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Abstract: In this paper, a smart face liveness detector is proposed to prevent the biometric system
from being “deceived” by the video or picture of a valid user that the counterfeiter took with
a high definition handheld device (e.g., iPad with retina display). By analyzing the characteristics of
the display platform and using an expert decision-making core, we can effectively detect whether
a spoofing action comes from a fake face displayed in the high definition display by verifying the
chromaticity regions in the captured face. That is, a live or spoof face can be distinguished precisely
by the designed optical image sensor. To sum up, by the proposed method/system, a normal optical
image sensor can be upgraded to a powerful version to detect the spoofing actions. The experimental
results prove that the proposed detection system can achieve very high detection rate compared to
the existing methods and thus be practical to implement directly in the authentication systems.

Keywords: spoofing action detector; non-intrusive anti-spoofing face liveness detection; probabilistic
neural network; biometric authentication system cheat; display features analysis

1. Introduction

Biometrics technology is a unique approach for recognizing human features/behaviors based
on physical and chemical properties. The most frequently seen approaches are based on fingerprints,
human face, iris, hand geometry, dorsal vein, signature, voice, and DNA. In recent years, due to
the multiple convenient qualities (quick, remote detection ability, non-contact), face detection has
been widely applied to access control, monitoring and focusing systems for the verification of the
subject’s identity and behavior. With the widespread adoption of biometric technology, the techniques
of spoofing have become increasingly advanced with biometric information being forged or collected
to deceive or bypass the verification of a biometric system [1]. It is thus crucial for the biometric system
to identify the forged characteristics.

Regarding human face detection technology, it is rather easy for the imposter to collect forged
data by using social networks or digital camera. A valid identity can be fabricated by using any of
the following three methods: (1) having a photo of a valid user; (2) having a video of a valid user; or
(3) having a 3D facial model or mask. For example, Figure 1 demonstrates a normal spoofing case
where a face recognition system is cheated and accessed by the spoofed face image, displayed in a high
resolution retina display, rather than an actual filmed face image.

The face spoofing detection technology has developed fast in recent years [2–4]. Some of the used
methods include dynamic detection [5,6], static detection, spatial frequency or time frequency [7,8], and
two dimensional or three dimensional characteristics classifications [9]. For example, taking the display
monitor feature into consideration, Peixoto et al. [10] and the extended technologies [11] show that the
brightness of the LCD screen will cause the edge of the images to become blurry. A recessive reflection
coefficient characteristic has been raised and the image analysis using histogram equalization has been
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included. Using the human face database from NUAA and Yale to test the result, it was revealed that
such characteristics classification reduced 50% of detection errors based on high definition photos from
the NUAA database. For the Yale database, the successful rate of face spoofing detection using LCD
screen was approximately 65%.
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Figure 1. Spoofing the biometric system with retina identification technology. Demonstration of
spoofing the biometric system with retina resolution display, (a) the actual filmed image, and (b) image
reconstruction by an iPad with retinal display.

As stated in the article by Allan da Silva Pinto [12], a visual ridge frequency analysis based on
the Fourier spectrum analysis was established to determine if the image comes from the LED or LCD
screens. On the other hand, Jiangwei Li [13] used Fourier spectrum analysis to detect the changes in
the facial movement sequences. Hyung-Keun Jee [14] used the Hamming distance to measure the
movement of the eyes to verify a live face. W. Bao, and H. Li, et al. [15] verified the differences between
the three dimensional human faces and the two dimensional images based on the different optical
flow. W. R. Schwartz [16] utilized the spatial and time messages of the low-level feature descriptors to
differentiate between the authentic faces and the spoofed faces, while J. W. Li [17] used multiple Gabor
responses to detect the blinking of the eyes and verified the differences between authentic human faces
and the spoofed faces in the two dimensional images. Moreover, Chin-Lun Lai [18] used an intuitive
concept to detect the fake face when sufficient display borderlines are found.

