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Abstract: Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO)
SAR can have a shorter revisit period and vaster coverage. However, relative motion between this
SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant
along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This
paper analyzes and models spatial variance for GEO SAR in the time and frequency domains.
A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range
and range directions is proposed, which is composed of five steps. The first is to eliminate linear
azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction
and range compression. The third is to correct residual azimuth variance by the second azimuth
time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct
geometric distortion. The most important innovation of this algorithm is implementation of the
time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation
results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality
over the entire swath.

Keywords: geosynchronous synthetic aperture radar; imaging; spatial variance correction;
time-frequency scaling

1. Introduction

Geosynchronous synthetic aperture radar (GEO SAR) operates at an altitude ~36,000 km [1].
Compared with a low-Earth orbit (LEO) SAR, greater coverage can be achieved by GEO SAR because
of its much higher orbit [2]. Furthermore, GEO SAR can guarantee observation of the same location
every 24 h with the same incidence angle, which cannot be realized by LEO SAR [3]. Given its special
characteristics, GEO SAR has attracted much attention [4]. It has become part of a global earthquake
satellite system to monitor the global seismic state, as proposed by NASA and JPL in 2003 [5]. Another
GEO SAR system called Geosynchronous Earth Monitoring by Interferometry and Imaging (GEMINI)
was put forward in 2012 to acquire Earth surface data through GEO SAR interferometry [6]. For GEO
SAR systems, imaging is always a major problem, the key to which is correction of the spatial variance
of range cell migration (RCM).

RCM determines the distribution of echoes in the time and frequency domains. The spatial
variance of RCM causes the spectrums corresponding to targets at different locations to be different.
Therefore, in order to accomplish precise focusing in the frequency domain, the spatial variance must
be corrected to eliminate the difference of RCM between any target in the swath and the reference
point, usually the swath center. For LEO SAR with zero-Doppler steering, RCM is spatially variant
along the range direction only, which can be processed by algorithms, such as range Doppler (RD) [7],
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chirp scaling (CS) [8] and wavenumber domain (WD) [9]. For high-squint LEO SAR, RCM varies
along both range and azimuth slightly, and can be corrected by azimuth frequency scaling and block
processing [10]. Compared with LEO SAR, higher altitude makes the synthetic aperture time of GEO
SAR increase by over 100 times, which causes the relative trajectories between SAR and targets to
become much more curved. As a result, for GEO SAR, the spatial variance of RCM is not only present
in both range and azimuth directions but also much greater and more complicated. Moreover, the
better the spatial resolution is, the much more serious the spatial variance of RCM is. How to correct
the two-dimensional spatial variance of RCM is the specific imaging issue to realize high-resolution
GEO SAR imaging. To address this problem, a precise range model has to be constructed to analyze
RCM. Furthermore, an imaging algorithm based on the model can be presented to correct spatial
variance and focus echo data.

According to this basic thought, in 2011, Bao et al. proposed a polynomial model to approximate
RCM [11]. The following year they proposed a modified chirp scaling algorithm to correct linear spatial
variance along the range direction [12]. After applying this algorithm, the quadratic residual RCM
persists after correction. For this defect, Hu et al. forwarded a modified non-linear chirp scaling (NCS)
algorithm based on correction of the quadratic residual RCM, but this still neglected spatial variance
along the azimuth [13]. To correct the first-order azimuth variance, three different techniques were
developed. Sun et al. adopted azimuth scaling combined with chirp scaling [14]. Hu et al. proposed
a wavenumber-domain imaging algorithm based on modified Stolt interpolation [15]. Ding et al.
constructed a fourth-order space-variant slant range model, applied the quadratic factor compensation
in the two-dimensional time domain to reduce the variance of the azimuth phase, and adopted NCS to
accomplish imaging. Simulation results demonstrated that this algorithm could enlarge the azimuth
size of a well-focused image with a moderate resolution [16]. However, these techniques cannot correct
higher-order azimuth variance contained in the quadratic and cubic phases, which is also crucial for
imaging quality. In 2015, Li et al. proposed a fifth-order slant range model, and corrected quadratic
azimuth spatial variance by exploiting azimuth time scaling. This technique focused on azimuth
processing, while the range variance was not considered adequately [17].

The goal of this paper is to develop an algorithm that can correct high-order spatial variance of
RCM along the range and azimuth directions, and perform GEO SAR imaging with a resolution of 2 m
in both the ground cross-range and range directions. The most important innovation of this algorithm
is the implementation of time-frequency scaling to correct linear and quadratic azimuth variance.

This paper is structured as follows: Section 2 constructs an echo model based on approximation
of the range history, analyzes spatial variance in the time and frequency domain, and proposes explicit
expressions for phases in terms of spatial variables. To correct the spatial variance, Section 3 presents
the basic methodology. A GEO SAR imaging algorithm is advanced in Section 4, which is composed
of five steps, i.e., an initial azimuth scaling, RCM correction (RCMC) & range compression, second
azimuth scaling, azimuth focusing, and geometric correction. In Section 5, simulation results are
addressed to verify the validity of the proposed algorithm. Section 6 concludes the paper.

2. Echo Model and Spatial Variance Analysis

For SAR, after demodulation, the echo corresponding to an isolated point target can be
represented by:

soriginalpη, τq “ σ ¨ rect
„

η ´ ηc

Ts



¨ a
„

τ´
2Ractual pηq

c0



¨ exp
„

´j
4π

λ
Ractual pηq



(1)

where η and τ denote the slow time along the azimuth and the fast time along the range, respectively.
The constant σ is the backscattering coefficient of the target, c0 is light speed, and λ is wavelength.
a pτq represents the transmitted signal. Here, the chirp signal is the transmitted signal, which implies
a pτq “ rect

“

τ{Tp
‰

exp
“

jπKrτ2‰. Kr is the linear frequency modulation rate, Tp is pulse duration,
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and rect r¨s denotes the rectangular envelope. ηc is the beam crossing time and Ts is the synthetic
aperture time.

In Equation (1), Ractual pηq is the equivalent slant range between the spaceborne SAR and the
target, which is the average of the one-way slant range when transmitting a pulse and that when
receiving the echo. Usually Ractual pηq can be approximated by a polynomial:

Ractual pηq « R pηq “
Nr
ÿ

n“0

rn

n!
pη ´ ηcq

n (2)

where rn is the nth-order coefficient, and Nr denotes the order. All SAR imaging algorithms are derived
based on an appropriate slant range model, like Equation (2). The higher the order, the better the
fit, which leads to better imaging performance. However, a high order increases the complexity of
imaging algorithms. Therefore, determining an Nr that balances imaging quality and complexity of
the algorithm is a major challenge.

Usually the aperture time of LEO SAR is so short that Equation (2) with Nr “ 2 is adequate to
approximate the slant range, which indicates that the phase error induced by the approximation is
too small to affect imaging quality [18]. For GEO SAR, orbital altitude increases the aperture time
over one hundred times. For example, if the ground resolution is 2 m, the aperture times for LEO
and GEO SARs are about 6 s and 750 s, respectively. Thus, to describe the much more complicated
relative motion with the longer aperture time, the order of Equation (2) must be redetermined by
evaluating the impact of different Nr on imaging quality, which can be represented by the resolution,
peak side-lobe level ratio (PSLR), and integral side-lobe level ratio (ISLR) [18].

The following matching filtering is adopted:

sopt pη, τq “ exp
„

´j
4π

λ
Ractual pηq



b exp
„

j
4π

λ
R p´ηq



(3)

where b represents convolution and Nr may equal 4, 5 or 8. When Nr approaches 8, Equation (3)
indicates ideal filtering, which can achieve optimal imaging quality per the theory of matching
filtering [18].

Evaluation results of applying Equation (3) and parameters in Table 1 are shown in Figure 1.
Azimuthal resolution, PSLR, and ISLR achieved with Nr “ 5 are as nearly identical to results of
the ideal filtering during the entire orbital period. However, when Nr “ 4, results are much worse.
Therefore, the fifth-order approximation to Ractualpηq is adequate to acquire optimum imaging quality.Sensors 2016, 16, 1091 4 of 31 
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Figure 1. Comparison of ideal filtering and matching filtering with Nr “ 4 and 5. (a–c) show results of
azimuthal resolution, PSLR, and ISLR during the entire orbital period, respectively. Results achieved
with Nr “ 5 are as nearly identical to those attained by ideal filtering. With Nr “ 4 , results are
much worse.
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Table 1. Analysis Parameters for Slant Range Order.

Parameters Value

Orbital inclination angle 60˝

Eccentricity 0
Wavelength 0.24 m

Incidence angle 35˝

Ground resolution 2 m

By combining Equations (1) and (2), the echo model can be expressed as:

soriginalpη, τq « σ ¨ rect
„

η ´ ηc

Ts



¨ exp

#

jπKr

„

τ´
2Rpηq

c0

2
+

¨ exp
"

´j
4π

λ
Rpηq

*

(4)

2.1. Spatial Variance in the Time Domain

Given the invalidity of the “stop-and-go” approximation, rn (n ě 0) in Equation (2) can be
expressed as follows (see Appendix A):

rn “ rn,sin ´
kn`1

c0
´

1
c2

0
¨

n
ÿ

m“0

Cm
n km`2rn´m,sin, n ě 0 (5)

where:

kn “

C

Ñ

R
pnq

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

,
Ñ

R
pnq

g_tar

G

and x¨y denotes the dot product. Cm
n “ n!{ rpn´mq!m!s and rn,sin denotes the nth-order one-way

slant range coefficient.
Ñ

R
pnq

g_sat|η“ηc
represents nth-order derivatives of the position vectors of the SAR

satellite at the beam crossing time ηc and
Ñ

R
pnq

g_tar represents the position vector of the target. Usually
the attitude steering is applied for GEO SAR [19], and makes the Doppler centroid zero, which leads
to r1 “ 0.

