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Abstract: Since it is impossible for surveillance personnel to keep monitoring videos from a multiple
camera-based surveillance system, an efficient technique is needed to help recognize important
situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance
system, an object detected in a camera has a different shape in another camera, which is a critical
issue of wide-range, real-time surveillance systems. In order to address the problem, this paper
presents an object retrieval method by extracting the normalized metadata of an object-of-interest
from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three
steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic
scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated
3D human model provides the foot-to-head direction information that is used as the input of
the automatic calibration of each camera. The normalized object information is used to retrieve
an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata.
Experimental results show that the 3D human model matches the ground truth, and automatic
calibration-based normalization of metadata enables a successful retrieval and tracking of a human
object in the multiple-camera video surveillance system.

Keywords: video surveillance; video retrieval; automatic calibration; metadata descriptor; homology;
color clustering; object tracking

1. Introduction

Multiple camera-based video surveillance systems are producing a huge amount of data every
day. In order to retrieve meaningful information from the large data set, normalized metadata should
be extracted to identify and track an object-of-interest acquired by multiple, heterogeneous cameras.

Hampapur et al. proposed a real-time video search system using video parsing, metadata
descriptors and the corresponding query mechanism [1]. Yuk et al. proposed an object-based video
indexing and retrieval system based on object features’ similarity using motion segmentation [2].
Hu et al. proposed a video retrieval method for semantic-based surveillance by tracking clusters
under a hierarchical framework [3]. Hu’s retrieval method works with various queries, such
as keywords-based, multiple object and sketch-based queries. Le et al. combined recognized
video contents with visual words for surveillance video indexing and retrieval [4]. Ma et al.
presented a multiple-trajectory indexing and retrieval system using multilinear algebraic structures in
a reduced-dimensional space [5]. Choe et al. proposed a robust retrieval and fast searching method
based on a spatio-temporal graph, sub-graph indexing and Hadoop implementation [6]. Thornton et al.
extended an existing indexing algorithm in crowded scenes using face-level information [7]. Ge et al.
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detected and tracked multiple pedestrians using sociological models to generate the trajectory data
for video feature indexing [8]. Yun et al. presented a visual surveillance briefing system based on
event features, such as object’s appearances and motion patterns [9]. Geronimo et al. proposed
an unsupervised video retrieval system by detecting pedestrian features in various scenes based
on human action and appearance [10]. Lai et al. retrieved a desired object using the trajectory
and appearance in the input video [11]. The common challenge of existing video indexing and
retrieval methods is to summarize infrequent events from a large dataset generated using multiple,
heterogeneous cameras. Furthermore, the lack of normalized object information during the search
prevents from accurately identifying the same objects acquired from different views.

In order to solve the common problems of existing video retrieval methods, this paper presents
a normalized metadata generation method from a very wide-range surveillance system to retrieve
an object-of-interest. For automatic scene calibration, a three-dimensional (3D) human model is first
generated using multiple ellipsoids. Foot-to-head information from the 3D model is used to estimate
the internal and external parameters of the camera. Normalized metadata of the object are generated
using the camera parameters of multiple cameras. As a result, the proposed method needs neither
a special calibration pattern nor a priori depth measurement. The stored metadata can be retrieved
using a query, such as size, color, aspect ratio, moving speed and direction.

This paper is organized as follows. Section 2 describes the 3D human model using multiple
ellipsoids. A human model-based automatic calibration algorithm and the corresponding metadata
retrieval method are respectively presented in Sections 3 and 4. Section 5 summarizes the experimental
results, and Section 6 concludes the paper.

2. Modeling Human Body Using Three Ellipsoids

A multiple camera-based surveillance system must be able to retrieve the same object in different
scenes using an appropriate query. However, non-normalized object information results in retrieval
errors. In order to normalize the object information, we estimate camera parameters using automatic
scene calibration and then estimate a projective matrix using camera parameters obtained by scene
calibration. After obtaining normalized information, the object in the two-dimensional (2D) image is
projected to a 3D world coordinate using the projection matrix. Existing camera calibration methods
commonly use a special calibration pattern [12], which extracts feature points from a planar pattern
board and then estimates the camera parameters using a closed-form solution. However, the special
calibration pattern-based algorithm has a limitation because the manual calibration of multiple cameras
at the same time is impractical and inaccurate. In order to solve this problem, we present a multiple
ellipsoid-based 3D human model using the perspective property of 2D images, and the block diagram
of the proposed method is shown in Figure 1.

