algorithms have been proposed. One of the popular kinds of recovery
algorithms is based on the iterative greedy pursuit. OMP, CoSaMP and SAMP belong to this class.
According to whether the sparse K is known prior or not, this class of algorithms also can be divided
into two types.

OMP and CoSaMP are the first type of algorithms with the sparsity K is known prior. For the OMP
algorithm, in each iteration, the atom maximizes its inner product with the residual signal. However,
the results of each iteration may be suboptimal. CoSaMP is proven to be the most advanced greedy
algorithm. CoSaMP introduces the idea of backtracking that reduces the chance of error accumulation,
selects 2K coordinates and utilizes an iterative checking to refine them, and overcomes the defects of
OMP, so that the atoms could not be changed once deposited in the candidate set.
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In practical applications, the second type of algorithms has better prospects than the first. SAMP
is the second type of algorithm. The sparsity of signal is not required in SAMP as an a priori condition,
and SAMP attempts to evaluate the sparsity of source signal by iteration.

3.3.2. Proposed Algorithm

CoSaMP algorithm can reconstruct source signals with high efficiency. However, the algorithm
requires the prior knowledge of sparsity. SAMP algorithm provides a way for blind sparse
reconstruction. Motivated by the advantages in the two greedy algorithms and associated with
a regularized process, we propose a new greedy algorithm, named sparse adaptive regularized
compressive sampling matching pursuit (ARCoSaMP).

The proposed algorithm can automatically adjust the selected atoms to reconstruct the unknown
sparsity signal in the iterative process. A similar backtracking theory of CoSaMP is utilized to
reconstruct partial information of the target signal in the iterative process. An iterative process is
divided into multiple stages, the proposed algorithm adaptively estimates the sparsity with steps
through stage by stage and set it to the length of the initial support, then gets the accurate target signal
by regularization screening of atoms in every stage. The algorithm basic steps are shown below:

Input: measurement matrix Φ, the measurement vector y, the initial step size s
Output: a K-sparse approximation ĥ of the channel h

(1) Initialization: residual r “ y, iterative it “ 1, initial step s “ 1, stage “ 1, index value set
I “ φ, J “ φ.

(2) Set a threshold value ε, if the reconstruction ĥ satisfies ‖ h´ ĥ ‖2 ď ε, and stop the iteration;
otherwise, continue to Step 3. The deviation norm 2 is chosen as the basis of the iterative
termination. In the simulation, ε “ 10´7.

(3) Calculate the correlation coefficient u by the Equation (13), which calculates the absolute value of
inner product between residual r and each atom of measurement matrix Φ, and deposit the index
values corresponding the 2s maximum values from u to J:

u “
 

uj
ˇ

ˇuj “
ˇ

ˇ

@

r, Φj
D
ˇ

ˇ , j “ 1, 2, ¨ ¨ ¨, N
(

(13)

(4) Regularization: using Equation (14) to regularize

|upiq| ď 2 |upjq| for all i, j P J0 (14)

choose J0 with the maximal energy ‖ u|J0
‖

2
, add the set J0 to the index set I, and update the

support set ΦI .
(5) Use Equation (15) to get ĥ, according to the backtracking mechanism, take atoms corresponded to

the largest s elements of ĥ to I, update the support set ΦI :

ĥ “ argmin‖ y´ΦIh ‖2 (15)

(6) Update the residual
rnew “ y´ΦI ĥ (16)

(7) Make a comparison between the update residual and the last iteration residual;
if ‖ rnew ‖2 ě ‖ rn´1 ‖2, stage “ stage ` 1, s “ s ¨ stage, return to Step 3; otherwise,
r “ rnew, n “ n ` 1, and return to Step 2.

The selection of the initial step is very important, and if the step size is too large, there may an
overestimating problem. In the proposed algorithm, the initial step size is 1, which is less than the
reality of the sparsity K until the final stage. Iteration loop follows the CoSaMP and regularization to
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identify support sets in the target signal. When s ă K, it is necessary to take an effective mechanism for
stage switching. In the proposed algorithm, we trigger the stage switching between two consecutive
iterations when the relevant residual improvement begins to disappear.

4. Simulation Results

In this section, simulation results are presented to compare the performance between convention
LS, OMP, CoSaMP, SAMP and the proposed algorithm. The evaluations are mainly based on bit
error rate (BER) and mean square error (MSE). The MSE is plotted with respect to the signal to noise
ratio (SNR). The estimation of multipath delay profile and percentage recovered of the algorithms are
also given. We take modulation as 4OQAM, the number of subcarriers in FBMC/OQAM systems is
N “ 2048. The square root raise cosine filter is employed in FBMC/OQAM, the roll off factor of the
filter is one, and length of the filter is 4T0 We adopt the IEEE 802.22 channel with sampling frequency
6.86 MHz as a simulation channel. The channel profile is shown in Table 1. The channel sparse K
is 6. The channel coding adopts convolutional code (k “ 7 with g1 “ p133qo, g2 “ p171qo and code
rate = 1/2).