Figure 2 illustrates the GEO SAR observation geometry. The beam crossing time corresponding
to a target is the moment when the zero Doppler plane crosses the target. At the beam crossing time
corresponding to the swath center, the distance from GEO SAR to the swath center is defined as the
reference range, i.e., r0,re f , as shown in Figure 2a. When the zero Doppler plane crosses any target in
the swath at ηc, the distance from SAR to the target is denoted by r0, as shown in Figure 2b. As a result,
the location of an isolated target can be uniquely represented by the beam crossing time ηc and the
corresponding distance r0.

Equation (5) demonstrates that rn depends on the target position, indicating that rn is spatially
variant. Therefore, using polynomial fitting, rn can be expressed as a function of ∆R and ηc, which are
adopted as spatial variables along the range and azimuth directions, respectively. That is:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

r0 “ r0,re f ` ∆R
r1 “ 0
r2 “ r2,re f ` k2,1,r ¨ ∆R` k2,2,r ¨ p∆Rq2 ` k2,1,a ¨ ηc ` k2,2,a ¨ pηcq

2

r3 “ r3,re f ` k3,1,r ¨ ∆R` k3,1,a ¨ ηc ` k3,2,a ¨ pηcq
2

r4 “ r4,re f ` k4,1,r ¨ ∆R` k4,1,a ¨ ηc

r5 “ r5,re f

(6)

where ∆R “ r0 ´ r0,re f . rn,re f , kn,m,a and kn,m,r can be calculated by polynomial fitting based on
ephemeris data and geographic information of the swath. All coefficients are spatially invariant except
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kn,m,a, which varies with ∆R. Equation (6) demonstrates that there is nonlinear spatial variance in the
slant range coefficients, which leads to the same condition in the phase spectrum.

Figure 2. Illustration of GEO SAR geometry. (a) Observation geometry when the beam crosses the
swath center; (b) Observation geometry when the beam crosses another target.

2.2. Spatial Variance in the Frequency Domain

Equation (6) demonstrates that coefficient rn is two-dimensionally spatially variant, and so does
RCM in the time domain. By implementing the Fourier transform (FT) on soriginal pη, τq in range, the
signal in the range-frequency domain can be expressed as follows:

Srange_ f f t pη, fτq “ σ ¨ rect
„

η ´ ηc

Ts



¨ rect
„

fτ

Br



exp
"

´j
4π p f0 ` fτq

c0
R pηq

*

exp
"

´jπ
f 2
τ

Kr

*

(7)

where fτ is range frequency, Br is bandwidth of the transmitted signal, and f0 is the carrier
frequency. Then by performing FT along the azimuth, the two-dimensional spectrum is as follows
(see Appendix B):

S2d f
`

fη , fτ

˘

“ σ ¨Wa
“

fη

‰

¨ rect
”

fτ
Br

ı

¨

exp
"

´j 4πp f0` fτq

c0

„

r0 ´
10
ř

n“2

An´1
n

´

´
c0 fη

2p f0` fτq
´ r1

¯n
*

¨ exp
!

´j π f 2
τ

Kr
´ j2π fηηc

) (8)

where An is defined as follows:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

A1 “
1
r2

A2 “ ´
r3

2r3
2

A3 “
1

6r5
2

“

3r2
3 ´ r2r4

‰

A4 “
1

24r7
2

“

10r2r3r4 ´ 15r3
3 ´ r2

2r5
‰

A5 “
1

120r9
2

“

´r3
2r6 ` 15r5r2

2r3 ` 10r2
2r2

4 ´ 105r2r2
3r4 ` 105r4

3
‰

A6 “ ¨ ¨ ¨

(9)
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Wa
“

fη

‰

is the azimuth spectrum amplitude. Since it is only concerned with azimuth focusing,
its representation will be given in Section 4. By applying series expansion [20], Equation (8) can be
organized in the form of a series of fτ , which is:

S2d f
`

fη , fτ

˘

“ σ ¨Wa
“

fη

‰

¨ rect
„

fτ

Br



¨ exp

#

j2π
9
ÿ

k“1

φk f k
τ

+

¨ exp tj2πϕ0u exp
 

´j2π fηηc
(

(10)

where:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ϕ0 “ ´
2
λ pr0 ´ P0q `

10
ř

m“1

2Pm
λ

´

λ
2 fη

¯m

φ1 “ ´
2
c0
pr0 ´ P0q ´

10
ř

m“2

2Pm
c0

´

λ
2 fη

¯m
pm´ 1q

φ2 “
10
ř

m“2

2C2
mPm

c0 f0

´

λ
2 fη

¯m
´ 1

2Kr

φk “ p´1qk
10
ř

m“2

2Ck
m`k´2Pm

c0 f k´1
0

´

λ
2 fη

¯m
, k ě 3

(11)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

P0 “
9
ř

n“1

Anp´r1q
n`1

n`1

P1 “
9
ř

n“1
Anp´1qn`1rn

1

Pm “
9
ř

n“m´1

Anp´1qn`1Cm
n`1rn`1´m

1
n`1 , m ě 2

(12)

ϕ0, φ1, φ2 and φk denote the azimuth modulation phase, RCM, range linear frequency-modulated
phase and high-order range frequency-modulated phase, respectively. Equations (9), (11) and (12)
demonstrate that ϕ0 and φk depend on rn. Therefore, ϕ0 and φk are spatially variant, which can also be
explicitly expressed as a function of ∆R and ηc:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕ0 « ϕ0,re f `M1,r∆R`M2,r p∆Rq2 `M1,aηc `M2,aη2
c

φ1 « φ1,re f ` L1,r∆R` L2,r p∆Rq2 ` L1,aηc ` L2,aη2
c

φ2 « φ2,re f ` J1,r∆R` J1,aηc ` J2,aη2
c

φ3 « φ3,re f ` K1,r∆R` K1,aηc

φk « φk,re f , 4 ď k ď 9

(13)

All coefficients in Equation (13) depend on fη , and some of them also vary with ∆R. Details are
given in Appendix B. The phase difference between Equations (11) and (13) is <0.012π, indicating that
these approximations in Equation (13) will not affect imaging quality.

3. Basic Methodology of Correcting Spatial Variance

According to Equation (2), RCM is determined by slant range coefficients (i.e., rn). In order to
correct the spatial variance of RCM, this paper adopts time-frequency scaling to modify rn.

To introduce this idea, a one-dimensional signal s ptq is assumed to be:

s ptq “ rect
„

t´ tc

T



exp

#

´j
4π

λ

«

d0 `

N
ÿ

n“2

dn

n!
pt´ tcq

n

ff+

(14)

where T is the signal duration time. tc is the center time and dn is the nth-order time-domain phase
coefficient. According to Equation (6), dn can be assumed quadratically variant with tc. The aim of the
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time-frequency scaling method is to remove the spatial variance in dn, which indicates that dn doesn’t
depend on tc after scaling.

By applying series reversion method [21], the corresponding frequency-domain spectrum of
Equation (14) can be attained as:

S p f q “ exp

«

j2π
M
ÿ

n“2

Dn´1 f n

ff

exp r´j2π f tcs (15)

Dn is the frequency-domain spectrum phase coefficient and can be obtained by applying the method
in Appendix B. In order to avoid time-domain aliasing, D1 will not be modified by scaling.

Modification of frequency-domain spectrum phase coefficients leads to modification of
time-domain phase coefficients. As a result, the following frequency scaling function can be used:

H f rq,scl p f q “ exp

«

j2π
M
ÿ

n“3

Zn ¨ f n

ff

(16)

After multiplication by Equation (16), Equation (15) becomes:

S1 p f q “ exp

#

j2π

«

D1 f 2 `

M
ÿ

n“3

pDn´1 ` Znq f n

ff+

exp r´j2π f tcs (17)

By applying series reversion method to Equation (17), the following expression can be obtained:

s1 ptq “ exp
„

´j
4π

λ
Ψ ptq



(18)

where:

Ψ ptq “ d10 `
N
ÿ

n“1

d1n
n!
pt´ tcq

n (19)

d1n is the reconstructed nth-order time-domain phase coefficient. Like dn, d1n is also spatially
variant with tc. According to Equation (6), spatial variance is up to the second order along both the
range and the azimuth. As a result, d1n can be assumed a second-order function of tc, i.e.,

d1n “ d1n,re f `
Bd1n
Btc

ˇ

ˇ

ˇ

ˇ

tc“0
¨ tc `

1
2
¨
B2d1n
B2tc

ˇ

ˇ

ˇ

ˇ

tc“0
¨ t2

c (20)

where d1n,re f corresponds to the swath center. Then, the spatial difference between d1n and d1n,re f is:

∆d1n “ d1n ´ d1n,re f «
Bd1n
Btc

ˇ

ˇ

ˇ

ˇ

tc“0
¨ tc `

1
2
¨
B2d1n
B2tc

ˇ

ˇ

ˇ

ˇ

tc“0
¨ t2

c (21)

In order to eliminate the first-order spatial variance of d1n, the time scaling function to be multiplied
with Equation (18) is designed as:

Hn ptq “ exp

«

j
4π

λ
¨
Bd1n
Btc

ˇ

ˇ

ˇ

ˇ

tc“0
¨

1
pn` 1q!

tn`1

ff

(22)

By multiplying Equations (18) and (22), the linear component of ∆d1n will be removed. Therefore,
for correcting the linear spatial variance of all d1n (n ě 2), the complete time scaling function is:

Htotal ptq “ exp

#

j
4π

λ

N
ÿ

n“2

«

Bd1n
Btc

ˇ

ˇ

ˇ

ˇ

tc“0
¨

1
pn` 1q!