Figure 1. Block diagram of the proposed human retrieval method.

Let X f = [X f Yf 1]T be the foot position on the ground plane and x f = [x f y f 1]T the corresponding
foot position in the image plane, all in the homogeneous coordinate. Given x f , X f can be computed
using the homography as:

X f = H−1x f (1)

where H = [p1 p2 p3]
T is the 3× 3 homography matrix, and pi for i = 1, 2, 3 are the first three columns

of the 3× 4 projection matrix P that is computed by estimating camera parameters. We then generate



Sensors 2016, 16, 963 3 of 22

the human model with height h on the foot position using three ellipsoids, including head Qh, torso Qt

and leg Ql , in the 3D world coordinate. The 4× 4 matrix of the ellipsoid is defined as [13]:
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where Qk, k ∈ {h, t, l}, respectively, represent the ellipsoid matrices of head, torso and leg. RX , RY and
RZ respectively represent the radii of ellipsoids in X, Y and Z coordinates and [Xc Yc Zc]T the center of
the ellipsoids. To fit the model to real humans, we set the average heights of children, juveniles and
adults as 100 cm, 140 cm and 180 cm, respectively. The ratio of the head, torso and leg is set to 2:4:4.

Each ellipsoid is back-projected to match a real object in the 2D space. The back-projected
3× 3 ellipse, denoted as Ck, by projection matrix P is define as:

C−1
k = PQ−1

k PT (3)

where C represents the ellipsoid matrix, such as uTCu = 0. Figure 2 shows the result of the
back-projected multiple ellipsoids at different positions. In each dotted box, three different ellipsoids
have the same height.

Figure 2. Human models on the projected multiple ellipses with different sizes and locations.

The multiple ellipsoid-based human model is generated according to the position and height of
an object from multiple cameras. The first step of generating the human model is to perform shape
matching in the image. To match the shape, the proposed algorithm detects a moving object region by
modeling the background using the Gaussian mixture model (GMM) [14] and then normalizes the
detected shape. Since the apparent shape differs by the location and size of the object, the normalized
shape is represented by a set of boundary points. More specifically, each boundary point is generated
where a radial line from the center of gravity meets the outmost boundary of the object. If the angle
between adjacent radial lines is θ, the number of boundary points is N = 360◦/θ. The shapes of
an object and the corresponding human model are respectively defined as:

B =
[

j1 j2 · · · jN

]
, and Mi =

[
oi

1 oi
2 . . . oi

N

]
(4)

where B represents the shape of the object, i ∈ {children, juvenile, adult}, Mi the shape of the human
model and N the number of normalized shapes. In this work, we experimentally used θ = 5◦, which
results in N = 72. The matching error between B and Mi is defined as:

ei =
N

∑
l=1

(jl − oi
l)

2 (5)
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As a result, we select an ellipsoid-based human model with the minimum matching error ei
to three human models, including child, juvenile and adult. If the matching error is greater than
a threshold Te, the object is classified as nonhuman. If the threshold Te is too big, nonhuman objects
are classified as human. On the other hand, very small Te makes human detection fail. For that reason,
we chose Te = 8 for the experimentally best human detection performance. The shape matching results
of the ellipsoid-based human model appropriately fit real objects, as shown in Figure 3, where moving
pedestrians are detected and fitted by the ellipsoid-based human model. The ellipsoid-based fitting
fails when a moving object is erroneously detected. However, the rest of the correct fitting results can
compensate for the occasional failure.

(a) (b) (c) (d)

Figure 3. Matching results of the human models: (a) an example of the fitting failure in the second
human from the right; (b–d) the corrected fitting results.

3. Human Model-Based Automatic Scene Calibration

Cameras with different internal and external parameters produce different sizes and velocities
in the 2D image plane for the same object in the 3D space. In order to identify the same object in
a multiple camera-based surveillance system, detection and tracking should be performed in the 3D
world coordinate that is not affected by camera parameters. Normalized physical information of
an object can be extracted in two steps: (i) automatic scene calibration to estimate the projective matrix
of a camera [15–17]; and (ii) projection of the object into the world coordinate using the projective
matrix. The proposed automatic calibration algorithm assumes that the foot-to-head line of a human
object is orthogonal to the xy plane and parallel to the z-axis in the world coordinate.

The proposed human model-based automatic scene calibration consists of three steps:
(i) extraction of foot and head candidate data to compute foot-to-head homology; (ii) homology
estimation using foot-to-head inlier data; and (iii) camera calibration by estimating vanishing points
and lines using the foot-to-head homology.

