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Abstract:



Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.
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1. Introduction


Geosynchronous synthetic aperture radar (GEO SAR) operates at an altitude ~36,000 km [1]. Compared with a low-Earth orbit (LEO) SAR, greater coverage can be achieved by GEO SAR because of its much higher orbit [2]. Furthermore, GEO SAR can guarantee observation of the same location every 24 h with the same incidence angle, which cannot be realized by LEO SAR [3]. Given its special characteristics, GEO SAR has attracted much attention [4]. It has become part of a global earthquake satellite system to monitor the global seismic state, as proposed by NASA and JPL in 2003 [5]. Another GEO SAR system called Geosynchronous Earth Monitoring by Interferometry and Imaging (GEMINI) was put forward in 2012 to acquire Earth surface data through GEO SAR interferometry [6]. For GEO SAR systems, imaging is always a major problem, the key to which is correction of the spatial variance of range cell migration (RCM).



RCM determines the distribution of echoes in the time and frequency domains. The spatial variance of RCM causes the spectrums corresponding to targets at different locations to be different. Therefore, in order to accomplish precise focusing in the frequency domain, the spatial variance must be corrected to eliminate the difference of RCM between any target in the swath and the reference point, usually the swath center. For LEO SAR with zero-Doppler steering, RCM is spatially variant along the range direction only, which can be processed by algorithms, such as range Doppler (RD) [7], chirp scaling (CS) [8] and wavenumber domain (WD) [9]. For high-squint LEO SAR, RCM varies along both range and azimuth slightly, and can be corrected by azimuth frequency scaling and block processing [10]. Compared with LEO SAR, higher altitude makes the synthetic aperture time of GEO SAR increase by over 100 times, which causes the relative trajectories between SAR and targets to become much more curved. As a result, for GEO SAR, the spatial variance of RCM is not only present in both range and azimuth directions but also much greater and more complicated. Moreover, the better the spatial resolution is, the much more serious the spatial variance of RCM is. How to correct the two-dimensional spatial variance of RCM is the specific imaging issue to realize high-resolution GEO SAR imaging. To address this problem, a precise range model has to be constructed to analyze RCM. Furthermore, an imaging algorithm based on the model can be presented to correct spatial variance and focus echo data.



According to this basic thought, in 2011, Bao et al. proposed a polynomial model to approximate RCM [11]. The following year they proposed a modified chirp scaling algorithm to correct linear spatial variance along the range direction [12]. After applying this algorithm, the quadratic residual RCM persists after correction. For this defect, Hu et al. forwarded a modified non-linear chirp scaling (NCS) algorithm based on correction of the quadratic residual RCM, but this still neglected spatial variance along the azimuth [13]. To correct the first-order azimuth variance, three different techniques were developed. Sun et al. adopted azimuth scaling combined with chirp scaling [14]. Hu et al. proposed a wavenumber-domain imaging algorithm based on modified Stolt interpolation [15]. Ding et al. constructed a fourth-order space-variant slant range model, applied the quadratic factor compensation in the two-dimensional time domain to reduce the variance of the azimuth phase, and adopted NCS to accomplish imaging. Simulation results demonstrated that this algorithm could enlarge the azimuth size of a well-focused image with a moderate resolution [16]. However, these techniques cannot correct higher-order azimuth variance contained in the quadratic and cubic phases, which is also crucial for imaging quality. In 2015, Li et al. proposed a fifth-order slant range model, and corrected quadratic azimuth spatial variance by exploiting azimuth time scaling. This technique focused on azimuth processing, while the range variance was not considered adequately [17].



The goal of this paper is to develop an algorithm that can correct high-order spatial variance of RCM along the range and azimuth directions, and perform GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions. The most important innovation of this algorithm is the implementation of time-frequency scaling to correct linear and quadratic azimuth variance.



This paper is structured as follows: Section 2 constructs an echo model based on approximation of the range history, analyzes spatial variance in the time and frequency domain, and proposes explicit expressions for phases in terms of spatial variables. To correct the spatial variance, Section 3 presents the basic methodology. A GEO SAR imaging algorithm is advanced in Section 4, which is composed of five steps, i.e., an initial azimuth scaling, RCM correction (RCMC) & range compression, second azimuth scaling, azimuth focusing, and geometric correction. In Section 5, simulation results are addressed to verify the validity of the proposed algorithm. Section 6 concludes the paper.