tn`1

ff+

(23)
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After multiplying Equation (18) with Equation (23), the signal becomes:

s2 ptq “ exp
"

´j
4π

λ
Ψ1 ptq

*

(24)

where:

Ψ1 ptq “ d20 `
N
ÿ

n“2

d2n
n!
pt´ tcq

n (25)

The new time-domain phase coefficient is:

$

’

’

’

&

’

’

’

%

d2n “ d1n,re f `
1
2

«

B2d1n
B2tc

ˇ

ˇ

ˇ

tc“0
´
Bd1n`1
Btc

ˇ

ˇ

ˇ

ˇ

tc“0

ff

¨ t2
c , 0 ď n ď N ´ 1

d2N “ d1N,re f `
1
2 ¨

B2d1N
B2tc

ˇ

ˇ

ˇ

ˇ

tc“0
¨ t2

c

(26)

Similar to d1n, d2n also varies with tc. By applying the series reversion method to Equation (24), the
spectrum is:

S2
`

fη

˘

“ exp

#

´j
4π

λ

M
ÿ

m“2

Bm f m

+

exp r´j2π f tcs (27)

where Bm can be acquired by the method in Appendix B.
Because the time scaling has removed the linear spatial variance, Bm satisfies:

BBm

Btc

ˇ

ˇ

ˇ

ˇ

tc“0
“ 0, m ě 0 (28)

In order to remove the quadratic spatial variance in Bm (m “ 2, 3), the following equation should
be satisfied by assigning the appropriate value of Zn:

B2Bm

Btc
2

ˇ

ˇ

ˇ

ˇ

tc“0
“ 0, m “ 2, 3 (29)

According to Equation (13), φk (k ą 3) is spatially invariant in GEO SAR imaging. And after
time-frequency scaling, the linear and quadratic spatial variance has been removed from Bm (m “ 2, 3),
as shown in Equations (28) and (29). Therefore, focusing for the whole swath can be accomplished in
the frequency domain. Although the time-frequency scaling is only applied to correct the azimuth
variance in this section, it can also be applied for the range variance correction, as shown in Section 4.

4. Spatial Variance Correction and GEO SAR Imaging

Based on the basic idea in Section 3, a GEO SAR imaging algorithm composed of five steps is
proposed. The first is to eliminate linear azimuth variance of φk through the first azimuth time scaling.
The second is to achieve RCM correction and range compression. The third is to correct residual
azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to
accomplish azimuth focusing and correct geometric distortion.

4.1. First Azimuth Time Scaling

In Equation (10), φk determines the coupling between range and azimuth. The first step applies
the time scaling to remove linear azimuth variance of φk and guarantees the quality of RCM correction
and range compression.
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In the range-frequency and azimuth-time domain, the echo can be expressed as Equation (7). The
first azimuth scaling function is designed as:

HAS1 pη, fτq “ exp
"

´j
4π p f0 ` fτq

c0
rpt pηq

*

(30)

where:

rpt pηq “ ´
4
ÿ

m“2

km,1,a|∆R“0
pm` 1q!

ηm`1 (31)

After multiplying Equations (7) and (30), the signal becomes:

SAS1 pη, fτq “ σ ¨ rect
„

η ´ ηc

Ts



¨ rect
„

fτ

Br



exp

#

´j
4π p f0 ` fτq

c0

5
ÿ

n“0

r1n
n!
pη ´ ηcq

n

+

exp
"

´jπ
f 2
τ

Kr

*

(32)

r1n represents the modified nth-order slant range coefficient, which is:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

r10 « r0,re f ` ∆R

r11 « ´
k2,1,a|∆R“0

2 η2
c

r12 « r2,re f ` k2,1,r ¨ ∆R` k2,2,r ¨ p∆Rq2 `
”

k2,2,a ´
k3,1,a|∆R“0

2

ı

¨ pηcq
2

r13 « r3,re f ´ k2,1,a|∆R“0 ` k3,1,r ¨ ∆R`
”

k3,2,a ´
k4,1,a|∆R“0

2

ı

¨ pηcq
2

r14 « r4,re f ´ k3,1,a|∆R“0 ` k4,1,r ¨ ∆R

r15 « r5,re f ´ k4,1,a|∆R“0

(33)

By performing the azimuth FT on Equation (32), the signal in the two-dimensional frequency
domain is:

S12d f
`

fη , fτ

˘

“ σ ¨Wa
“

fη

‰

¨ rect
„

fτ

Br



exp

#

j2π
9
ÿ

k“1

φ1k f k
τ

+

exp
 

j2πϕ10
(

exp
 

´j2π fηηc
(

(34)

where ϕ10 and φ1k (1 ď k ď 9) can be attained by replacing rn with r1n in Equation (11) and polynomial
fitting, i.e.,

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕ10 « ϕ10,re f `M1
1,r∆R`M1

2,r p∆Rq2 `M1
2,aη2

c

φ11 « φ11,re f ´ 2{c0 ¨ rpt
ˇ

ˇ

η“ηc
` L11,r∆R` L12,r p∆Rq2 ` L12,aη2

c

φ12 « φ12,re f ` J11,r∆R` J12,aη2
c

φ13 « φ13,re f ` K11,r∆R

φ1k « φ1k,re f , 4 ď k ď 9

(35)

After first azimuth time scaling, linear azimuthal variance is removed from φ1k in Equation (35),
and the residual quadratic azimuth variance makes RCM variation be less than one quarter of a range
cell in azimuth. Therefore, RCMs corresponding to targets in the same range cell can be regarded
as identical [22], indicating that the first azimuth time scaling is beneficial to RCMC and range
compression in the next step.

However, for targets in the same range cell a range offset in the RD domain is induced by the first
azimuth scaling, which is:
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2 rpt
ˇ

ˇ

η“ηc

c0
“
`

´φ11
˘

´

´

´ φ11
ˇ

ˇ

ηc“0

¯

“ ´

4
ÿ

m“2

2 km,1,a|∆R“0
c0 pm` 1q!

ηm`1
c (36)

In Figure 3a, three curves show RCMs corresponding to the three targets TA, TB and TC. And,
they are in the same range cell. These curves do not coincide because of azimuthal variance in the RD
domain, as demonstrated in Figure 3b. After the first azimuth time scaling, RCMs are corrected to be
the same and shifted by various offsets. As a result, they are approximately parallel in the RD domain
and cross different range cells, as shown in Figure 3c. The range offset causes imaging distortion and
is corrected in the final step.
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where: 

Figure 3. Illustration of first azimuth time scaling. Three targets (TA, TB and TC) are in the same range
cell. Because of azimuthal variance, their RCM curves vary in the time domain, as shown in (a); In the
RD domain, only some parts of the curves coincide, as shown in (b); After first azimuth scaling, linear
azimuth variance is corrected and the three curves in the RD domain are parallel, as demonstrated
in (c).

4.2. RCM Correction and Range Compression

In order to correct the range variance of φ11, φ12, and φ13, the following compensation function can
be applied based on the thought of time-frequency scaling which is demonstrated in Section 3:

H4plus_Y
`

fη , fτ

˘

“ exp

#

´j2π
9
ÿ

k“4

φ1k,re f f k
τ

+

exp
"

j
2π

3
Y f 3

τ

*

(37)

where:

Y “
2βKmre f ` p1` 2αqKs

2αp1` αqK3
mre f

´ 3φ13,re f

α “
L11,r

L11,r,re f
´ 1

β “
L11,rL12,r,re f ´ L12,rL11,r,re f

´

L11,r,re f

¯3

Kmre f “
1

2φ12,re f

Ks “
2K2

mre f J11,r

L11,r,re f

L11,r,re f “ L11,r
ˇ

ˇ

fη“ fηre f
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L12,r,re f “ L12,r
ˇ

ˇ

fη“ fηre f

and fηre f is the Doppler centroid corresponding to the swath center.
By applying range IFT on the multiplication of Equations (34) and (37), the signal in the RD

domain can be formulated as follows (see Appendix C):

Srd
`

fη , τ1
˘

“ σ ¨Wa
“

fη

‰

¨ rect
„

τ1´tcon´ατ1´βpτ1q
2

Tp



¨ exp
 

j2πϕ10
(

¨ exp
 

´j2π fηηc
(

¨exp
"

´jπ
´

Kmre f ` Ksτ1
¯ ”

τ1 ´ tcon ´ ατ1 ´ β
`

τ1
˘2
ı2
*

¨exp
"

´j 2π
3

´

Jmre f ` Jsτ1
¯ ”

τ1 ´ tcon ´ ατ1 ´ β
`

τ1
˘2
ı3
*

(38)

where:
τ1 “ ´L11,r,re f ∆R´ L12,r,re f p∆Rq2

τ1 “ τ´

ˆ

´φ11,re f ´ φ11
ˇ

ˇ

fη“ fηre f
` φ11,re f

ˇ

ˇ

ˇ

fη“ fηre f

˙

tcon “
2 rpt

ˇ

ˇ

η“ηc

c0

Jmre f “
´

3φ13,re f `Y
¯

K3
mre f

Js “ ´
3K11,rK3

mre f

L11,r,re f
`

6J11,rKmre f Jmre f

L11,r,re f

Coupling of τ1 and τ1 denotes range variance. Per Equation (24), the function for correcting the
range variance is:

HNCS
`

fη , τ1
˘

“ exp
„

´jπQ2
`

τ1 ` τ1
˘2
´ j

2π

3
Q3

`

τ1 ` τ1
˘3


(39)

where τ1 ` τ1 “ τ` φ11,re f , and:
$

&

%

Q2 “ αKmre f

Q3 “
βKmre f`0.5αKs

1`α

(40)

The multiplication of Equations (38) and (39) can be approximated as:

S2rd

`

fη , τ1
˘

« σ ¨Wa
“

fη

‰

¨ rect
„

τ1´tcon´α¨τ1´β¨pτ1q
2

Tp



¨ exp
 

j2πϕ10
(

¨ exp
 

´j2π fηηc
(

¨exp
!