3.1. Foot-To-Head Homology

In the Euclidean geometry, two parallel lines do not meet anywhere. On the other hand, in the
projective geometry, two parallel lines meet at a point called the vanishing point. A line connecting
two vanishing points is called the vanishing line, as shown in Figure 4.

Figure 4. Vanishing lines and vanishing points.
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Existing single image-based methods to estimate vanishing points and lines often fail if there are
no line components in the background image [18,19]. In order to overcome the limit of background
generation-based methods, a foreground object-based vanishing point detection method was recently
proposed [15–17]. Since a general surveillance system has a camera installed at a higher position
than the ground to view down objects, foot-to-head lines of a standing person at various positions on
the ground, which is equivalent to the XY plane in the world coordinate, converge to a single point
below the ground plane, as shown in Figure 5, where each position of the person is represented by a
line segment with the bottom foot and the top head points. Extended foot-to-head lines meet at the
vertical vanishing point V0 below the ground level. The line connecting head points of Positions 1 and
2 meets another line connecting foot points of the same positions at p1. Likewise, p2 is determined by
Positions 1 and 3. Based on the observation, three non-collinear positions of the person determine the
horizontal vanishing line VL and the vertical vanishing point V0.

Figure 5. Estimation of vanishing lines and vanishing points.

The vanishing line and point are used to estimate the camera projection matrix. More specifically,
let X̄ = [X Y Z 1]T be a point in the homogeneous world coordinate; its projective transformation
becomes x̄ = PX̄, where P is the projection matrix. Given x̄ = [x̄ ȳ z 1]T , the corresponding point
in the image plane is determined as x = x̄/z, and y = ȳ/z. Since we assume that the XY plane is
the ground plane, the foot position in the world coordinate is X f = [X Y 0]T and the projected foot
position is x̄ f = H f X̄ f , where X̄ f = [X Y Z 1]T . In the same manner with the XY plane moving to the
head plane, we have x̄h = HhX̄h, where both H f and H f are 3× 3 matrices. Since a head position is
projected onto the corresponding foot position, such as X̄ f = X̄h,

x̄h = Hh f x̄ f , and x̄ f = H f h x̄h (6)

where both Hh f = HhH−1
f and H f h = H f H−1

h are 3× 3 matrices and Hh f = H−1
f h . Given the coordinate

of a foot position in the ground plane, the corresponding head position in the image plane can be
determined using Hh f . H = H f h is defined as the foot-to-head homology, and can be determined by
computing the projection matrix P using the vanishing point, vanishing line and the object height Z.

3.2. Automatic Scene Calibration

The automatic scene calibration process consists of three steps: (i) extraction of foot and head
inlier data; (ii) estimation of foot-to-head homology using the extracted inlier data; and (iii) detection
of vanishing line and points. For the first step of the scene calibration, a human object is detected using
the Gaussian mixture model. The detected object region goes through a morphological operation for
noise-free labeling [20]. The inlier candidate of the foot and head of the labeled object is selected on
two conditions: (i) a foot-to-head line should be inside a finite region with respect to the y-axis; and
(ii) the foot-to-head line should be a major axis of an ellipsoid that will approximate the human object.
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In order to obtain the angle, major axis and minor axis of the labeled human object, ellipse fitting
is performed. More specifically, the object shape is defined by the external boundary as:

S =
[
s1 s2 . . . sN

]T
(7)

where si = [xi yi]
T , for i = 1, . . . , N, represents the i-th boundary point and N the number of total

boundary points. Using the second moments [21], the angle of shape S is computed as:

θ =
1
2

arctan
(

2µ1,1

µ2,0 − µ0,2

)
(8)

where:

µp,q =
N

∑
i=1

(xi − xc)
p(yi − yc)

q (9)

and:

xc =
1
N

N

∑
i=1

xi, and yc =
1
N

N

∑
i=1

yi (10)

In order to compute the major and minor axes of the ellipsoid, we first define the minimum and
maximum inertial moments respectively as:

Imin =
N

∑
i=1
{(xi − xc) cos θ − (yi − yc) sin θ}

Imax =
N

∑
i=1
{(xi − xc) sin θ − (yi − yc) cos θ}

(11)

The major and minor axes are determined using Imin and Imax as:

Al =

(
4
π

)1/4 ( I3
max

Imin

)1/8

, and As =

(
4
π

)1/4
(

I3
min

Imax

)1/8

(12)