2. Echo Model and Spatial Variance Analysis


For SAR, after demodulation, the echo corresponding to an isolated point target can be represented by:


[image: there is no content]



(1)




where [image: there is no content] and [image: there is no content] denote the slow time along the azimuth and the fast time along the range, respectively. The constant [image: there is no content] is the backscattering coefficient of the target, [image: there is no content] is light speed, and [image: there is no content] is wavelength. [image: there is no content] represents the transmitted signal. Here, the chirp signal is the transmitted signal, which implies [image: there is no content]. [image: there is no content] is the linear frequency modulation rate, [image: there is no content] is pulse duration, and [image: there is no content] denotes the rectangular envelope. [image: there is no content] is the beam crossing time and [image: there is no content] is the synthetic aperture time.



In Equation (1), [image: there is no content] is the equivalent slant range between the spaceborne SAR and the target, which is the average of the one-way slant range when transmitting a pulse and that when receiving the echo. Usually [image: there is no content] can be approximated by a polynomial:


[image: there is no content]



(2)




where [image: there is no content] is the nth-order coefficient, and [image: there is no content] denotes the order. All SAR imaging algorithms are derived based on an appropriate slant range model, like Equation (2). The higher the order, the better the fit, which leads to better imaging performance. However, a high order increases the complexity of imaging algorithms. Therefore, determining an [image: there is no content] that balances imaging quality and complexity of the algorithm is a major challenge.



Usually the aperture time of LEO SAR is so short that Equation (2) with [image: there is no content] is adequate to approximate the slant range, which indicates that the phase error induced by the approximation is too small to affect imaging quality [18]. For GEO SAR, orbital altitude increases the aperture time over one hundred times. For example, if the ground resolution is 2 m, the aperture times for LEO and GEO SARs are about 6 s and 750 s, respectively. Thus, to describe the much more complicated relative motion with the longer aperture time, the order of Equation (2) must be redetermined by evaluating the impact of different [image: there is no content] on imaging quality, which can be represented by the resolution, peak side-lobe level ratio (PSLR), and integral side-lobe level ratio (ISLR) [18].



The following matching filtering is adopted:


[image: there is no content]



(3)




where [image: there is no content] represents convolution and [image: there is no content] may equal 4, 5 or ∞. When [image: there is no content] approaches ∞, Equation (3) indicates ideal filtering, which can achieve optimal imaging quality per the theory of matching filtering [18].



Evaluation results of applying Equation (3) and parameters in Table 1 are shown in Figure 1. Azimuthal resolution, PSLR, and ISLR achieved with [image: there is no content] are as nearly identical to results of the ideal filtering during the entire orbital period. However, when [image: there is no content], results are much worse. Therefore, the fifth-order approximation to [image: there is no content] is adequate to acquire optimum imaging quality.


Figure 1. Comparison of ideal filtering and matching filtering with [image: there is no content] 4 and 5. (a–c) show results of azimuthal resolution, PSLR, and ISLR during the entire orbital period, respectively. Results achieved with [image: there is no content] are as nearly identical to those attained by ideal filtering. With [image: there is no content] , results are much worse.
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Table 1. Analysis Parameters for Slant Range Order.







	
Parameters

	
Value






	
Orbital inclination angle

	
60°




	
Eccentricity

	
0




	
Wavelength

	
0.24 m




	
Incidence angle

	
35°




	
Ground resolution

	
2 m










By combining Equations (1) and (2), the echo model can be expressed as:


[image: there is no content]



(4)







2.1. Spatial Variance in the Time Domain


Given the invalidity of the “stop-and-go” approximation, [image: there is no content] ([image: there is no content]) in Equation (2) can be expressed as follows (see Appendix A):


[image: there is no content]



(5)




where:


[image: there is no content]








and [image: there is no content] denotes the dot product. [image: there is no content] and [image: there is no content] denotes the nth-order one-way slant range coefficient. [image: there is no content] represents nth-order derivatives of the position vectors of the SAR satellite at the beam crossing time [image: there is no content] and [image: there is no content] represents the position vector of the target. Usually the attitude steering is applied for GEO SAR [19], and makes the Doppler centroid zero, which leads to [image: there is no content].



Figure 2 illustrates the GEO SAR observation geometry. The beam crossing time corresponding to a target is the moment when the zero Doppler plane crosses the target. At the beam crossing time corresponding to the swath center, the distance from GEO SAR to the swath center is defined as the reference range, i.e., [image: there is no content], as shown in Figure 2a. When the zero Doppler plane crosses any target in the swath at [image: there is no content], the distance from SAR to the target is denoted by [image: there is no content], as shown in Figure 2b. As a result, the location of an isolated target can be uniquely represented by the beam crossing time [image: there is no content] and the corresponding distance [image: there is no content].


Figure 2. Illustration of GEO SAR geometry. (a) Observation geometry when the beam crosses the swath center; (b) Observation geometry when the beam crosses another target.