The differences of the methods mentioned above are the efficiency of the processing and the
success rate of the detection. In this paper, a novel face spoofing solution is proposed to prevent the
biometric system from being “deceived” by the video or picture of a valid user that the counterfeiter
took with a high definition handheld device (e.g., iPad with retina display). To efficiently and accurately
detect the spoofed faces, a method that can identify the forged faces rapidly based on the information
of a single image is adopted. Since most of the high definition display monitors use an LED as backlight
module, it is observed that LED emits light by first exciting the phosphor with high-power short
wave blue light and the low-power yellow light is then generated and converts a portion of the blue
light into white light. Based on this premise, it is possible to detect the display monitor by verifying
the chromaticity regions on the image and establishing an expert decision-making model with a
probabilistic neural network (PNN) approach. Thus, face spoofing detection can be achieved as well.
By analyzing the characteristics of the display monitor and the learning ability of the neural network
and adopting the tandem identification technique, the successful rate of face spoofing detection can
exceed 95% in a single shot image, which has an advantage over the previous ones. Thus, the reliability
of the corresponding biometric identification system will be greatly improved.

This paper is organized as follows: Section 2 describes the design concept and principal theory
of the proposed spoofing detection method, while the designed algorithm is described in Section 3.
Section 4 states the experimental methods and the test results as well as the discussions. Finally, the
conclusion and future work are presented in the last part.
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2. Design Concept and Principal Theory

2.1. Features of Current LED-Backlight Display

To understand the design concept of the proposed method, some basic principles about
LED/LCD display should be revealed first. The light emitted from a light-emitting diode (LED)
has a specific wavelength and thus a specific color. The latter depends on the LED’s semiconductor
material. LED semiconductors consist of combinations of elements such as phosphides or arsenides.
There are various combinations, each of which releases varying amounts of energy according to the
semiconductor material’s band gap. When charge carriers are recombined, photons are emitted
according to specific discrete energy levels. This specifies the particular light color. For example, blue
light is produced if a high level of energy is released and red light is produced if a lower level of
energy is emitted. Thus, monochromatic (single color) light is produced. The following is LEDs special
feature: Each LED light color is limited to a very narrow range of wavelength (keyword: dominant
wavelength) which accordingly only represents a specific light color. The only spectrum that cannot be
produced directly from the chip is the white light spectrum, since white light represents a mixture of
all light colors.

The current procedure for producing white light is the principle of photoluminescence. A thin
phosphorus layer is applied on top of a blue LED. The LED’s shortwave energy-rich blue light, as
illustrated in Figure 2, stimulates the phosphorus layer to light up and it emits lower-energy yellow
light. Part of the blue light is thus transformed into white light. The white light’s color tone can vary
with the metering of the phosphorus colorant. Different white tones, such as warm white, neutral
white or cold white are thus produced.
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and the color space of the hue is shown in Figure 3.
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Figure 3. The color space of hue vector.

To find the implicit difference between the natural image and LED displayed image, all types
of colors have been presented on the high definition display monitors and compared with the color
swatches to see the hue changes. As shown in Figures 4 and 5, the captured images have been
processed. Both saturation and value have been set at 1 to eliminate their influences. After presenting
the outcome in RGB, it was revealed that both black and white colors appeared to have a blue hue on
the high definition display monitors.
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Based on the experimental result, it is assumed that white light is generated due to the stimulation
of blue light LED and both black and white colors are presented by white light. As a result, both colors
tend to be bluish. These observed results, however, offer an explicit cue for detecting a LED monitor in
the captured image, and thus provide us with implicit evidence of fake faces. That is, observing the
dark and bright regions of a face image, it can be concluded that a fake face is detected if a high ratio
of blue color region is present.

3. The Designed Algorithms

In this section, the fake face detection procedure is proposed, the corresponding function blocks
include face features positioning, color space transform and analysis, and expert decision model by
PNN structure, and these algorithms are described in the following subsections.

3.1. Face Features Positioning and Preprocessing

First of all, the face is targeted using normal face detection algorithms such as AdaBoost filter.
Once the face is found, a total of 68 characteristic points are positioned on each of the subjects’ faces
by adopting active shape model (ASM) technology [19]. One of the famous algorithm to find the
characteristic points are STASM which is a C++ software library. As shown in Figure 6a, these
characteristics helped us to capture the region of interest (ROI), direction and the position of the face.
To unify the subsequent analyses, the captured face image was normalized into the resolution of
320 ˆ 320 as shown in Figure 6b. After examining a number of face images, it is found that the colors
white and black tend to appear in eyebrows, eyes, nose and mouth (as shown in Figure 7). These face
parts were thus selected as identifiable characteristics.