The aspect ratio of the object is defined as r = Al/As, and a candidate foot and head vector is
defined as c = [x f y f xh yh]

T . c is computed using θ as:

x f = (ymax − yc)
cos θ

sin θ
+ xc, and y f = ymax

xh = (ymin − yc)
cos θ

sin θ
+ xc, and yh = ymin

(13)

where ymax and ymin respectively represent the maximum and minimum of yi, for i = 1, . . . , N.
The set of inlier candidates C = [c1 c2 · · · cL]

T is generated from ci’s that satisfy four conditions:
(i) r1 < r < r2; (ii) θ1 < θ < θ2; (iii) there exist si whose distance from (x f , y f ) is smaller than d1, and
sj whose distance from (xh, yh) is smaller than d1; and (iv) there are no pairs of ci’s whose distance
is smaller than d2. In the first condition, r1 = 2 and r2 = 5 are used, and in the second condition,
θ1 = 80◦ and θ2 = 100◦ are used for the experimentally best result. In the third and fourth conditions,
d1 = 3 and d2 = 10 are respectively used.

Since the inlier candidate C still contains outliers, a direct computation of foot-to-head homology
H results in a significant error. To solve this problem, we remove outliers in c using a robust random
sample consensus (RANSAC) algorithm [22]. H can be determined using four inlier data since its
degree of freedom is eight. Let a = [h11 h12 h13 h21 h22 h23 h31 h32]

T be a vector whose eight elements
are the first, row-ordered eight components of H; then, a can be determined by solving:
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[
x f y f 1 0 0 0 −x f xh −y f yh
0 0 0 x f y f 1 −x f yh −y f yh

]
a =

[
xh
yh

]
(14)

Since Equation (14) generates two linear equations given a candidate vector, four candidate
vectors can determine H. In order to check how many inlier data support the estimated H, the head
position of each candidate vector is estimated using H, which is determined by the corresponding foot
position. The estimated head position is compared to the real head position, and the candidate vector is
considered to support H if the error is sufficiently small. This process repeats a given number of times,
and candidate vectors that support the optimal H become inliers. The inliers generate Equation (14).
Since many inliers generally produce more than eight equations, vector a, which is equivalent to matrix
H, is finally determined using the pseudo inverse. Although outliers can be generated by occlusion,
grouping and non-human objects, the correct inlier data can be estimated while the process repeats
and candidate data are accumulated.

Given the estimated foot-to-head homology H, arbitrarily chosen two foot positions generate
corresponding two head positions. Two lines connecting the two pairs of feet and head positions meet
at the vanishing point. More specifically, a line in the 3D coordinate can be represented using a vector
l = [a b c]T , which satisfies the linear equation:

ax + by + c = 0 (15)

where the line coefficients {a, b, c} are determined using two points p = [px py]T and q = [qx qy]T as:

a = py − qy

b = px − qx

c = (py − qy)qx + (px − qx)qy (16)

If two lines l1 and l2 meet at the vanishing point V0, the following relationship is satisfied:

V0 = l1 × l2 (17)

In order to determine the vanishing line, three candidate vectors {c1, c2, c3} are needed. Two lines
connecting both feet and head pairs connecting c1 and c2 meet at a point, say r = [rx ry]T .
Likewise, another point s = [sx sy]T is determined using c2 and c3. The line connecting two points
r and s is the vanishing line VL. Given V0 and VL, camera parameters can be estimated as shown in
Figure 6.

3.3. Camera Parameter Estimation

Internal parameters include focal length f, principal point [cx cy]T and aspect ratio a. Assuming
that the principal point is equal to the image center, a = 1, and there is no skew, the simplified internal
camera parameters are given as:

K =

 f 0 cx

0 f cy

0 0 1

 (18)

External parameters include panning angle α, tilting angle θ, rolling angle ρ, camera height with
respect to the z-axis and translations in the x and y directions. Assuming that α = 0, x = y = 0,
the camera projection matrix is obtained by the multiplication of the internal and external parameter
matrices as:

P = K

cos ρ − sin ρ 0
sin ρ cos ρ 0

0 0 1


1 0 0

0 cos ρ − sin ρ

0 sin ρ cos ρ


1 0 0 0

0 1 0 0
0 0 1 −hc

 (19)
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(a) (b) (c)

Figure 6. Foot-to-head homology estimation: (a) inlier data; (b) ground truth of the homology;
and (c) the estimated homology.