[image: Sensors 16 01091 g002 1024]






Equation (5) demonstrates that [image: there is no content] depends on the target position, indicating that [image: there is no content] is spatially variant. Therefore, using polynomial fitting, [image: there is no content] can be expressed as a function of [image: there is no content] and [image: there is no content], which are adopted as spatial variables along the range and azimuth directions, respectively. That is:


[image: there is no content]



(6)




where [image: there is no content]. [image: there is no content], [image: there is no content] and [image: there is no content] can be calculated by polynomial fitting based on ephemeris data and geographic information of the swath. All coefficients are spatially invariant except [image: there is no content], which varies with [image: there is no content]. Equation (6) demonstrates that there is nonlinear spatial variance in the slant range coefficients, which leads to the same condition in the phase spectrum.




2.2. Spatial Variance in the Frequency Domain


Equation (6) demonstrates that coefficient [image: there is no content] is two-dimensionally spatially variant, and so does RCM in the time domain. By implementing the Fourier transform (FT) on [image: there is no content] in range, the signal in the range-frequency domain can be expressed as follows:


[image: there is no content]



(7)




where [image: there is no content] is range frequency, [image: there is no content] is bandwidth of the transmitted signal, and [image: there is no content] is the carrier frequency. Then by performing FT along the azimuth, the two-dimensional spectrum is as follows (see Appendix B):


[image: there is no content]



(8)




where [image: there is no content] is defined as follows:


[image: there is no content]



(9)







[image: there is no content] is the azimuth spectrum amplitude. Since it is only concerned with azimuth focusing, its representation will be given in Section 4. By applying series expansion [20], Equation (8) can be organized in the form of a series of [image: there is no content], which is:


[image: there is no content]



(10)




where:


[image: there is no content]



(11)






[image: there is no content]



(12)




[image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] denote the azimuth modulation phase, RCM, range linear frequency-modulated phase and high-order range frequency-modulated phase, respectively. Equations (9), (11) and (12) demonstrate that [image: there is no content] and [image: there is no content] depend on [image: there is no content]. Therefore, [image: there is no content] and [image: there is no content] are spatially variant, which can also be explicitly expressed as a function of [image: there is no content] and [image: there is no content]:


[image: there is no content]



(13)







All coefficients in Equation (13) depend on [image: there is no content], and some of them also vary with [image: there is no content]. Details are given in Appendix B. The phase difference between Equations (11) and (13) is <0.012π, indicating that these approximations in Equation (13) will not affect imaging quality.





3. Basic Methodology of Correcting Spatial Variance


According to Equation (2), RCM is determined by slant range coefficients (i.e., [image: there is no content]). In order to correct the spatial variance of RCM, this paper adopts time-frequency scaling to modify [image: there is no content].



To introduce this idea, a one-dimensional signal [image: there is no content] is assumed to be:


[image: there is no content]



(14)




where [image: there is no content] is the signal duration time. [image: there is no content] is the center time and [image: there is no content] is the nth-order time-domain phase coefficient. According to Equation (6), [image: there is no content] can be assumed quadratically variant with [image: there is no content]. The aim of the time-frequency scaling method is to remove the spatial variance in [image: there is no content], which indicates that [image: there is no content] doesn’t depend on [image: there is no content] after scaling.



By applying series reversion method [21], the corresponding frequency-domain spectrum of Equation (14) can be attained as:


[image: there is no content]



(15)




[image: there is no content] is the frequency-domain spectrum phase coefficient and can be obtained by applying the method in Appendix B. In order to avoid time-domain aliasing, [image: there is no content] will not be modified by scaling.



Modification of frequency-domain spectrum phase coefficients leads to modification of time-domain phase coefficients. As a result, the following frequency scaling function can be used:


[image: there is no content]



(16)







After multiplication by Equation (16), Equation (15) becomes:


[image: there is no content]



(17)







By applying series reversion method to Equation (17), the following expression can be obtained:


[image: there is no content]



(18)




where:


[image: there is no content]



(19)







[image: there is no content] is the reconstructed nth-order time-domain phase coefficient. Like [image: there is no content], [image: there is no content] is also spatially variant with [image: there is no content]. According to Equation (6), spatial variance is up to the second order along both the range and the azimuth. As a result, [image: there is no content] can be assumed a second-order function of [image: there is no content], i.e.,


[image: there is no content]



(20)




where [image: there is no content] corresponds to the swath center. Then, the spatial difference between [image: there is no content] and [image: there is no content] is:


[image: there is no content]



(21)







In order to eliminate the first-order spatial variance of [image: there is no content], the time scaling function to be multiplied with Equation (18) is designed as:


[image: there is no content]



(22)







By multiplying Equations (18) and (22), the linear component of [image: there is no content] will be removed. Therefore, for correcting the linear spatial variance of all [image: there is no content] ([image: there is no content]), the complete time scaling function is:


[image: there is no content]



(23)







After multiplying Equation (18) with Equation (23), the signal becomes:


[image: there is no content]



(24)




where:


[image: there is no content]



(25)







The new time-domain phase coefficient is:


[image: there is no content]



(26)







Similar to [image: there is no content], [image: there is no content] also varies with [image: there is no content]. By applying the series reversion method to Equation (24), the spectrum is:


[image: there is no content]



(27)




where [image: there is no content] can be acquired by the method in Appendix B.