´j 2π
3

´

Jmre f `Q3

¯

¨ pτ1q
3
)

¨ exp
!

´jπ
´

Kmre f `Q2

¯

pτ1q
2
)

¨exp
"

´jπ
´

Kmre f ` Ksτ1
¯ ”

ατ1 ` β
`

τ1
˘2
ı2
*

¨ exp
"

j 2π
3

´

Jmre f ` Jsτ1
¯ ”

ατ1 ` β
`

τ1
˘2
ı3
*

¨exp
!

´jπQ2
`

τ1
˘2
´ j 2π

3 Q3
`

τ1
˘3
)

¨ exp
„

j2π
K11,rK3

mre f
L11,r,re f

τ1 pτ1q
3


(41)

The last term of Equation (41) will result in asymmetric range sidelobe. To further eliminate the
impact of range variance in the last term of Equation (41), data segmentation can be adopted in the
RD domain. Every segment corresponds to a sub-swath whose width in the slant range direction
is <30 km. The phase variation induced by the term with τ1 pτ1q

3 is <0.04π in the sub-swath, which
indicates that the last term in Equation (41) can be ignored in the processing of every segment.
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By applying the range FT and the compensation function to Equation (41) successively, the range
variance in every segment can be corrected. The compensation function is:

H3_sub
`

fη , fτ

˘

“ exp

$

’

&

’

%

´j2π
K3

mre f K11,r∆Rsub
´

Kmre f `Q2

¯3 f 3
τ

,

/

.

/

-

(42)

where ∆Rsub is distance from the swath center to sub-swath center in the slant range direction. Then,
compensation results of data segments are stitched together. A uniform filter can be applied to
accomplish RCM correction and range compression for the entire swath, which is:

Hrpc_rcmcp fη , fτq “ exp
"

´j
„

π f 2
τ

Kmre f`Q2
´ 2π

3
Jmre f`Q3

pKmre f`Q2q
3 f 3

τ

*

¨exp
"

j2π

ˆ

τ1mig,re f ´ τ1mig,re f

ˇ

ˇ

ˇ

fη“ fηre f

˙

fτ

* (43)

By applying Equation (43), the spectrum in the RD domain becomes:

S3rd

`

fη , τ1
˘

“ σ ¨Wa
“

fη

‰

¨ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

fη“ fηre f



exp
 

j2πϕ10
(

exp
 

´j2π fηηc
(

¨exp
"

´jπ
´

Kmre f ` Ksτ1
¯ ”

ατ1 ` β
`

τ1
˘2
ı2
*

¨exp
"

j 2π
3

´

Jmre f ` Jsτ1
¯ ”

ατ1 ` β
`

τ1
˘2
ı3
*

¨exp
!

´jπQ2
`

τ1
˘2
´ j 2π

3 Q3
`

τ1
˘3
)

(44)

The last three terms in Equation (44) can be further compensated for by the following function:

Hle f t
`

fη , τ
˘

“ exp

#

´jπ
”

Kmre f ` Ks ¨
´

τ´
2r0,re f

c0

¯ı

„

α ¨
´

τ´
2r0,re f

c0

¯

` β ¨
´

τ´
2r0,re f

c0

¯2
2
+

exp

#

j 2π
3

”

Jmre f ` Js ¨
´

τ´
2r0,re f

c0

¯ı

„

α ¨
´

τ´
2r0,re f

c0

¯

` β ¨
´

τ´
2r0,re f

c0

¯2
3
+

exp
"

´jπQ2 ¨
´

τ´
2r0,re f

c0

¯2
´ j 2π

3 Q3 ¨
´

τ´
2r0,re f

c0

¯3
*

(45)

Compensated for by Equation (45), the signal is:

Sp4qrd

`

fη , τ
˘

“ σ ¨Wa
“

fη

‰

¨ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

fη“ fηre f



exp
 

j2πϕ10
(

exp
 

´j2π fηηc
(

(46)

4.3. Second Azimuth Time-Frequency Scaling

After RCM correction and range compression, the third step is to further correct the residual
azimuth variance in ϕ10.

To compensate for the additional phase induced by the first azimuth time scaling, the following
function is adopted, which is:

H´AS1 pη, τq “ exp
"

j
4π

λ
rpt pηq

*

(47)
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By applying the azimuth IFT and Equation (47) to Equation (46) successively, the signal in the RD
domain is:

Sp5qrd

`

fη , τ
˘

“ σ ¨Wa
“

fη

‰

¨ sinc
„

τ´ τ1mig
ˇ

ˇ

fη“ fηre f



¨ exp
 

´j2π fηηc
(

¨exp
"

j2π

„

´ 2
λ pr0 ´ P0q `

10
ř

m“1

2Pm
λ

´

λ
2 fη

¯m
* (48)

where the last phase is spatially variant and leads to azimuth defocusing.
Based on the basic methodology in Section 3, to correct the azimuthal variance in Equation (48),

the frequency scaling is adopted, which is:

HY3Y4

`

fη

˘

“ exp

#

j
2πY3

3λ

ˆ

λ

2

˙3
f 3
η ´ j

πY4

λ

ˆ

λ

2

˙4
f 4
η

+

(49)

where:
Y3 “

1

2k2,1,a ¨
´

r2|ηc“0

¯3

”

´k2
2,1,a ` r3|ηc“0 ¨ k2,1,a ` p2k2,2,a ´ k3,1,aq ¨ r2|ηc“0

ı

(50)

and:

Y4 “ ´ 1

36k2
2,1,a

´

r2|ηc“0

¯5

„

12k2
2,1,a ¨

´

r3|ηc“0

¯2
` 12k2

2,2,a ¨
´

r2|ηc“0

¯2
´ 21k3

2,1,a ¨ r3|ηc“0 ` 9k4
2,1,a

´24k2
2,1,a ¨ k2,2,a ¨ r2|ηc“0 ` 11k2

2,1,a ¨ k3,1,a ¨ r2|ηc“0 ´ 4k2,1,a ¨ k3,2,a ¨
´

r2|ηc“0

¯2

´6k2,2,a ¨ k3,1,a ¨
´

r2|ηc“0

¯2
` 2k2,1,a ¨ k4,1,a ¨

´

r2|ηc“0

¯2
´ 2k2

2,1,a ¨ r2|ηc“0 ¨ r4|ηc“0

`30k2,1,a ¨ k2,2,a ¨ r2|ηc“0 ¨ r3|ηc“0 ´ 12k2,1,a ¨ k3,1,a ¨ r2|ηc“0 ¨ r3|ηc“0

ı

(51)

After multiplying Equation (48) with Equation (49), the signal in the time domain is:

s22dt pη, τq “ σ ¨ rect
„

η ´ ηc

Ts



¨ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

fη“ fηre f



exp

#

´j
4π

λ

5
ÿ

n“0

r2n
n!
pη ´ ηcq

n

+

(52)

where:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

r20 “ r0

r21 “ r1

r22 “ r2

r23 “ r3 `Y3r3
2

r24 “ r4 ` 3Y2
3 r5

2 ` 6r3Y3r2
2 ` 6Y4r4

2

r25 “ r5 ` 15Y3
3 r7

2 ` 45Y2
3 r4

2r3 ` 60Y3Y4r6
2 ` 10Y3r2

2r4 ` 15Y3r2r2
3 ` 60Y4r3

2r3

(53)

Then, the azimuth time scaling function is applied to Equation (52), which is:

HAS2 pηq “ exp
"

´j
4π

λ
r1pt pηq

*

(54)

where:

r1pt pηq “
5
ÿ

n“3

pn

n!
ηn (55)
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and:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p3 “ ´k2,1,a

p4 “ ´k3,1,a ´ 3Y3 ¨ k2,1,a ¨
´

r2|ηc“0

¯2

p5 “ ´k4,1,a ´ 15Y2
3 ¨

´

r2|ηc“0

¯4
´ 6k3,1,a ¨Y3 ¨

´

r2|ηc“0

¯2
´ 12Y3 ¨ k2,1,a ¨ r2|ηc“0 ¨ r3|ηc“0 ´ 24Y4 ¨ k2,1,a ¨

´

r2|ηc“0

¯3

(56)

After compensated for by Equation (54), Equation (52) becomes:

s32dt pη, τq “ σ ¨ rect
„

η ´ ηc

Ts



¨ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

fη“ fηre f



exp

#

´j
4π

λ

5
ÿ

n“0

r3n
n!
pη ´ ηcq

n

+

(57)

where:
$

’

’

&

’

’

%

r3n “ r2n `
5
ř

m“3

pm
pm´nq! ηc

m´n, 0 ď n ď 2

r3n “ r2n `
5
ř

m“n

pm
pm´nq! tc

m´n, 3 ď n ď 5
(58)

By applying azimuth FT to Equation (57), the signal becomes:

Sp7qrd

`

fη , τ
˘

“ σ ¨Wa
“

fη

‰

¨ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

fη“ fηre f



exp
!

´j 4π
λ

`

r30 ´ P30
˘

´ j2π fη

`

ηc ´ P31
˘

)

¨exp
"

j
10
ř

m“2

4πP3m
λ

´

λ
2 fη

¯m
* (59)

where P3m can be obtained by replacing rn with r3n in Equation (12). The spectrum envelope can be
expressed as:

Wa
“

fη

‰

« 1´ r33

2
´

r32
¯2

´

´λ
2 fη

¯

´
2r32 ¨r

3

4 ´5
´

r33
¯2

8
´

r32
¯4

´

´λ
2 fη

¯2

´
4r35 ¨

´

r32
¯2
´34r32 ¨r

3

3 ¨r
3

4 `45
´

r33
¯3

48
´

r32
¯6

´

´λ
2 fη

¯3

(60)

In Equation (59), the phase variation induced by azimuthal variance is <0.024π in the entire swath,
and does not affect azimuth focusing. As a result, the azimuth focusing can be implemented in the
frequency domain.