The vertical vanishing point with respect to the z-axis v0 = [vx vy 1]T provides the following
constraint together with a point [x y 1]T on the horizontal vanishing line:

vT
0 ω

x
y
1

 = 0 (20)

where w = K−TK−1 represents the image of the absolute conic (IAC). Substitution of Equation (18)
into Equation (20) yields [23]:

vxx +
vy

a2 + f 2 = 0 (21)

which demonstrates that the horizontal vanishing line can be determined by the vertical vanishing
point and the focal length and that rotation parameters can be computed from vx, vy, f as [8]:

ρ = arctan
−avx

vy
, and θ = arctan 2

(√
a2v2

x + v2
y − a f

)
(22)

where a = 1.
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The proposed algorithm can compute f, ρ and θ by estimating the vanishing line and point using
Equations (21) and (22). The camera height hc can be computed using the real height of an object in the
world coordinate hw, vanishing line vL and vanishing point v0:

hw

hc
= 1−

d(ph, VL)d(p f , V0)

d(p f , VL)d(ph, V0)
(23)

where p f and ph respectively represent the foot and head positions of the i-th object and d(a, b) the
distance between points a and b. In the experiment, hw = 180 cm is used for the reference height.

4. Indexing of Object Characteristics

After object-based multiple camera calibration, the metadata of an object should be extracted
given a query for the normalized object indexing. In this work, queries of an object consist of a
representative color in the HSV color space, horizontal and vertical sizes in meters, moving speed in
meters per second, the aspect ratio and moving trajectory.

4.1. Extraction of Representative Color

The color temperature of an object may change when a different camera is used. In order to
minimize the color variation problem, the proposed work performs color constancy as a pre-processing
step to compensate for the white balance of the extracted representative color.

4.1.1. Color Constancy

If we assume that an object is illuminated by a single light source, the estimated color of the light
source is given as:

e =

Re

Ge

Be

 =
∫

ω
e(λ)s(λ)c(λ)dλ (24)

where e(λ) represents the light source, s(λ) the reflection ratio of the surface, c = [R(λ) G(λ) B(λ)]T

the camera sensitivity function and w the wavelength spectrum, including the red, green and
blue colors.

The proposed color compensation method is based on the shades of gray method [24,25].
The input image is down-sampled to reduce the computational complexity, and simple low pass
filtering is performed to reduce the noise effect. The modified Minkowsky norm-based color with the
consideration of local correlation is given as:

(∫
( f σ(x))pdx∫

dx

)1/p

= ke (25)

where f (x) represents the image defined on x = [x y]T , f σ = f ∗ Gσ the filtered image by the Gaussian
filter Gσ and p the parameter of the Minkowski norm. A small p makes the uniform distribution
of weights between measurement values, and vice versa. An appropriate choice of p prevents the
light source from being biased to a specific color channel. In the experiment, p = 6 was used for the
experimentally best results for multiple camera color compensation. As a result, scaling parameters
{wR, wG, wB} can be determined using the estimated color of the light source. The corrected color is
given as:

f c
corr = fc/ω3

c , for c ∈ {R, G, B} (26)

Figure 7 shows the results of color correction using three different cameras. Color correction can
also minimize the inter-frame color distortion, since it estimates the normalized light source.
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(a)

(b)

Figure 7. Results of color correction: (a) input images captured by three different cameras; and
(b) color-corrected images using the shades of gray method.

4.1.2. Representative Color Extraction

The proposed color extraction method uses the K-means clustering algorithm. An input RGB
image is transformed to the HSV color space to minimize the inter-channel correlation as:

H = arctan

√
3(G− B)

(R− G) + (R− B)
, S = 1− min(R, G, B)

V
, V =

R + G + B
3

(27)

Let jn = [Hn Sn Vn]T be the HSV color vector of the n-th pixel, for n = 1, . . . , N, where N is the
total number of pixels in the image. Initial K pixels are arbitrarily chosen to make a set of mean vectors
{g1 · · · gK}, where gi, for i = 1, . . . , K, represents the selected HSV color vector. For every color vector,
if jn is the closest to gi, jn has the label Ji as:

Ji = {jn|d(jn, gi) ≤ d(jn, gb), for b = 1, · · · , K} (28)

Each mean vector gi is updated by the mean of jn’s in the cluster Ji, and the entire process repeats
until there are no more changes in gi. Figure 8 shows the results of K-means clustering in the RGB and
HSV color spaces with K = 3.