Because the time scaling has removed the linear spatial variance, [image: there is no content] satisfies:


[image: there is no content]



(28)







In order to remove the quadratic spatial variance in [image: there is no content] ([image: there is no content]), the following equation should be satisfied by assigning the appropriate value of [image: there is no content]:


[image: there is no content]



(29)







According to Equation (13), [image: there is no content] ([image: there is no content]) is spatially invariant in GEO SAR imaging. And after time-frequency scaling, the linear and quadratic spatial variance has been removed from [image: there is no content] ([image: there is no content]), as shown in Equations (28) and (29). Therefore, focusing for the whole swath can be accomplished in the frequency domain. Although the time-frequency scaling is only applied to correct the azimuth variance in this section, it can also be applied for the range variance correction, as shown in Section 4.




4. Spatial Variance Correction and GEO SAR Imaging


Based on the basic idea in Section 3, a GEO SAR imaging algorithm composed of five steps is proposed. The first is to eliminate linear azimuth variance of [image: there is no content] through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion.



4.1. First Azimuth Time Scaling


In Equation (10), [image: there is no content] determines the coupling between range and azimuth. The first step applies the time scaling to remove linear azimuth variance of [image: there is no content] and guarantees the quality of RCM correction and range compression.



In the range-frequency and azimuth-time domain, the echo can be expressed as Equation (7). The first azimuth scaling function is designed as:


[image: there is no content]



(30)




where:


[image: there is no content]



(31)







After multiplying Equations (7) and (30), the signal becomes:


[image: there is no content]



(32)







[image: there is no content] represents the modified nth-order slant range coefficient, which is:


[image: there is no content]



(33)







By performing the azimuth FT on Equation (32), the signal in the two-dimensional frequency domain is:


[image: there is no content]



(34)




where [image: there is no content] and [image: there is no content] ([image: there is no content]) can be attained by replacing [image: there is no content] with [image: there is no content] in Equation (11) and polynomial fitting, i.e.,


[image: there is no content]



(35)







After first azimuth time scaling, linear azimuthal variance is removed from [image: there is no content] in Equation (35), and the residual quadratic azimuth variance makes RCM variation be less than one quarter of a range cell in azimuth. Therefore, RCMs corresponding to targets in the same range cell can be regarded as identical [22], indicating that the first azimuth time scaling is beneficial to RCMC and range compression in the next step.



However, for targets in the same range cell a range offset in the RD domain is induced by the first azimuth scaling, which is:


[image: there is no content]



(36)







In Figure 3a, three curves show RCMs corresponding to the three targets TA, TB and TC. And, they are in the same range cell. These curves do not coincide because of azimuthal variance in the RD domain, as demonstrated in Figure 3b. After the first azimuth time scaling, RCMs are corrected to be the same and shifted by various offsets. As a result, they are approximately parallel in the RD domain and cross different range cells, as shown in Figure 3c. The range offset causes imaging distortion and is corrected in the final step.


Figure 3. Illustration of first azimuth time scaling. Three targets (TA, TB and TC) are in the same range cell. Because of azimuthal variance, their RCM curves vary in the time domain, as shown in (a); In the RD domain, only some parts of the curves coincide, as shown in (b); After first azimuth scaling, linear azimuth variance is corrected and the three curves in the RD domain are parallel, as demonstrated in (c).
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4.2. RCM Correction and Range Compression


In order to correct the range variance of [image: there is no content], [image: there is no content], and [image: there is no content], the following compensation function can be applied based on the thought of time-frequency scaling which is demonstrated in Section 3:


[image: there is no content]



(37)




where:


[image: there is no content]
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and [image: there is no content] is the Doppler centroid corresponding to the swath center.