Sensors 2016, 16, 1136 5 of 15 

 

Based on the experimental result, it is assumed that white light is generated due to the 
stimulation of blue light LED and both black and white colors are presented by white light. As a 
result, both colors tend to be bluish. These observed results, however, offer an explicit cue for 
detecting a LED monitor in the captured image, and thus provide us with implicit evidence of fake 
faces. That is, observing the dark and bright regions of a face image, it can be concluded that a fake 
face is detected if a high ratio of blue color region is present. 

3. The Designed Algorithms 

In this section, the fake face detection procedure is proposed, the corresponding function blocks 
include face features positioning, color space transform and analysis, and expert decision model by 
PNN structure, and these algorithms are described in the following subsections. 

3.1. Face Features Positioning and Preprocessing 

First of all, the face is targeted using normal face detection algorithms such as AdaBoost filter. 
Once the face is found, a total of 68 characteristic points are positioned on each of the subjects’ faces 
by adopting active shape model (ASM) technology [19]. One of the famous algorithm to find the 
characteristic points are STASM which is a C++ software library. As shown in Figure 6a, these 
characteristics helped us to capture the region of interest (ROI), direction and the position of the face. 
To unify the subsequent analyses, the captured face image was normalized into the resolution of 320 
× 320 as shown in Figure 6b. After examining a number of face images, it is found that the colors 
white and black tend to appear in eyebrows, eyes, nose and mouth (as shown in Figure 7). These face 
parts were thus selected as identifiable characteristics. 

(a) (b)

Figure 6. Face image with the region of interest (ROI) being identified and captured by the STASM 
algorithm. (a) Capturing the region of the face with STASM; and (b) Converting the image into the 
resolution of 320 × 320. 

 
Figure 7. The interest face features of eyes, nose, mouths, and eyebrows. 

3.2. Color Space Transform and Analysis over ROI 

Once the interest face regions (eyes, nose, mouse, and eyebrows) are segmented, the HSV color 
space transformation is conducted on these ROI image parts, as shown in Figure 8. By comparing the 
original and reproduced (by LED display) images, it is found that there exists a big difference in the 
hue distributions of the authentic image and the spoofed image. This is described as follows.  
  

1

2

3

4

5
6 7 8

9

10

11

12

13

1415
16

1718
19 20 21 22 23

24 25
2627282930

313233343536373839 404142434445464748

495051

52
535455

565758
59

60
6162636465

6667686970 71 72
7374757677

Figure 6. Face image with the region of interest (ROI) being identified and captured by the STASM
algorithm. (a) Capturing the region of the face with STASM; and (b) Converting the image into the
resolution of 320 ˆ 320.
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3.2. Color Space Transform and Analysis over ROI

Once the interest face regions (eyes, nose, mouse, and eyebrows) are segmented, the HSV color
space transformation is conducted on these ROI image parts, as shown in Figure 8. By comparing the
original and reproduced (by LED display) images, it is found that there exists a big difference in the
hue distributions of the authentic image and the spoofed image. This is described as follows.
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After examining the subject’s nose and mouth, it is revealed that both parts tend to be reddish in
terms of the average hue. As shown in Figure 3 of hues diagram, the distribution of the color blue
was from 0.75 to 0.5 while the color red was from 0 to 0.18 and 0.825 to 1. It was also discovered from
Figure 8 that most of the authentic images’ average hues fell within the red region while the spoofed
images’ average hues fell within the blue region during the high saturation state. As the saturation
decreased, the average hues of the authentic images moved toward the blue region while that of the
spoofed images moved toward the red region. The phenomenon presented in Figure 4 suggested that,
as the saturation increases, blue LED—in an attempt to excite more white lights—enhances accordingly.
If the saturation decreases, the blue light weakened gradually. The result is as shown in Figure 9.
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On the other hand, in terms of the eyes and the eyebrows, it was discovered (from the Figure 10)
that almost all of the authentic images fell outside of the blue region. Affected by the glasses, some
authentic images of the eyes fell within the blue region. The spoofed images tended to gather around
the blue region during medium saturation state.
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Figure 10. The relation between the saturation and the average hue of the authentic image (left) and
the spoofed image (right) using eyes (blue) and eyebrows (red) as examples. (a) authentic image; and
(b) spoofed image.