(a) (b)

Figure 8. K-means clustering results in the (a) RGB and (b) HSV color spaces.
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The fundamental problem of the K-means clustering algorithm is the dependency on the initial set
of clusters, as shown in Figure 9. Since a single try of K-means clustering cannot guarantee extracting
the representative colors, each frame generates candidate colors while tracking an object, and only
the top 25% colors in the sorted candidates are finally selected. As a result, the representative colors
of the object are correctly extracted even with a few errors. Figure 10 shows objects with extracted
representative colors.

(b)

(a) (c)

Figure 9. Results of K-means clustering to extract representative colors of the same object using
different sets of initial clusters: (a) input image; (b) different results of K-means clustering; and (c) the
sorted colors of (b).

(a) (b) (c) (d)

Figure 10. Selection of the representative colors from the candidate colors computed by the K-means
clustering algorithm: (a) input image with two people; (b) the result of color selection; (c) an input
image with a vehicle; (d) the result of color selection.

4.2. Non-Color Metadata: Size, Speed, Aspect Ratio and Trajectory

When multiple cameras are used in a video surveillance system, object size and speed are
differently measured by different cameras. In order to extract the normalized metadata of an object,
physical object information should be extracted in the world coordinate using accurately-estimated
camera parameters.

4.2.1. Normalized Object Size and Speed

We can compute the physical object height in meters if the projection matrix P and foot and head
coordinates are in the image plane. In order to extract the physical information of an object in the world
coordinate, the foot position on the ground plane X̃ f = H−1 x̃ f should be computed using Equation (1).
On the other hand, the y coordinate in the image plane is computed as:

y =
P2,1 · X + P2,2 ·Y + P2,3 · Ho + P2,4

P3,1 · X + P3,2 ·Y + P3,3 · Ho + P3,4
(29)

where P represents the projection matrix and H0 the object height. Using Equation (29), H0 can be
computed from y as:

Ho =
(P2,1 − P3,1 · y)X + (P2,2 − P3,2 · y)Y + P2,2 − P3,2 · y

P3,3 · y− P2,3
(30)
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The width of an object W0 is computed as:

Wo =
∣∣Xo − X′o

∣∣ ·Wi (31)

where X0 represents the foot position in the world coordinate, X′0 the foot position that corresponds
to the one-pixel shifted foot position in the image plane and Wi the object width in the image plane.
Figure 11 shows the results of normalized object size estimation. As shown in the figure, the estimated
object height does not change while the object is moving around.

(a) (b)

Figure 11. Size estimation results of the same object that is (a) far from the camera; (b) close to
the camera.

The object speed S0 can be computed as:

So =

√
(Xt

o − Xt′
o )

2
+ (Yt

o −Yt′
o )

2 (32)

where (Xt
0, Yt

0) represents the object position in the world coordinate at the t-th frame and (Xt′
0 , Yt′

0 )

the previous object position by one second. However, the direct estimation of S0 from the object foot
position is not robust because of the object detection error. To solve the problem, the Kalman filter can
compensate for the speed estimation error. Figure 12 shows the result of the object speed estimation
with and without using the Kalman filter.

(a)

(b)

Figure 12. Results of object speed estimation: (a) without using the Kalman filter and (b) using the
Kalman filter.
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4.2.2. Aspect Ratio and Trajectory

The aspect ratio of an object is simply computed as:

Ro = Hi/Wi (33)

where Hi and Wi respectively represent the object height and width in the image plane.
Instead of saving the entire trajectory of an object, the proposed system extracts object information

using four positions in the trajectory. The object trajectory is defined as:

To =
[

x1
o , y1

o , x2
o , y2

o , x3
o , y3

o , x4
o , y4

o

]T
(34)

where [x0 y0]
T is the starting position, [x1 y1]

T the 1/3 position, [x2 y2]
T the 2/3 position and [x4 y4]

T

the ending position.

4.3. Unified Model of Metadata

Five types of metadata described in Sections 4.1 and 4.2 should be unified into a single data model
to be saved in the database. Since object data are extracted at each frame, median values of size, aspect
ratio and speed data are saved at the frame right before the object disappears. Three representative
colors are also extracted using the K-means clustering algorithm with the previously-selected set
of colors.

Table 1. Object metadata model.