4.4. Azimuth Compression

Equation (59) is spatially invariant and can be focused by applying a uniform azimuth matching
filter for the entire swath, i.e.,

Hapcp fηq “
1

Aampp fηq
exp

!

´j2πϕ
2

rc ,0

)

(61)

where:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϕ
2

rc ,0 “
10
ř

m“2

2Prc ,m
λ

´

λ
2 fη

¯m

Aampp fηq “ 1´ rc,3
2r2

c,2

´

´λ
2 fη

¯

´
2rc,2¨rc,4´5r2

c,3
8r4

c,2

´

´λ
2 fη
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and:
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(63)

Prc ,m can be attained by replacing rn with rc,n in Equation (12). The result of matching filtering is:

Sp8qrd

`

fη , τ
˘

« sinc
„

τ´ τ1mig
ˇ

ˇ

fη“ fηre f



rect
”

fη

Ba

ı

¨exp
!

´j 4π
λ

`

r30 ´ P30
˘

´ j2π fη

`

ηc ´ P31
˘

)

(64)

By implementing azimuth IFT, the focusing result can be expressed as:

sp4q2dt pη, τq “ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

ηc“0, fη“ fηre f
´ tcon



sinc
“

η ´
`

ηc ´ P31
˘‰

¨ exp
"

´j
4π

λ

`

r30 ´ P30
˘

*

(65)

4.5. Geometric Correction

Equation (65) indicates that the echo has been completely focused. However, the target location
is shifted in both azimuth and range directions. As illustrated in Figure 4, two targets, TA and TB,
are originally in the same range cell, and ηc for TB is zero. In the focusing result, TB is still at its
original position. However, TA has been shifted to another position T1A. The offsets along the range
and azimuth directions are tcon and ´P31 , respectively, revealing geometric distortion in the focused
imaging that should be corrected.

In Figure 4, the dashed line represents the offset trajectory, which can be described by:

gpηq “
2
c0

„

G3

6
η3 `

G4

24
η4 `

G5

120
η5


(66)

where:
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’

%

G3 “ p3

G4 “ p4 ` 12G3 ¨Q1,2,a

G5 “ p5 ` 20G4 ¨Q1,2,a ` 60G3 ¨
´

Q1,3,a ´Q2
1,2,a

¯

(67)

Q1,2,a and Q1,3,a are the second-order and the third-order spatial variance coefficients of P31 along
the azimuth, respectively. They can be obtained by replacing rn with r3n in Equations (9) and (12).

Equation (65) can be transformed into the range-frequency and azimuth-time domain, multiplied
by the geometric correction function, i.e.,

HgeoCorrect pη, fτq “ exp rj2π fτ ¨ g pηqs (68)

and transformed back into the time domain to achieve the final imaging result, which is:

sp5q2dt pη, τq “ sinc
„

τ´ τ1mig

ˇ

ˇ

ˇ

ηc“0, fη“ fηre f



sinc
“

η ´
`

ηc ´ P31
˘‰

¨ exp
"

´j
4π

λ

`

r30 ´ P30
˘

*

(69)
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A flowchart of the proposed algorithm is shown in Figure 5.
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Figure 5. Flowchart of the proposed algorithm. 

5. Simulation and Verification 

5.1. Simulation Parameters 

Simulation parameters are listed in Table 2, which refer to the global earthquake satellite system 
[5]. The center of the swath is set to be 108.5° E and 35.3° N. Besides these parameters, the spatial 
variance of RCM also depends on the swath size. As the swath becomes wider, higher-order spatial 
variance may occur along both range and azimuth. As discussed in Section 4, the proposed algorithm 
can correct linear and quadric spatial variance. Therefore, in order to avoid the cubic and higher-
order spatial variance, a simulated swath covering an area of 83 km (azimuth) × 86 km (range) is 
adopted to verify the algorithm with parameters in Table 2. It is certain that the swath size for the 
proposed algorithm varies with observation parameters. For example, if the center time is 0 and the 
swath center is at the equator, the swath size can reach 150 km (azimuth) × 150 km (range) (see 
Appendix D). 
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5. Simulation and Verification

5.1. Simulation Parameters

Simulation parameters are listed in Table 2, which refer to the global earthquake satellite system [5].
The center of the swath is set to be 108.5˝ E and 35.3˝ N. Besides these parameters, the spatial variance
of RCM also depends on the swath size. As the swath becomes wider, higher-order spatial variance
may occur along both range and azimuth. As discussed in Section 4, the proposed algorithm can
correct linear and quadric spatial variance. Therefore, in order to avoid the cubic and higher-order
spatial variance, a simulated swath covering an area of 83 km (azimuth) ˆ 86 km (range) is adopted
to verify the algorithm with parameters in Table 2. It is certain that the swath size for the proposed
algorithm varies with observation parameters. For example, if the center time is 0 and the swath center
is at the equator, the swath size can reach 150 km (azimuth) ˆ 150 km (range) (see Appendix D).

Table 2. Parameters for simulation and verification.

Parameters Value

Orbital inclination angle 60˝

Eccentricity 0
Center time 8600 s
Wavelength 0.24 m
Pulse width 2 µs
Bandwidth 150 MHz

Sampling rate 250 MHz
Pulse repetition frequency 120 Hz

Incidence angle 35˝

Squint angle 90˝

Synthetic aperture time 750 s

The simulated swath is portrayed in Figure 6. Nine point targets, from T1 to T9, are deployed. T5

is at the swath center and other points are at the swath edge.
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for GEO SAR with a resolution of 2 m. Because of the wide-angle observation, the two-dimensional 
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affected. As a result, azimuth ISLRs are better than range ISLRs in Table 3. 

Figure 6. T5 is at swath center. T1 is 41.5 km and 43 km away from T5 along azimuth and
range, respectively.

5.2. Imaging Results

Range and azimuth profiles corresponding to every target are illustrated in Figure 7, and
evaluation results are listed in Table 3. The broadening coefficient is the ratio of the achieved resolution
to the ideal resolution. Suppose that ρa and ρa,ideal are the azimuth resolutions achieved by the
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proposed algorithm and the ideal imaging, respectively. The azimuth broadening coefficient is defined
as ρa{ρa,ideal . The range broadening coefficient can be achieved by the same way. As shown in Table 3,
the broadening coefficients are almost 1, which signifies no resolution loss in imaging. The ideal PSLR
should be ´13.26 dB. The loss of PSLR equals the absolute difference between the actual and ideal
PSLRs. Table 3 shows that the maximal loss of range and azimuth PSLRs is ď0.2 dB, and ď0.1 dB,
indicating good focusing quality. The difference of range PSLRs, azimuth PSLRs, range ISLRs, and
azimuth ISLRs over the whole swath is ď0.22 dB, ď0.17 dB, ď0.29 dB, and ď0.28 dB respectively,
indicating uniform imaging quality.Sensors 2016, 16, 1091 19 of 31 
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the imaging results obtained by different techniques. Here the imaging results of T3 and T5 are 
compared by applying the proposed algorithm, and other two algorithms developed by Hu [15] and 
Li [17]. 

Theoretically, any algorithm can achieve good focusing quality for T5, because it is at the swath 
center. For the same target at the swath edge the imaging performances of different algorithms may 
be different. Imaging profiles corresponding to T5 and T3 are shown in Figures 9 and 10. Evaluation 
results are listed in Tables 4 and 5. It is shown that for T5 three algorithms have basically the same 
imaging performance. However, for T3, azimuth defocusing occurs by applying the algorithm in [15]. 
The algorithm in [17] induces defocusing along azimuth and range directions, because the range 
variance is not corrected adequately and furthermore the azimuth focusing quality is affected. By 
comparison, the proposed algorithm has the best performance between these three algorithms. 

Figure 7. (a) Azimuth and (b) range profiles corresponding to every point target, represented by blue
and red lines, respectively.

Table 3. Evaluation Results.

Target T1 T2 T3 T4 T5 T6 T7 T8 T9

Azimuth resolution (m) 1.87 1.86 1.88 1.91 1.91 1.91 1.96 1.96 1.97
Azimuth broadening 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Azimuth PSLR (dB) ´13.29 ´13.30 ´13.23 ´13.36 ´13.36 ´13.36 ´13.22 ´13.19 ´13.24
Azimuth ISLR (dB) ´10.37 ´10.51 ´10.32 ´10.60 ´10.55 ´10.55 ´10.59 ´10.54 ´10.51

Range resolution (m) 1.95 1.95 1.94 1.94 1.94 1.94 1.94 1.94 1.94
Range broadening 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Range PSLR (dB) ´13.46 ´13.29 ´13.24 ´13.25 ´13.26 ´13.26 ´13.26 ´13.28 ´13.40
Range ISLR (dB) ´9.98 ´9.72 ´9.76 ´9.73 ´9.69 ´9.69 ´9.74 ´9.71 ´9.84

Usually for LEO SAR azimuth ISLRs and range ISLRs are almost equal. The situation is different
for GEO SAR with a resolution of 2 m. Because of the wide-angle observation, the two-dimensional
amplitude spectrum is not rectangular, and bifurcation exists along azimuth, as shown in Figure 8.
The bifurcation causes the energy of sidelobes to disperse in two directions, while the mainlobe is not
affected. As a result, azimuth ISLRs are better than range ISLRs in Table 3.
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Figure 8. The amplitude spectrum (a) and the contour map (b) corresponding to the imaging
result of T5.