The above description about the hue distributions for real and fake faces can also be approved by
observing Figures 11 and 12. That is, the hue of the spoofed images tended to reach the blue region.
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3.3. Expert Decision Making by PNN Model

To identify the aforementioned complex characteristics information, the result analysis was
adopted to establish an expert decision-making model with probabilistic neural network (PNN) being
used as a simulation tool. PNN is a supervised network architecture proposed by D. E. Specht [20]
which can rapidly learn from a set of training data. With enough training data at hand, it had been
proved that PNN converges asymptotically to the Bayesian classifier. The most important task within
the Bayes classification rule is to estimate the probability density function (PDF)— fApxq—of each class
A from a set of data.

fApxq “ Ppx|Aq (2)
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where x is the input data to be classified. Parzen [21] has proved that any smooth and continuous PDF
can be asymptotically approached by a set of predictors. On the other hand, Specht in 1990 proposed
a special estimate function for Equation (2) as follows:

fApxq “
1

p2πqp{2σp

1
nt

nt
ÿ

i“1

expr
´px´ xAiq

t
px´ xAiq

2σ2 s (3)

where p is the dimension of input data, nt is the number of training data, xAi it the i-th training data in
class A, while σ denotes the smoothing parameter.

It is observed from Equation (3) that fApxq is the sum of nt multivariate Gaussian distributions
and its center points are each of the training data. The sum is not restricted to be Gaussian function.
This predictor applies to the general classification questions. Therefore, Specht proposed the PNN
architecture to implement the estimation of fApxq. Within the PNN, the training data and the data to
be classified are often normalized into the vectors of the unit length. Thus, we have

px´ xAiq
t
px´ xAiq “ ´2pxtxAi ´ 1q (4)

After that, Equation (4) can be simplified as the form

fApxq “
1

p2πqp{2σp

1
nt

nt
ÿ

i“1

expr
pxtxAi ´ 1q

2σ2 s (5)

PNN is a three layered feed forward neural network (as shown in Figure 13). The first layer is
the input layer that receives the input data. The hidden layer in the middle is the pattern layer which
stores all the training data. Every neuron of the summation layer corresponds to each possible class.
The neuron is actually the fApxq and the Equation (5) is implemented by the summation layer. If and
only if the training data i belongs to class j, a connection between the pattern layer neuron i and the
summation layer j exists. Within the network training stage, the training data are transferred to the
pattern layer separately. The input data x to be classified is then being classified as the class with the
maximum summation value fApxq. This is the output of the WTA (Winner-Take-All) neuron.
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After completing the PNN training, the accuracy of its estimation depends on the adjustment
of the smoothing parameter σ. The users have to try different σ within a certain range and select
the generalized accuracy that can achieve the optimal result. Specht thus proposed another adaptive
method [22] which assigned a single σ to each input neuron (or input variable). Each σ has been
fine-tuned during the testing stage and those with the optimal classification result will be chosen.
This task can be completed by adopting genetic algorithm. Specht further discovered that the input
variables with larger genetic σ value have less influence on the predictor PDF. After repeatedly



Sensors 2016, 16, 1136 10 of 15

adjusting each σ value with adaptive method, the variables that are less influential to the predictor
PDF can be eliminated. Such a mechanism can be further applied on the selection of the features and
the reduction of the dimensions of the features.

4. Experiment Methods, Results and Discussions

The proposed system can determine the true or false aspects of a captured face image. The algorithms
developed were programmed in C and executed under the Win7 OS platform. A lot of authentic photos
taken in different environments have been garnered for this experiment and the webcam was used to
collect the spoofed images which are displayed on the LED displays. The experimental equipment
adopted in this paper include Olympus E-PL5 16.10 megapixel digital camera, Logitech 2M pixels
webcam C920, and Samsung Galaxy Tab Pro with 2560 ˆ 1600 resolution display. The control variables
used in this experiment can be summarized in Table 1, each control variable region is divided into
six rectangle sub-regions which are then used as the PNN input vectors. Therefore, 72 feature vectors
are fed into the input layer of PNN.

Table 1. The control variables description for training vectors.