Name Description

ID Object number

File name Occurrence video file name

Frame
Start frame

Start frame, end frame and duration of the frameEnd frame
Duration

Trajectory

First position

First position, 1/3 position, 2/3 position, last position
and moving distance

Second position
Third position
Last position

Moving distance

Height (mm)
Min height

Minimum, median and maximum height of the objectMedian height
Max height

Width (mm)
Min width

Minimum, median and maximum width of the objectMedian width
Max width

Speed (m/s)
Min speed

Minimum, median and maximum speed of the objectMedian speed
Max speed

Aspect ratio
Min aspect ratio

Minimum, median and maximum aspect ration of the objectMedian aspect ratio
Max aspect ratio

Color
First color

First, second and third HSV color valueSecond color
Third color

Area size
Min area

Minimum, median and maximum size of the areaMedian area
Max area

The object metadata model, including object features, serial number and frame information,
is shown in Table 1. As shown in the table, duration, moving distance and area size are used to sort
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various objects. For the future extension, minimum and maximum values of object features are also
saved in the metadata.

5. Experimental Results

This section summarizes the experimental results of the proposed object-based automatic scene
calibration and metadata generation algorithms. To evaluate the performance of the scene calibration
algorithm, Table 2 summarizes the variation of object mean values captured in seven different scenes.
The experiment extracts normalized physical information of a human object with a height of 175 cm in
various scenes. As shown in Table 2, camera parameters were estimated and corrected at each scene.
Object A appears 67 times, and object height is estimated every time.

Table 2. Performance evaluation of scene auto-calibration.

Input Scenes Estimated and Corrected
Camera Parameters Scenes with A Number of

Appearances

<Scene_1>

f = 613
θ = −111◦

ρ = 182◦

hc = 2660 mm

25

<Scene_2>

f = 632
θ = −118◦

ρ = 180◦

hc = 6450 mm

9

<Scene_3>

f = 643
θ = −104◦

ρ = 180◦

hc = 3096 mm

2

<Scene_4>

f = 667
θ = −117◦

ρ = 173◦

hc = 10, 331 mm

3

<Scene_5>

f = 644
θ = −107◦

ρ = 183◦

hc = 2399 mm

15

<Scene_6>

f = 688
θ = −108◦

ρ = 179◦

hc = 2672 mm

10

<Scene_7>

f = 532
θ = −109◦

ρ = 180◦

hc = 3035 mm

3
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Figure 13 shows that the average object height is 182.7 cm with a standard deviation 9.5 cm.
Since the real height is 175 cm, the estimation error is 7.5 cm, because the reference height hw was set to
180 cm. This result reveals that the proposed calibration algorithm is suitable to estimate the relative
height rather than the absolute value.

Figure 13. Variation of the object height in each frame.

Figure 14 shows the experimental results to search an object using the color query, including
red, green, blue, yellow, orange, purple, pink, brown, white, gray and black. Table 3 summarizes the
classification performance using the object color. The rightmost column has the number of total objects
and the correctly classified ones in the parenthesis. The experiment can correctly classify 96.7% of the
objects on average.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14. Results of the object search using representative colors. (a) Red; (b) green; (c) blue; (d) yellow;
(e) orange; (f) purple; (g) white; (h) black.

Figure 15 shows eight test videos with estimated camera parameters. Figure 16 shows the camera
calibration results of eight test videos on the virtual ground plane and ellipsoids of a height of 180 cm.
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Table 3. Result of the classification based on the color.

Red Green Blue Yellow Orange Purple Pink White Gray Black Total Object

Red 112 0 0 0 2 0 4 0 0 0 129 (95%)
Green 0 6 1 0 0 0 0 0 0 0 7 (86%)
Blue 0 1 96 0 0 0 0 0 4 3 104 (92%)

Yellow 0 0 0 7 0 0 0 1 0 0 8 (88%)
Orange 2 0 0 3 88 0 0 1 0 0 94 (94%)
Purple 0 0 0 0 0 2 0 0 0 0 2 (100%)
Pink 1 0 0 0 1 0 12 0 0 0 14 (86%)

White 0 0 0 0 0 0 0 79 5 0 84 (94%)
Gray 0 0 0 0 0 0 0 1 93 2 96 (97%)
Black 0 0 4 0 0 0 0 0 23 1237 129 (98%)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Test video files with estimated camera parameters: (a,b) two images of the first scene
captured by two different camera parameters; (c,d) two images of the second scene captured by
two different camera parameters; (e,f) two images of the third scene captured by two different camera
parameters; (g,h) two images of the fourth scene captured by two different camera parameters.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16. Result of camera calibration on the virtual three-dimensional grid on: (a,b) two images of the
first scene captured by two different camera parameters; (c,d) two images of the second scene captured
by two different camera parameters; (e,f) two images of the third scene captured by two different
camera parameters; (g,h) two images of the fourth scene captured by two different camera parameters.
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Figure 17 shows the experimental results of the object search using the size query, including
children (small), juveniles (medium) and adults (large). Figure 17a shows that the proposed algorithm
successfully searched children smaller than 110 cm, and Figure 17b,c shows the similar results with
a juvenile and adult, respectively. Table 4 summarizes the classification performance using the object
size. The right most column has the number of total objects and the correctly-classified ones in the
parenthesis. The experiment can correctly classify 95.4% of the objects on average.