In order to further demonstrate the advantage of the proposed algorithm, it is useful to
compare the imaging results obtained by different techniques. Here the imaging results of T3

and T5 are compared by applying the proposed algorithm, and other two algorithms developed
by Hu [15] and Li [17].

Theoretically, any algorithm can achieve good focusing quality for T5, because it is at the swath
center. For the same target at the swath edge the imaging performances of different algorithms may
be different. Imaging profiles corresponding to T5 and T3 are shown in Figures 9 and 10. Evaluation
results are listed in Tables 4 and 5. It is shown that for T5 three algorithms have basically the same
imaging performance. However, for T3, azimuth defocusing occurs by applying the algorithm in [15].
The algorithm in [17] induces defocusing along azimuth and range directions, because the range
variance is not corrected adequately and furthermore the azimuth focusing quality is affected. By
comparison, the proposed algorithm has the best performance between these three algorithms.
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Figure 9. Imaging profiles corresponding to T5. The first column represents the two-dimensional point 
spread function. The second and third columns represent azimuth and range profiles. (a–c) are 
achieved by applying the proposed algorithm, the algorithm in [15] and the algorithm in [17] 
respectively. 
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Figure 9. Imaging profiles corresponding to T5. The first column represents the two-dimensional point
spread function. The second and third columns represent azimuth and range profiles. (a–c) are achieved
by applying the proposed algorithm, the algorithm in [15] and the algorithm in [17] respectively.
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Figure 10. Imaging profiles corresponding to T3. The first column represents the two-dimensional 
point spread function. The second and third columns represent azimuth and range profiles. (a–c) are 
achieved by applying the proposed algorithm, the algorithm in [15] and the algorithm in [17] 
respectively. 

5.3. Computational Load 

Computational load is a key element to restrict the application of an algorithm. Although the 
chirp scaling algorithm (CSA) [12] cannot achieve the 2 m resolution for GEO SAR, it is worth 
comparing CSA and the proposed algorithm from the aspect of the computational load, because CSA 
is recognized as an efficient algorithm and has been widely applied. The back projection algorithm 
(BPA) [23] is also compared here, because BPA can achieve same focusing quality in the time domain. 
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In order to achieve 2 m resolution and a swath of 80 km × 80 km, aziN  and rngN  should be 
140,000 and 50,000 at least. According to Equation (70), analysis results are listed in Table 6. Although 
the computational load of the proposed algorithm is more than twice that of CSA, the increasement 
is acceptable because of the significant improvement of imaging quality. And the computational load 
is about 1/1000 of that of BPA, indicating that the proposed algorithm is efficient. 

Table 6. Comparison of Computational Load. 

Target Proposed Algorithm BPA CSA 
Computational load (GFLOP) 6790.6512 6,865,799.04 2415.32 

6. Conclusions 

This work models the spatial variance in the time and frequency domains based on a fifth-order 
polynomial slant range model. And a GEO SAR imaging algorithm is proposed, whose basic method 
is to correct the linear and quadratic spatial variance of RCM in the range and azimuth directions 
based on time-frequency scaling. As demonstrated by simulation results, this algorithm can 
accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. 

The algorithm can be applied in the squint mode for more flexible observation, although it is 
developed under the condition of zero Doppler centroid. For the squint mode, the Doppler centroid 

Figure 10. Imaging profiles corresponding to T3. The first column represents the two-dimensional point
spread function. The second and third columns represent azimuth and range profiles. (a–c) are achieved
by applying the proposed algorithm, the algorithm in [15] and the algorithm in [17] respectively.
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Table 4. Evaluation Results Corresponding to T5.

Proposed Algorithm Algorithm in [15] Algorithm in [17]

Azimuth resolution (m) 1.91 1.89 1.91
Azimuth broadening 1.00 1.00 1.00
Azimuth PSLR (dB) ´13.36 ´13.37 ´13.02
Azimuth ISLR (dB) ´10.55 ´10.61 ´10.25

Range resolution (m) 1.94 1.94 1.94
Range broadening 1.00 1.00 1.00
Range PSLR (dB) ´13.26 ´13.25 ´13.42
Range ISLR (dB) ´9.69 ´9.68 ´9.78

Table 5. Evaluation Results Corresponding to T3.

Proposed Algorithm Algorithm in [15] Algorithm in [17]

Azimuth resolution (m) 1.88 3.71 15.48
Azimuth broadening 1.00 1.86 7.77
Azimuth PSLR (dB) ´13.23 ´0.16 ´9.63
Azimuth ISLR (dB) ´10.32 0.09 ´7.42

Range resolution (m) 1.94 1.94 2.38
Range broadening 1.00 1.00 1.204
Range PSLR (dB) ´13.24 ´13.578 ´5.158
Range ISLR (dB) ´9.76 ´9.77 ´1.906

5.3. Computational Load

Computational load is a key element to restrict the application of an algorithm. Although the chirp
scaling algorithm (CSA) [12] cannot achieve the 2 m resolution for GEO SAR, it is worth comparing
CSA and the proposed algorithm from the aspect of the computational load, because CSA is recognized
as an efficient algorithm and has been widely applied. The back projection algorithm (BPA) [23] is also
compared here, because BPA can achieve same focusing quality in the time domain.

Computational load is evaluated according to the complex multiplication and addition in the
algorithm. Multiplication of two complex numbers and addition of two real numbers need 6 FLOPs
and 1 FLOP, respectively. A FFT or IFFT with a length of N points needs 5Nlog2 pNq FLOPs [18].

Suppose sampling numbers along azimuth and range are Nazi and Nrng, respectively.
The computational loads of the proposed algorithm, CSA, and BPA with 8-fold interpolation,
are respectively:

$

’

’

’

’

&

’

’

’

’

%

CP “ 25Nazi Nrnglog2
`

Nrng
˘

` 30Nazi Nrnglog2 pNaziq ` 67Nazi Nrng

CCSA “ 10Nazi Nrnglog2
`

Nrng
˘

` 10Nazi Nrnglog2 pNaziq ` 18Nazi Nrng

CBPA “ 45Nazi Nrnglog2
`

Nrng
˘

` 7N2
azi Nrng ` 126Nazi Nrng

(70)

In order to achieve 2 m resolution and a swath of 80 km ˆ 80 km, Nazi and Nrng should be 140,000
and 50,000 at least. According to Equation (70), analysis results are listed in Table 6. Although the
computational load of the proposed algorithm is more than twice that of CSA, the increasement is
acceptable because of the significant improvement of imaging quality. And the computational load is
about 1/1000 of that of BPA, indicating that the proposed algorithm is efficient.

Table 6. Comparison of Computational Load.

Target Proposed Algorithm BPA CSA

Computational load (GFLOP) 6790.6512 6,865,799.04 2415.32



Sensors 2016, 16, 1091 22 of 30

6. Conclusions

This work models the spatial variance in the time and frequency domains based on a fifth-order
polynomial slant range model. And a GEO SAR imaging algorithm is proposed, whose basic method is
to correct the linear and quadratic spatial variance of RCM in the range and azimuth directions based
on time-frequency scaling. As demonstrated by simulation results, this algorithm can accomplish GEO
SAR imaging with good and uniform imaging quality over the entire swath.

The algorithm can be applied in the squint mode for more flexible observation, although it is
developed under the condition of zero Doppler centroid. For the squint mode, the Doppler centroid is
spatially variant. As a result, data segmentation has to be used to divide the echo into blocks. Every
block is processed by linear RCM correction [24] and the proposed algorithm successively. Imaging
results of blocks are mosaicked to form the final image.

Author Contributions: Ze Yu and Peng Lin proposed the algorithm, and performed the experiments. Peng Xiao
and Chunsheng Li designed the experiments. Lihong Kang analyzed the data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Let Rt pηq denote the one-way slant range between the satellite and target when transmitting a
pulse, whose representation is:

Rt pηq “

d

B

Ñ

Rg_sat pηq ´
Ñ

Rg_tar,
Ñ

Rg_sat pηq ´
Ñ

Rg_tar

F

(A1)

where
Ñ

Rg_sat pηq and
Ñ

Rg_tar are position vectors of the satellite and the target in the Earth Centered
Rotating (ECR) coordinate system [18], respectively. By applying series expansion, Equation (A1) can
be expressed as:

Rt pηq “ r0,sin `

8
ÿ

n“1

rn,sin

n!
pη ´ ηcq

n (A2)

rn,sin denotes the nth-order coefficient. Furthermore, Rt pηq can also be expressed as:

Rt pηq “

d

ˇ

ˇ

ˇ

ˇ

Ñ

Rg_sat pηq

ˇ

ˇ

ˇ

ˇ

2
`

ˇ

ˇ

ˇ

ˇ

Ñ

Rg_tar

ˇ

ˇ

ˇ

ˇ

2
´ 2

B

Ñ

Rg_sat pηq ,
Ñ

Rg_tar

F

(A3)

Let Rr pη ` ∆ηq denote the one-way slant range when receiving the echo, where ∆η denotes the
round-trip delay time. For GEO SAR, the farthest slant range is about 41,680 km, which makes the
round-trip delay time less than 0.28 s. As a result, the radius of the GEO SAR trajectory during the

round-trip delay time is approximately invariable, which indicates
ˇ

ˇ

ˇ

ˇ

Ñ

Rg_sat pη ` ∆ηq

ˇ

ˇ

ˇ

ˇ

«

ˇ

ˇ

ˇ

ˇ

Ñ

Rg_sat pηq

ˇ

ˇ

ˇ

ˇ

. By

combining Equations (A1) and (A2), Rr pη ` ∆ηq equals:

Rr pη ` ∆ηq “

d

ˇ

ˇ

ˇ

ˇ

Ñ

Rg_sat pη ` ∆ηq

ˇ

ˇ

ˇ

ˇ

2
`

ˇ

ˇ

ˇ

ˇ

Ñ

Rg_tar

ˇ

ˇ

ˇ

ˇ

2
´ 2

B

Ñ

Rg_sat pη ` ∆ηq ,
Ñ

Rg_tar

F

«

d

R2
t pηq ´ 2

B

Ñ

Rg_sat pη ` ∆ηq ´
Ñ

Rg_sat pηq ,
Ñ

Rg_tar

F

(A4)

Rt pηq and Rr pη ` ∆ηq also satisfies the following propagation equation:

Rt pηq ` Rr pη ` ∆ηq “ c0∆η (A5)
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Combining Equations (A4) and (A5), the following equation can be achieved:

2
B

Ñ

Rg_sat pη ` ∆ηq ´
Ñ

Rg_sat pηq ,
Ñ

Rg_tar

F

` pc0∆ηq2 “ 2c0∆ηRt pηq (A6)

The satellite position at η ` ∆η can be approximated as:

Ñ

Rg_sat pη ` ∆ηq «
Ñ

Rg_sat pηq `
Ñ

Vg_sat pηq∆η `
1
2

Ñ

Ag_sat pηq p∆ηq2 (A7)

where
Ñ

Vg_sat pηq and
Ñ

Ag_sat pηq are the velocity and acceleration vectors of the satellite, respectively.

By replacing the component of
Ñ

Rg_sat pη ` ∆ηq ´
Ñ

Rg_sat pηq in Equation (A6) with Equation (A7), ∆η

can be solved:

∆η “

2c0Rt pηq ´ 2
B

Ñ

Vsg pηq ,
Ñ

Rg_tar

F

c2
0 `

B

Ñ

Asg pηq ,
Ñ

Rg_tar

F (A8)

Since c2
0 "

B

Ñ

Asg pηq ,
Ñ

Rg_tar

F

, ∆η can be approximated as:

∆η «
2Rt pηq

c0
´

2
B

Ñ

Vsg pηq ,
Ñ

Rg_tar

F

c2
0

´

2
B

Ñ

Asg pηq ,
Ñ

Rg_tar

F

c3
0

Rt pηq (A9)

At the beam crossing time ηc, the satellite position vector
Ñ

Rg_sat pηq can be represented as:

Ñ

Rg_sat pηq “
Ñ

Rg_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

`

8
ÿ

n“1

1
n!
¨
Ñ

R
pnq

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

¨ pη ´ ηcq
n (A10)

where
Ñ

R
pnq

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

denotes the nth-order derivative of
Ñ

Rg_sat pηq at ηc. Especially,
Ñ

R
p0q

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

,

Ñ

R
p1q

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

and
Ñ

R
p2q

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

represent position vector, velocity vector and acceleration vector, respectively.

Because
Ñ

Vg_sat pηq and
Ñ

Ag_sat pηq are the first-order and second-order derivatives of
Ñ

Rg_sat pηq, so
the following equations are achieved based on Equation (A10):

$

’

’

’

&

’

’

’

%

Ñ

Vsg pηq “
8
ř

n“1

1
pn´1q! ¨

Ñ

R
pnq

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

¨ pη ´ ηcq
n´1

Ñ

Asg pηq “
8
ř

n“2

1
pn´2q! ¨

Ñ

R
pnq

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

¨ pη ´ ηcq
n´2

(A11)

By substituting Equations (A2) and (A11) into Equation (A9), the equivalent slant range
R pηq equals:

R pηq “ c0∆η{2

“ r0,sin `
8
ř

n“1

rn,sin
n! pη ´ ηcq

n
´ 1

c0

8
ř

n“1

kn
pn´1q! pη ´ ηcq

n´1

´

„

1
c2

0

8
ř

n“2

kn
pn´2q! pη ´ ηcq

n´2
 „

r0,sin `
8
ř

n“1

rn,sin
n! pη ´ ηcq

n


(A12)

where kn denotes

C

Ñ

R
pnq

g_sat

ˇ

ˇ

ˇ

ˇ

η“ηc

,
Ñ

Rg_tar

G

.
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Equation (A12) can be simplified as:

R pηq « r0 `

8
ÿ

n“1

rn

n!
pη ´ ηcq

n (A13)

where:

rn “ rn,sin ´
kn`1

c0
´

1
c2

0
¨

n
ÿ

m“0

Cm
n km`2rn´m,sin, n ě 0 (A14)

and Cm
n “ n!{ rpn´mq!m!s.

Appendix B

Applying azimuth FT on Equation (7), the integration phase is:

θint “ ´
4π p f0 ` fτq

c0
Rpηq ´ 2π fηη (B1)

According to the principle of stationary phase and Equation (2) with Nr “ 5, the following
equation can be acquired from Equation (B1) by making the derivative of θint be zero:

r2η `
1
2

r3η2 `
1
6

r4η3 `
1

24
r5η4 “ ´

c0 fη

2 p f0 ` fτq
(B2)

Based on the series reversion method, η can be expressed as:

η “ A1y` A2y2 ` ¨ ¨ ¨ ` A9y9 (B3)

where y denotes ´c0 fη{ r2 p f0 ` fτqs. A1 through A9 denote stationary phase point coefficients to be
solved below.

Substituting Equation (B3) into Equation (B2), the following equation holds:

r2
“

A1y` A2y2 ` ¨ ¨ ¨ ` A9y9‰` 1
2 r3

“

A1y` A2y2 ` ¨ ¨ ¨ ` A9y9‰2
` ¨ ¨ ¨

` 1
4! r5

“

A1y` A2y2 ` ¨ ¨ ¨ ` A9y9‰4
“ y

(B4)

From Equation (B4), a set of coefficient equations is acquired as follows:
$

’

’

’

’

&

’

’

’

’

%

r2 A1 “ 1
r2 A2 `

1
2 r3 A2

1 “ 0
r2 A3 ` r3 A1 A2 `

1
6 r4 A3

1 “ 0
...

(B5)

By solving Equation (B5), Ai satisfies:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

A1 “
1
r2

A2 “ ´
r3

2r3
2

A3 “
1

6r5
2

“

3r2
3 ´ r2r4

‰

A4 “
1

24r7
2

“

10r2r3r4 ´ 15r3
3 ´ r2

2r5
‰

A5 “
1

120r9
2

“

´r3
2r6 ` 15r5r2

2r3 ` 10r2
2r2

4 ´ 105r2r2
3r4 ` 105r4

3
‰

A6 “ ¨ ¨ ¨

(B6)
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Substituting Equation (B3) into Equation (B1), the spectrum phase in the two dimensional
frequency domain is acquired:

θ2d f p fη , fτq “ ´
4πp f0 ` fτq

c0

#

r0 ´

9
ÿ

n“1

An

n` 1

ˆ

´
c0 fη

2 p f0 ` fτq
´ r1

˙n`1
+

´
π f 2

τ

Kr
´ 2π fηηc (B7)

By applying series expansion, Equation (B7) can be expressed as a polynomial of fτ :

θ2d f p fη , fτq “ 2πϕ0 `

9
ÿ

k“1

φk f k
τ ´ 2π fηηc (B8)

where:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕ0 “ ´
2
λ pr0 ´ P0q `

10
ř

m“1

2Pm
λ

´

λ
2 fη

¯m

φ1 “ ´
2
c0
pr0 ´ P0q ´

10
ř

m“2

2Pm
c0

´

λ
2 fη

¯m
pm´ 1q

φ2 “
10
ř

m“2

2C2
mPm

c0 f0

´

λ
2 fη

¯m
´ 1

2Kr

φk “ p´1qk
10
ř

m“2

2Ck
m`k´2Pm

c0 f k´1
0

´

λ
2 fη

¯m
, k ě 3

(B9)

and:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

P0 “
9
ř

n“1

Anp´r1q
n`1

n`1

P1 “
9
ř

n“1
Anp´1qn`1rn

1

Pm “
9
ř

n“m´1

Anp´1qn`1Cm
n`1rn`1´m

1
n`1 , 2 ď m ď 10

(B10)

Because Pm depends on rn and the highest orders along range and azimuth are both 2 shown in
Equation (6), Pm can be modeled as:

Pm “ Pm,re f `Qm,1,r∆R`Qm,2,r p∆Rq2 ` Qm,1,a|∆R ηc ` Qm,2,a|∆R pηcq
2 , 0 ď m ď 10 (B11)

According to Equations (B6) and (B10), every coefficient in Equation (B11) can be obtained. Then
coefficients in Equation (13) can be acquired:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’
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’

’

’

’

’

’

’

’

’

’

’

’

’

%

ϕ0,re f “ ´
2
λ

´

r0,re f ´ P0,re f

¯

`
10
ř

m“1

2Pm,re f
λ

´

λ
2 fη

¯m

M1,r “ ´
2
λ p1´Q0,1,rq `

10
ř

m“1

2Qm,1,r
λ

´

λ
2 fη

¯m

M2,r “ ´
2
λ p´Q0,2,rq `

10
ř

m“1

2Qm,n,r
λ

´

λ
2 fη

¯m

M1,a “ ´
2
λ

`

1´ Q0,1,a|∆R
˘

`
10
ř

m“1

2 Qm,1,a|∆R
λ

´

λ
2 fη

¯m

M2,a “ ´
2
λ

`

´ Q0,2,a|∆R
˘

`
10
ř

m“1

2 Qm,2,a|∆R
λ

´

λ
2 fη

¯m

(B12)
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λ
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(B13)
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%