Independent Variables

Glasses: if the subject wears glasses

Saturation of the left eye: the average saturation of the left eye’s image

Chrominance of the left eye: the average chrominance of the left eye’s image (within
the eye’s region)

Saturation of the right eye: the average saturation of the right eye’s image

Chrominance of the right eye: the average chrominance of the right eye’s image
(within the eye’s region)

Saturation of the left eyebrows: the average saturation of the left eyebrows’ image

Chrominance of the left eyebrows: the average chrominance of the left eyebrows’
image (within the eyebrows’ region)

Saturation of the right eyebrows: the average saturation of the right eyebrows’ image

Chrominance of the right eyebrows: the average chrominance of the right eyebrows’
image (within the eyebrows’ region)

Saturation of the nose: the average saturation of the nose image (within the region of
the nose)

Chrominance of the nose: the average chrominance of the nose image (within the
region of the nose)

Saturation of the mouth: the average saturation of the mouth image (within the region
of the mouth)

Chrominance of the mouth: the average chrominance of the mouth image (within the
region of the mouth)

Dependent Variable Determined Result: if the image is authentic

The training of PNN applied in this paper adopted the PNN classification simulation of
Matlab2014a. A total of 2277 true human face samples from MUCT database and the corresponding
generated 3265 fake faces, some of which are shown in Figure 14, across all races, facial directions and
chrominance have been classified into different categories including the authentic images without
glasses, authentic images with glasses, spoofed images without glasses and spoofed images without
glasses. These face samples are further divided into two sets: the training set and the testing set.
The training set includes 500 real and 485 fake face samples, while the testing set includes 1777 real
and 2780 fake face samples. The training set data are used as the input of PNN to learn the hidden I/O
relationship. The NEWPNN module was then employed to simulate the neural network. To improve
the training performance, those training vectors corresponding to the wrong detection regions detected
by the STASM function are removed from the training set.
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After calculating all 4557 testing samples inversely, a total of 3496 samples were identified correctly
and the other 1061 were misidentified. To discuss the results in more detail, 628 real faces within
1777 real faces are recognized as fake, while there are 433 fake faces within 2780 spoofed face images
are recognized as real. The false rejection rate (FRR) of the system is 0.353 where it is observed that
face samples with blue eyes more often resulted in false reject error. On the other hand, the false accept
rate (FAR) is 0.156 and hence the average error ERave (including FAR and FRR) is 0.23. The system
error rate,ER, in spoofing detection system can be simply modified as ER .

“ FAR since fake faces are
not allowed to undertake further ID recognition. Moreover, it is more easy to confirm a true face by
existing methods such as [18,23]. That is, the reject ability of the proposed system for spoofing face
images is near 84% for a single image. The described results are shown in Table 2 while some of the
identification errors, including false acceptance and false rejection cases are shown in Figure 15.
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Figure 15. Samples of detection error cases. (a) False reject case images; and (b) False reject case images.
It is observed that face samples with blue eyes more often resulted in false reject error.

Table 2. Experimental results for spoofing face detection under a single shot condition.

ERave “ No. error detection
No. test images “ 1061

4557 “ 0.233

FAR (single shot) FAR “ No. error detection
No. fake faces “ 433

2780 “ 0.156
FRR (single shot) FRR “ No. error detection

No. true faces “ 628
1777 “ 0.353

ER .
“ FAR “ 0.156 A life face is easy to be confirmed by the

previous algorithms, thus FRR can be ignored

To further improve the identification accuracy of the proposed system, three strategies are applied
to improve the detection rate including time series analysis, high reflection regions removing, and
detection separately for face region parts.
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First, the time series analysis is similar to our previous work [23] which is used for reducing the
interference of accident false acceptance error. For example, under the condition of Pc “ 1´ ERave

accuracy (assume pc “ 85.4% including FAR and FRR) on identifying a single image, it is possible to
further apply the methodology on identifying a series samples (both work for still image and video
clips). Normally, the samples are captured at the rate of fs frames per second (fps). A total of f frames
(or f { fs seconds) were chosen for continuous sequence analysis. The captured face video is considered
authentic if over x frames, where x ě f {2, are identified as real. The theoretical probability, PT , which
is defined as a face video being identified as authentic, can be described as