By applying range IFT on the multiplication of Equations (34) and (37), the signal in the RD domain can be formulated as follows (see Appendix C):


Srd(fη,τ1)=σ⋅Wa[fη]⋅rect[τ1−tcon−ατ′−β(τ′)2Tp]⋅exp{j2πφ0′}⋅exp{−j2πfηηc}⋅exp{−jπ(Kmref+Ksτ′)[τ1−tcon−ατ′−β(τ′)2]2}⋅exp{−j2π3(Jmref+Jsτ′)[τ1−tcon−ατ′−β(τ′)2]3}



(38)




where:


[image: there is no content]
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Coupling of [image: there is no content] and [image: there is no content] denotes range variance. Per Equation (24), the function for correcting the range variance is:


[image: there is no content]



(39)




where [image: there is no content], and:


[image: there is no content]



(40)







The multiplication of Equations (38) and (39) can be approximated as:


Srd″(fη,τ1)≈σ⋅Wa[fη]⋅rect[τ1−tcon−α⋅τ′−β⋅(τ′)2Tp]⋅exp{j2πφ0′}⋅exp{−j2πfηηc}⋅exp{−j2π3(Jmref+Q3)⋅(τ1)3}⋅exp{−jπ(Kmref+Q2)(τ1)2}⋅exp{−jπ(Kmref+Ksτ′)[ατ′+β(τ′)2]2}⋅exp{j2π3(Jmref+Jsτ′)[ατ′+β(τ′)2]3}⋅exp{−jπQ2(τ′)2−j2π3Q3(τ′)3}⋅exp[j2πK1,r′Kmref3L1,r,ref′τ′(τ1)3]



(41)







The last term of Equation (41) will result in asymmetric range sidelobe. To further eliminate the impact of range variance in the last term of Equation (41), data segmentation can be adopted in the RD domain. Every segment corresponds to a sub-swath whose width in the slant range direction is <30 km. The phase variation induced by the term with [image: there is no content] is <0.04π in the sub-swath, which indicates that the last term in Equation (41) can be ignored in the processing of every segment.



By applying the range FT and the compensation function to Equation (41) successively, the range variance in every segment can be corrected. The compensation function is:


[image: there is no content]



(42)




where [image: there is no content] is distance from the swath center to sub-swath center in the slant range direction. Then, compensation results of data segments are stitched together. A uniform filter can be applied to accomplish RCM correction and range compression for the entire swath, which is:


Hrpc_rcmc(fη,fτ)=exp{−j[πfτ2Kmref+Q2−2π3Jmref+Q3(Kmref+Q2)3fτ3]}⋅exp{j2π(τmig,ref′−τmig,ref′|fη=fηref)fτ}



(43)







By applying Equation (43), the spectrum in the RD domain becomes:


Srd‴(fη,τ′)=σ⋅Wa[fη]⋅sinc[τ−τmig′|fη=fηref]exp{j2πφ0′}exp{−j2πfηηc}⋅exp{−jπ(Kmref+Ksτ′)[ατ′+β(τ′)2]2}⋅exp{j2π3(Jmref+Jsτ′)[ατ′+β(τ′)2]3}⋅exp{−jπQ2(τ′)2−j2π3Q3(τ′)3}



(44)







The last three terms in Equation (44) can be further compensated for by the following function:


Hleft(fη,τ)=exp{−jπ[Kmref+Ks⋅(τ−2r0,refc0)][α⋅(τ−2r0,refc0)+β⋅(τ−2r0,refc0)2]2}exp{j2π3[Jmref+Js⋅(τ−2r0,refc0)][α⋅(τ−2r0,refc0)+β⋅(τ−2r0,refc0)2]3}exp{−jπQ2⋅(τ−2r0,refc0)2−j2π3Q3⋅(τ−2r0,refc0)3}



(45)







Compensated for by Equation (45), the signal is:


[image: there is no content]



(46)








4.3. Second Azimuth Time-Frequency Scaling


After RCM correction and range compression, the third step is to further correct the residual azimuth variance in [image: there is no content].



To compensate for the additional phase induced by the first azimuth time scaling, the following function is adopted, which is:


[image: there is no content]



(47)







By applying the azimuth IFT and Equation (47) to Equation (46) successively, the signal in the RD domain is:


Srd(5)(fη,τ)=σ⋅Wa[fη]⋅sinc[τ−τ′mig|fη=fηref]⋅exp{−j2πfηηc}⋅exp{j2π[−2λ(r0−P0)+∑m=1102Pmλ(λ2fη)m]}



(48)




where the last phase is spatially variant and leads to azimuth defocusing.



Based on the basic methodology in Section 3, to correct the azimuthal variance in Equation (48), the frequency scaling is adopted, which is:


[image: there is no content]



(49)




where:


[image: there is no content]



(50)




and:


Y4=−136k2,1,a2(r2|ηc=0)5[12k2,1,a2⋅(r3|ηc=0)2+12k2,2,a2⋅(r2|ηc=0)2−21k2,1,a3⋅r3|ηc=0+9k2,1,a4−24k2,1,a2⋅k2,2,a⋅r2|ηc=0+11k2,1,a2⋅k3,1,a⋅r2|ηc=0−4k2,1,a⋅k3,2,a⋅(r2|ηc=0)2−6k2,2,a⋅k3,1,a⋅(r2|ηc=0)2+2k2,1,a⋅k4,1,a⋅(r2|ηc=0)2−2k2,1,a2⋅r2|ηc=0⋅r4|ηc=0+30k2,1,a⋅k2,2,a⋅r2|ηc=0⋅r3|ηc=0−12k2,1,a⋅k3,1,a⋅r2|ηc=0⋅r3|ηc=0]