Table 1. IEEE 802.22 channel profile.

Multi-Paths 1 2 3 4 5 6

Delay(µs) 0 3 8 11 13 21
Power(dB) 0 ´7 ´15 ´22 ´24 ´19

Figure 3 is a snapshot of the original and estimated delay profiles of IEEE 802.22 channel. It shows
that the proposed ARCoSaMP for FBMC/OQAM successfully detect the channel with sixmultipaths
and SNR = 8 dB. The proposed scheme not only precisely estimates the multipath delay values but
also exactly estimates the relative power of the multipath.
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We also investigate the probability of recovery for a fixed signal sparsity K “ 6 among the
above-mentioned algorithms. Figure 4 depicts the probability curves of Gaussian sparse signal.
It can be seen that ARCoSaMP outperforms the other three algorithms in the range of M “ 15 to
M “ 35. ARCoSaMP also requires the least measurements for exact recovery. When the measurements
M ą 35, CoSaMP provides better recovery probability than SAMP. With the measurement increasing,
ARCoSaMP provides recovery probability approximate to that in CoSaMP without prior knowledge
of sparsity.
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Figure 5a,b shows the BER and MSE performance comparisons when IAM preamble structure
is adopted in FBMC/QOAM systems. In Figure 5a, it is obvious that CS based channel estimation
methods can obtain significantly BER improvement compared with conventional least squares (LS)
method. Careful observation shows that CoSaMP outperforms other algorithms in the whole SNR
range considered. CoSaMP can obtain about 4.2 dB gain compared with LS when BER of 10´2 is
considered. ARCoSaMP performs slightly better than OMP, and has a gain of 0.3 dB compared with
SAMP, when the BER of about 10´4 is considered. Figure 5b plots the MSE performance comparisons.
We can see that CoSaMP still performs the best MSE performance in the five schemes. It enjoys a
significant SNR gain compared to those of LS, when at the same MSE level. ARCoSaMP is slightly
worse performing than CoSaMP, but well performing than OMP and SAMP. It should be noted that
ARCoSaMP provides BER performance comparable to CoSaMP algorithm without the prior known of
sparsity and exceeds the conventional SAMP algorithm. In addition, we compare simulation time of
SAMP and ARCoSaMP, where both of the two algorithms do not need to know the prior knowledge of
sparisity. The result shows that ARCoSaMP needs less simulation time than SAMP, with ARCoSaMP
simulation time is 30.1824 s and SAMP simulation time is 32.8995 s.

Figure 6a,b depict the BER and MSE performance comparisons when ICM preamble structure
is adopted in FBMC/QOAM systems. We can find that the trends of both BER and MSE curves are
the same as that in Figure 5. Preamble structure ICM based channel estimation outperforms the IAM
scheme. ICM-LS provides significant BER improvement compared with IAM-LS. ICM-CS has slight
BER improvement compared with IAM-CS but obvious improvement in MSE performance. CoSaMP
algorithm obtains the best BER and MSE performances. In Figure 6a, ARCoSaMP gives performance
that are about 0.2 dB better than SAMP method, when BER = 10´2. CoSaMP can obtain about
1.2 dB gain compared with LS when BER of 10´2 is considered. In Figure 6b, the OMP, CoSaMP and
ARCoSaMP, the three curves, are very close. ARCoSaMP and OMP provide similar MSE performance,
and CoSaMP is less well performing than ARCoSaMP. The simulation times of ICM-SAMP and
ICM-ARCoSaMP are less than IAM-SAMP and IAM-ARCoSaMP. ICM-ARCoSaMPstill needs less time
than ICM-SAMP.
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As shown in the simulation results, it can be verified that the CS-based channel estimation
approach can provide more effective performance than conventional LS methods in FBMC/OQAM
systems. The proposed ARCoSaMP based channel estimation method can achieve similar performance
than CoSaMP without a prior sparse knowledge of the channel and has better channel estimation
performance than SAMP with lesser time complexity.

5. Conclusions

In this paper, we have studied the preamble channel estimation based on compressive sensing
for FMBC/OQAM systems under an IEEE 802.22 sparse multipath channel. A new sparse adaptive
regularized compressive sampling matching pursuit algorithm for channel estimation is proposed,
which is associated with adaptive, regularized and CoSaMP. The proposed algorithm can accurately
estimate the multipath components. Simulation results demonstrate that a CS based preamble approach
can achieve significantly better BER and MSE performance than conventional LS methods. The
proposed scheme outperforms SAMP for channel estimation with lesser time complexity and can
provide approximate results than the state-of–the-art CoSaMP algorithm without a prior sparse
knowledge of the channel. It has been verified that the ARCoSaMP scheme is an efficient method for
sparse adaptive channel estimation in FBMC/OQAM transmission networks.
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