PT “

f
ÿ

k“x

C f
k pPcq

k
pPeq

f´k (6)

where Pe “ 1´ Pc is the error probability corresponds to which a real face is identified as a fake.
For example, if f “ 10, x “ 7, and Pc “ 0.854, then Equation (6) becomes

PT “ C10
7 p0.854q7p0.146q3 ` C10

8 p0.854q8p0.146q2`
C10

9 p0.854q9p0.146q1 ` p0.854q10
“ 0.9542

(7)

The correct identification rate now is much better than the previous one (0.854) where only
one frame is referred. Accordingly, some practical adopted examples (where x ě f {2, Pc “ 0.854) are
listed in Table 3.

Table 3. Some practical variables and the corresponding results.

f x PT

10 8 83.05%
10 7 95.42%
10 6 99.12%
15 12 83.40%
15 11 94.41%
15 10 98.52%
15 9 99.69%
15 8 99.95%

It is observed in Table 3 that adjusting the number of frames captured and that of the frames
identified as authentic can effectively increase the success rate of the video identification. That is,
a correct identification rate near 99% (within 1 second period) is possible. That is, if the identification
rate for a single frame is not high enough, the overall system performance can be improved to be
practical by longer time period analysis. That is, under f “ 30 criteria, the correct identification rate is
still greater than 80%, under the worse condition Pc “ 0.6, if x is carefully chosen, as shown in the gray
region in Table 4. However, once the single correct rate Pc is less than 0.6, the total identification rate
cannot be improved by time series analyzing no matter what the variables are. Therefore, it can be
viewed as a good threshold for the features selection used to distinguish the real/fake face.

Table 4. Identification results for various Pc under f “ 30.

Pc x PT

0.6 16 82.46%
0.6 18 57.85%
0.7 16 98.31%
0.7 18 91.55%
0.8 16 99.98%
0.8 18 99.69%
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The second process to improve the detection rate is to reduce the influence from the high reflected
regions in the face. As shown in Figure 16, it is observed that detection of faces with strong reflected
regions by the environment light has greater detection error. Thus, it is intuitive to detect and remove
such regions to improve the detection rate. It is also observed from the experimental results that the
FRR can be reduced significantly to 0.016 for a single shot image. That is, most live faces, which are
determined as fake, can be detected correctly.
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Finally, detecting the different parts of a face separately and then determining whether it is fake,
instead of determining authenticity by the global face detection, can reduce the error probability.
This is because the face detection error due to influenced regions can be omitted. To perform this,
six regions (eyes, nose, eyebrows, and mouth) are segmented and trained for detection. If the positive
detection number is greater than 4, than the face is determined as a live face; otherwise it will be
thought of as a fake face. The simulation results also show that the average detection rate can be
improved to 0.968 for a single shot image.

To sum up, compared with some present non-intrusive anti-spoofing methods in the reviewed
paper [24], the proposed method has either better or comparable spoofing detection accuracy for
still/moving images by gathering a series of face samples, while the computational complexity and
the system cost are kept low enough. Hence, this method is much more suitable for implementation in
a handheld device.

5. Conclusions and the Future Works

In this paper, a fast and effective system which is composed of optical image sensor and expert
decision-making core for spoofing face detection has been proposed and verified to improve the
reliability of a face authentication system. Via analyzing the specific features of the displayed
fake face reproduced by the high definition display monitor, it is possible to effectively verify the
dynamic authentic images and the spoofed images (or videos) by analyzing the relations between the
chrominance characteristics and the saturation of the captured face images.

The experimental results show that not only is the correct identification rate high enough, but
the total reliability of the identification system can be made trustworthy by simply adjusting the
analyzation period variables, the number of the photos captured by the camera as well as those of the
photos determined to be authentic. That is, the study result has achieved outstanding success results,
greater than 99% success rate, in terms of face spoofing detection.

However, to simplify the experiment implementation, the optimized network architecture has
not been designed for this study. It is believed that the accuracy of the detection can be effectively
improved if a more appropriate network mode is adopted in the future, Moreover, feature vectors,
determined by the face component, which is fed into the input layer of PNN can be modified to
increase the average correct identification rate for a single frame and thus to increase the performance
of the spoofing detection method.
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