(51)







After multiplying Equation (48) with Equation (49), the signal in the time domain is:


[image: there is no content]



(52)




where:


[image: there is no content]



(53)







Then, the azimuth time scaling function is applied to Equation (52), which is:


[image: there is no content]



(54)




where:


[image: there is no content]



(55)




and:


[image: there is no content]



(56)







After compensated for by Equation (54), Equation (52) becomes:


[image: there is no content]



(57)




where:


[image: there is no content]



(58)







By applying azimuth FT to Equation (57), the signal becomes:


Srd(7)(fη,τ)=σ⋅Wa[fη]⋅sinc[τ−τmig′|fη=fηref]exp{−j4πλ(r0‴−P0‴)−j2πfη(ηc−P1‴)}⋅exp{j∑m=2104πPm‴λ(λ2fη)m}



(59)




where [image: there is no content] can be obtained by replacing [image: there is no content] with [image: there is no content] in Equation (12). The spectrum envelope can be expressed as:


Wa[fη]≈1−r3‴2(r2‴)2(−λ2fη)−2r2‴⋅r4‴−5(r3‴)28(r2‴)4(−λ2fη)2−4r5‴⋅(r2‴)2−34r2‴⋅r3‴⋅r4‴+45(r3‴)348(r2‴)6(−λ2fη)3



(60)







In Equation (59), the phase variation induced by azimuthal variance is <0.024π in the entire swath, and does not affect azimuth focusing. As a result, the azimuth focusing can be implemented in the frequency domain.




4.4. Azimuth Compression


Equation (59) is spatially invariant and can be focused by applying a uniform azimuth matching filter for the entire swath, i.e.,


[image: there is no content]



(61)




where:


{φrc,0″=∑m=2102Prc,mλ(λ2fη)mAamp(fη)=1−rc,32rc,22(−λ2fη)−2rc,2⋅rc,4−5rc,328rc,24(−λ2fη)2−4rc,5⋅rc,22−34rc,2⋅rc,3+30rc,3348rc,26(−λ2fη)3



(62)




and:


{rc,0=r0|ηc=0rc,1=r1|ηc=0rc,2=r2|ηc=0rc,3=r3|ηc=0+Y3⋅(r2|ηc=0)3+p3rc,4=r4|ηc=0+3Y32⋅(r2|ηc=0)5+6Y3⋅r3|ηc=0⋅(r2|ηc=0)2+6Y4⋅(r2|ηc=0)4+p4rc,5=r5|ηc=0+15Y33⋅(r2|ηc=0)7+45Y32⋅(r2|ηc=0)4⋅r3|ηc=0+60Y3Y4⋅(r2|ηc=0)6+10Y3⋅(r2|ηc=0)2⋅r4|ηc=0+15Y3⋅r2|ηc=0⋅(r3|ηc=0)2+60Y4⋅(r2|ηc=0)3⋅r3|ηc=0+p5



(63)







[image: there is no content] can be attained by replacing [image: there is no content] with [image: there is no content] in Equation (12). The result of matching filtering is:


Srd(8)(fη,τ)≈sinc[τ−τ′mig|fη=fηref]rect[fηBa]⋅exp{−j4πλ(r0‴−P0‴)−j2πfη(ηc−P1‴)}



(64)







By implementing azimuth IFT, the focusing result can be expressed as:


[image: there is no content]



(65)








4.5. Geometric Correction


Equation (65) indicates that the echo has been completely focused. However, the target location is shifted in both azimuth and range directions. As illustrated in Figure 4, two targets, TA and TB, are originally in the same range cell, and [image: there is no content] for TB is zero. In the focusing result, TB is still at its original position. However, TA has been shifted to another position [image: there is no content]. The offsets along the range and azimuth directions are [image: there is no content] and [image: there is no content], respectively, revealing geometric distortion in the focused imaging that should be corrected.


Figure 4. Illustration of geometric distortion. Two targets (TA and TB) are orignally located in the same range cell, and [image: there is no content] for TB is zero. After imaging by proposed algorithm, TB is still at its original location. However, TA is focused at [image: there is no content]. Offsets in the range and azimuth directions are [image: there is no content] and [image: there is no content] , respectively. All targets originally on red line are on dashed line after focusing. Therefore, the focusing results must be corrected from the dashed to red line by geometric correction, from [image: there is no content] to [image: there is no content] .