(a)

(b)

(c)

Figure 17. Results of the object using the object size. (a) Small size; (b) medium size; (c) large size.

Table 4. Result of the classification based on the object size.

Small Medium Large Total Object

Small 35 11 3 49 (71%)
Medium 6 185 21 212 (87%)

Large 0 17 993 1010 (98%)

Figure 18 shows the experimental results of the object search using the aspect ratio. The horizontal
query is used to find vehicles; the normal query is used to find motorcycles and groups of people;
and the vertical query is used to find a single human object. Table 5 summarizes the classification
performance using the aspect ratio. The rightmost column has the number of total objects and the
correctly-classified ones in the parenthesis. The experiment can correctly classify 96.9% of the objects
on average.

Table 5. Result of the classification based on the aspect ratio.

Horizontal Normal Vertical Total Object

Horizontal 38 3 5 46 (83%)
Normal 1 54 7 62 (87%)
Vertical 2 21 1140 1163 (98%)
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(a)

(b)

(c)

Figure 18. Results of the object search using the object ratio. (a) Horizontal; (b) normal; (c) vertical.

Figure 19 shows the experimental results of the object search using the speed queries, including
slow, normal and fast. Table 6 summarizes the search results using the object speed with the
classification performances. As shown in Table 6, more than 95% of the objects are correctly classified.

Tables 3–6 show the accuracy and reliability of the proposed algorithm. More specifically, the
color-based searching result shows relatively high accuracy with various searching options. For that
reason, the object color can be the most important feature for object identification.

(a)

(b)

(c)

Figure 19. Results of the object search using the object speed. (a) Slow; (b) normal; (c) fast.
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Table 6. Result of the classification of the speed-based search.

Slow Normal Fast Total Object

Slow 96 37 0 133 (72%)
Normal 2 976 5 983 (99%)

Fast 0 9 146 155 (94%)

Figure 20 shows the experimental results of the object search using user-defined boundaries to
detect a moving direction.

(a) (b)

Figure 20. Results of the object search using the moving direction. (a) Line setting; (b) the results of
the search.

Figure 21 shows the results of the proposed algorithm for person re-identification in the wild
(PRW) dataset [26]. As shown in the figure, the objects’ colors and trajectories are correctly classified.

(a) (b) (c) (d)

Figure 21. Results of the proposed algorithm using a public dataset [26]: (a–d) four frames in the test
video with re-identified people.

Figure 22 shows the processing time of the proposed algorithm. To measure the processing time,
a personal computer is used with a 3.6-GHz quad-core CPU and 8 GBytes of memory. As shown
in Figure 22, it takes 20–45 ms to process a frame, and the average processing speed is 39 frames
per second (FPS).
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Figure 22. Processing time of the proposed algorithm.

6. Conclusions

This paper presented a multiple camera-based wide-range surveillance system that can efficiently
retrieve objects-of-interest by extracting normalized metadata of an object acquired by multiple,
heterogeneous cameras. In order to retrieve a desired video clip from a huge amount of recorded
video data, the proposed system allows a user to query various features, including the size, color,
length ratio, moving speed and direction. The first step of the algorithm is the auto-calibration to
extract normalized physical data. The proposed auto-calibration algorithm can estimate both the
internal and external parameters of a camera without using a special pattern or depth information.
Image data acquired by the appropriately-calibrated camera provides normalized object information.
In the metadata generation step, a color constancy algorithm is first applied to the input image
as preprocessing. After a set of representative colors are extracted using K-means clustering, the
physical size and speed of an object-of-interest is estimated in the world coordinate using the camera
parameters. The metadata of the object are then generated using the size ratio and motion trajectories.
As a result, an object-of-interest can efficiently be retrieved using a query that combines physical
information from big video data recorded by multiple, heterogeneous cameras. Experimental results
demonstrated that the proposed system successfully extracts the metadata of the object-of-interest
using three-dimensional (3D) human modeling and auto-calibration steps. The proposed method can
be applied to a posteriori video analysis and retrieval systems, such as a vision-based central control
system and a surveillance system.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/7/963/s1.
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