φ2,re f “
10
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m“2

2C2
mPm,re f
c0 f0

´

λ
2 fη

¯m
´ 1

2Kr

J1,r “
10
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m“2

2C2
mQm,1,r
c0 f0

´

λ
2 fη
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2C2
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c0 f0

´

λ
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(B14)
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φ3,re f “ p´1q3
10
ř

m“2

2C3
m`1Pm,re f

c0 f 2
0

´

λ
2 fη

¯m

K1,r “ p´1q3
10
ř

m“2

2C3
m`1Qm,1,r

c0 f 2
0

´

λ
2 fη

¯m

K1,a “ p´1q3
10
ř

m“2

2C3
m`1 Qm,1,a|∆R

c0 f 2
0

´

λ
2 fη

¯m

(B15)

and:

φk,re f “ p´1qk
10
ÿ

m“2

2Ck
m`k´2Pm,re f

c0 f k´1
0

ˆ

λ

2
fη

˙m
, k ě 4 (B16)

Appendix C

After multiplying Equation (34) with Equation (37), the two-dimensional spectrum is:

S22d f

`

fη , fτ

˘

“ σ ¨Wa
“

fη

‰

¨ rect
”

fτ
Br

ı

exp
"

j2π
3
ř

k“1
φ1k f k

τ

*

exp
 

j2πϕ10
(

¨exp
 

j 2π
3 Y f 3

τ

(

exp
 

´j2π fηηc
(

(C1)

Implementing range IFT on it, the signal in the RD domain is obtained by the series
reversion method:

Srd
`

fη , τ
˘

“ rect
„

τ´τ1mig
Tp



¨ exp
 

j2πϕ10
(

¨ exp
 

´j2π fηηc
(

¨exp
"

´jπKm ¨
”

τ´ τ1mig

ı2
*

¨ exp
"

´j 2π
3 Jm ¨

”

τ´ τ1mig

ı3
* (C2)

where τ1mig “ ´φ11, Km “ 1{
`

2φ12
˘

and Jm “
`

3φ13 `Y
˘

K3
m.

Some important curves and variables in the RD domain are illustrated in Figure C1, where:

τ1 “ τ1mig

ˇ

ˇ

ˇ

fη“ fηre f
´

2rpt pηcq

c0
´ τ1mig,re f

ˇ

ˇ

ˇ

fη“ fηre f
(C3)
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Figure C1. Illustration of important curves and variables in RD domain. ,mig ref   and mig   represent 
migration curves corresponding to swath center and any target in the swath, respectively. ,mig c   and 

,smig   represent migration curves corresponding to any target whose =0c  before and after RCMC, 
respectively.   is the difference between ,smig   and ,mig ref  .   02 pt cr c  is the range offset induced by 

first azimuth scaling. 

Considering the spatial variance model in Equation (35), we can represent    as: 
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Combining Equations (35) and (C4), the differential RCM of the range cell center defined as 
, ,smig c mig    is obtained: 

 2

0

2
diffRCM

c
         (C5)

where: 

 

1,

1, ,

1, 2, , 2, 1, ,

3

1, ,

1r

r ref

r r ref r r ref

r ref

L

L

L L L L

L






  

     
 

 (C6)

1, ,r refL  and 2, ,r refL  equal 1,
ref

r f f
L

 
  and 2,

ref
r f f

L
 

 . Then, based on Equation (C5), mig    can 

also be represented as a function about   : 

 2

1mig cont                (C7)

where 1 ,mig s     . 

mK  and mJ  can also be represented as functions of   : 

m mref s

m mref s

K K K

J J J





 
  

 (C8)

Figure C1. Illustration of important curves and variables in RD domain. τ1mig,re f and τ1mig represent
migration curves corresponding to swath center and any target in the swath, respectively. τ1mig,c and
τ1mig,s represent migration curves corresponding to any target whose ηc “ 0 before and after RCMC,
respectively. τ1 is the difference between τ1mig,s and τ1mig,re f . 2rpt pηcq{c0 is the range offset induced by
first azimuth scaling.

Considering the spatial variance model in Equation (35), we can represent τ1 as:

τ1 “ ´L11,r,re f ∆R´ L12,r,re f p∆Rq2 (C4)

Combining Equations (35) and (C4), the differential RCM of the range cell center defined as
τ1mig,c ´ τ1mig,s is obtained:

2
c0

RCMdi f f “ α ¨ τ1 ` β ¨
`

τ1
˘2 (C5)

where:
$

’

’

’

&

’

’

’

%

α “
L11,r

L11,r,re f
´ 1

β “
L11,r L12,r,re f´L12,r L11,r,re f

´

L11,r,re f

¯3

(C6)

L11,r,re f and L12,r,re f equal L11,r

ˇ

ˇ

ˇ

fη“ fηre f
and L12,r

ˇ

ˇ

ˇ

fη“ fηre f
. Then, based on Equation (C5), τ´ τ1mig can

also be represented as a function about τ1:

τ´ τ1mig “ τ1 ´ tcon ´ α ¨ τ1 ´ β ¨
`

τ1
˘2 (C7)

where τ1 “ τ´ τ1mig,s.
Km and Jm can also be represented as functions of τ1:

#

Km “ Kmre f ` Ksτ1

Jm “ Jmre f ` Jsτ1
(C8)
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´
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¯
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mre f
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mre f
L11,r,re f

`
6J11,rKmre f Jmre f

L11,r,re f

(C9)

Based on Equations (C7) and (C8), the signal in Equation (C2) can be represented as Equation (38).

Appendix D

This appendix will show the swath size achieved by the proposed algorithm can reach
150 km (azimuth) ˆ 150 km (range). Simulation parameters are listed in Table D1. The simulated
swath is portrayed in Figure D1, and the swath center is at the equator.

Table D1. Parameters for Simulation and Verification.

Parameters Value

Orbital inclination angle 60˝

Eccentricity 0
Center time 0 s
Wavelength 0.24 m
Pulse width 2 µs
Bandwidth 150 MHz

Sampling rate 250 MHz
Pulse repetition frequency 400 Hz

Incidence angle 35˝

Squint angle 90˝

Synthetic aperture time 630 s
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Based on Equations (C7) and (C8), the signal in Equation (C2) can be represented as  
Equation (38). 
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Figure D1. T5 is at swath center. T1 is 75 km away from T5 along the azimuth and range directions. 

Range and azimuth profiles corresponding to every target are illustrated in Figure D2, and 
evaluation results are listed in Table D2. As shown in Table D2, the difference of range PSLRs, 

Figure D1. T5 is at swath center. T1 is 75 km away from T5 along the azimuth and range directions.

Range and azimuth profiles corresponding to every target are illustrated in Figure D2, and
evaluation results are listed in Table D2. As shown in Table D2, the difference of range PSLRs, azimuth
PSLRs, range ISLRs, and azimuth ISLRs over the whole swath is ď0.02 dB, ď0.06 dB, ď0.03 dB,
and ď0.09 dB respectively. Some broadening coefficients are less than 1, because the modulation
rates corresponding to these points are changed in imaging, and the resolutions become better.
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The simulation results show that this algorithm can achieve good imaging quality over the swath of
150 km ˆ 150 km.

Sensors 2016, 16, 1091 30 of 31 

 

azimuth PSLRs, range ISLRs, and azimuth ISLRs over the whole swath is ≤0.02 dB, ≤0.06 dB,  
≤0.03 dB, and ≤0.09 dB respectively. Some broadening coefficients are less than 1, because the 
modulation rates corresponding to these points are changed in imaging, and the resolutions become 
better. The simulation results show that this algorithm can achieve good imaging quality over the 
swath of 150 km × 150 km. 

(a) 

(b) 
Figure D2. (a) Azimuth and (b) range profiles corresponding to every point target, represented by 
blue and red lines, respectively. 

Table D2. Evaluation Results. 

Target T1 T2 T3 T4 T5 T6 T7 T8 T9 
Azimuth resolution (m) 1.95 1.93 1.95 1.96 1.95 1.96 1.98 1.98 1.97 

Azimuth broadening 0.99 1 0.99 0.98 1 0.99 0.98 1 1 
Azimuth PSLR (dB) 13.28 −13.27 −13.30 −13.28 −13.28 −13.29 −13.28 −13.28 −13.24 
Azimuth ISLR (dB) −10.18 −10.21 −10.26 −10.17 −10.17 −10.24 −10.18 −10.17 −10.19 

Range resolution (m) 2.09 2.09 2.08 2.07 2.07 2.06 2.08 2.06 2.06 
Range broadening 0.98 1 0.99 0.98 1 0.98 1 1 0.98 
Range PSLR (dB) −13.25 −13.25 −13.25 −13.25 −13.25 −13.25 −13.26 −13.25 −13.24 
Range ISLR (dB) −10.16 −10.15 −10.15 −10.14 −10.15 −10.14 −10.15 −10.17 −10.14 

References 

1. Tomiyasu, K. Synthetic aperture radar in geosynchronous orbit. In Proceedings of the Antennas and 
Propagation Society International Symposium, Washington, DC, USA, 15–19 March 1978; pp. 42–45. 

2. Bruno, D.; Hobbs, S.E.; Ottavianelli, G. Geosynchronous synthetic aperture radar: Concept design, 
properties and possible applications. Acta Astronaut. 2006, 59, 149–156. 

3. Tomiyasu, K.; Pacelli, J.L. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE 
Trans. Geosci. Remote Sens. 1983, 21, 324–329. 

4. Hobbs, S.E.; Bruno, D. Radar imaging from GEO: Challenges and applications. In Proceedings of the 
Remote Sensing and Photogrammetry Society Annual Conference, Newcastle upon Tyne, UK, 12–14 
September 2007. 

Figure D2. (a) Azimuth and (b) range profiles corresponding to every point target, represented by blue
and red lines, respectively.

Table D2. Evaluation Results.
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