[image: Sensors 16 01091 g004 1024]






In Figure 4, the dashed line represents the offset trajectory, which can be described by:


[image: there is no content]



(66)




where:


[image: there is no content]



(67)







[image: there is no content] and [image: there is no content] are the second-order and the third-order spatial variance coefficients of [image: there is no content] along the azimuth, respectively. They can be obtained by replacing [image: there is no content] with [image: there is no content] in Equations (9) and (12).



Equation (65) can be transformed into the range-frequency and azimuth-time domain, multiplied by the geometric correction function, i.e.,


[image: there is no content]



(68)




and transformed back into the time domain to achieve the final imaging result, which is:


[image: there is no content]



(69)







A flowchart of the proposed algorithm is shown in Figure 5.


Figure 5. Flowchart of the proposed algorithm.



[image: Sensors 16 01091 g005 1024]








5. Simulation and Verification


5.1. Simulation Parameters


Simulation parameters are listed in Table 2, which refer to the global earthquake satellite system [5]. The center of the swath is set to be 108.5° E and 35.3° N. Besides these parameters, the spatial variance of RCM also depends on the swath size. As the swath becomes wider, higher-order spatial variance may occur along both range and azimuth. As discussed in Section 4, the proposed algorithm can correct linear and quadric spatial variance. Therefore, in order to avoid the cubic and higher-order spatial variance, a simulated swath covering an area of 83 km (azimuth) × 86 km (range) is adopted to verify the algorithm with parameters in Table 2. It is certain that the swath size for the proposed algorithm varies with observation parameters. For example, if the center time is 0 and the swath center is at the equator, the swath size can reach 150 km (azimuth) × 150 km (range) (see Appendix D).



Table 2. Parameters for simulation and verification.







	
Parameters

	
Value






	
Orbital inclination angle

	
60°




	
Eccentricity

	
0




	
Center time

	
8600 s




	
Wavelength

	
0.24 m




	
Pulse width

	
2 μs




	
Bandwidth

	
150 MHz




	
Sampling rate

	
250 MHz




	
Pulse repetition frequency

	
120 Hz




	
Incidence angle

	
35°




	
Squint angle

	
90°




	
Synthetic aperture time

	
750 s










The simulated swath is portrayed in Figure 6. Nine point targets, from [image: there is no content] to [image: there is no content], are deployed. [image: there is no content] is at the swath center and other points are at the swath edge.


Figure 6. T5 is at swath center. T1 is 41.5 km and 43 km away from T5 along azimuth and range, respectively.



[image: Sensors 16 01091 g006 1024]







5.2. Imaging Results


Range and azimuth profiles corresponding to every target are illustrated in Figure 7, and evaluation results are listed in Table 3. The broadening coefficient is the ratio of the achieved resolution to the ideal resolution. Suppose that [image: there is no content] and [image: there is no content] are the azimuth resolutions achieved by the proposed algorithm and the ideal imaging, respectively. The azimuth broadening coefficient is defined as [image: there is no content]. The range broadening coefficient can be achieved by the same way. As shown in Table 3, the broadening coefficients are almost 1, which signifies no resolution loss in imaging. The ideal PSLR should be −13.26 dB. The loss of PSLR equals the absolute difference between the actual and ideal PSLRs. Table 3 shows that the maximal loss of range and azimuth PSLRs is ≤0.2 dB, and ≤0.1 dB, indicating good focusing quality. The difference of range PSLRs, azimuth PSLRs, range ISLRs, and azimuth ISLRs over the whole swath is ≤0.22 dB, ≤0.17 dB, ≤0.29 dB, and ≤0.28 dB respectively, indicating uniform imaging quality.


Figure 7. (a) Azimuth and (b) range profiles corresponding to every point target, represented by blue and red lines, respectively.



[image: Sensors 16 01091 g007 1024]






Table 3. Evaluation Results.







	
Target

	
T1

	
T2

	
T3

	
T4

	
T5

	
T6

	
T7

	
T8

	
T9






	
Azimuth resolution (m)

	
1.87

	
1.86

	
1.88

	
1.91

	
1.91

	
1.91

	
1.96

	
1.96

	
1.97




	
Azimuth broadening

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00




	
Azimuth PSLR (dB)

	
−13.29

	
−13.30

	
−13.23

	
−13.36

	
−13.36

	
−13.36

	
−13.22

	
−13.19

	
−13.24




	
Azimuth ISLR (dB)

	
−10.37

	
−10.51

	
−10.32

	
−10.60

	
−10.55

	
−10.55

	
−10.59

	
−10.54

	
−10.51




	
Range resolution (m)

	
1.95

	
1.95

	
1.94

	
1.94

	
1.94

	
1.94

	
1.94

	
1.94

	
1.94




	
Range broadening

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00

	
1.00




	
Range PSLR (dB)

	
−13.46

	
−13.29

	
−13.24

	
−13.25

	
−13.26

	
−13.26

	
−13.26

	
−13.28

	
−13.40




	
Range ISLR (dB)

	
−9.98

	
−9.72

	
−9.76

	
−9.73

	
−9.69

	
−9.69

	
−9.74

	
−9.71

	
−9.84










Usually for LEO SAR azimuth ISLRs and range ISLRs are almost equal. The situation is different for GEO SAR with a resolution of 2 m. Because of the wide-angle observation, the two-dimensional amplitude spectrum is not rectangular, and bifurcation exists along azimuth, as shown in Figure 8. The bifurcation causes the energy of sidelobes to disperse in two directions, while the mainlobe is not affected. As a result, azimuth ISLRs are better than range ISLRs in Table 3.


Figure 8. The amplitude spectrum (a) and the contour map (b) corresponding to the imaging result of T5.



[image: Sensors 16 01091 g008 1024]






In order to further demonstrate the advantage of the proposed algorithm, it is useful to compare the imaging results obtained by different techniques. Here the imaging results of T3 and T5 are compared by applying the proposed algorithm, and other two algorithms developed by Hu [15] and Li [17].



Theoretically, any algorithm can achieve good focusing quality for T5, because it is at the swath center. For the same target at the swath edge the imaging performances of different algorithms may be different. Imaging profiles corresponding to T5 and T3 are shown in Figure 9 and Figure 10. Evaluation results are listed in Table 4 and Table 5. It is shown that for T5 three algorithms have basically the same imaging performance. However, for T3, azimuth defocusing occurs by applying the algorithm in [15]. The algorithm in [17] induces defocusing along azimuth and range directions, because the range variance is not corrected adequately and furthermore the azimuth focusing quality is affected. By comparison, the proposed algorithm has the best performance between these three algorithms.


Figure 9. Imaging profiles corresponding to T5. The first column represents the two-dimensional point spread function. The second and third columns represent azimuth and range profiles. (a–c) are achieved by applying the proposed algorithm, the algorithm in [15] and the algorithm in [17] respectively.



[image: Sensors 16 01091 g009a 1024][image: Sensors 16 01091 g009b 1024]





Figure 10. Imaging profiles corresponding to T3. The first column represents the two-dimensional point spread function. The second and third columns represent azimuth and range profiles. (a–c) are achieved by applying the proposed algorithm, the algorithm in [15] and the algorithm in [17] respectively.



[image: Sensors 16 01091 g010a 1024][image: Sensors 16 01091 g010b 1024]






Table 4. Evaluation Results Corresponding to T5.







	

	
Proposed Algorithm

	
Algorithm in [15]

	
Algorithm in [17]






	
Azimuth resolution (m)

	
1.91

	
1.89

	
1.91




	
Azimuth broadening

	
1.00

	
1.00

	
1.00




	
Azimuth PSLR (dB)

	
−13.36

	
−13.37

	
−13.02




	
Azimuth ISLR (dB)

	
−10.55

	
−10.61

	
−10.25




	
Range resolution (m)

	
1.94

	
1.94

	
1.94




	
Range broadening

	
1.00

	
1.00

	
1.00




	
Range PSLR (dB)

	
−13.26

	
−13.25

	
−13.42




	
Range ISLR (dB)

	
−9.69

	
−9.68

	
−9.78










Table 5. Evaluation Results Corresponding to T3.







	

	
Proposed Algorithm

	
Algorithm in [15]

	
Algorithm in [17]






	
Azimuth resolution (m)

	
1.88

	
3.71

	
15.48




	
Azimuth broadening

	
1.00

	
1.86

	
7.77




	
Azimuth PSLR (dB)

	
−13.23

	
−0.16

	
−9.63




	
Azimuth ISLR (dB)

	
−10.32

	
0.09

	
−7.42




	
Range resolution (m)

	
1.94

	
1.94

	
2.38




	
Range broadening

	
1.00

	
1.00

	
1.204




	
Range PSLR (dB)

	
−13.24

	
−13.578

	
−5.158




	
Range ISLR (dB)

	
−9.76

	
−9.77

	
−1.906











5.3. Computational Load


Computational load is a key element to restrict the application of an algorithm. Although the chirp scaling algorithm (CSA) [12] cannot achieve the 2 m resolution for GEO SAR, it is worth comparing CSA and the proposed algorithm from the aspect of the computational load, because CSA is recognized as an efficient algorithm and has been widely applied. The back projection algorithm (BPA) [23] is also compared here, because BPA can achieve same focusing quality in the time domain.



Computational load is evaluated according to the complex multiplication and addition in the algorithm. Multiplication of two complex numbers and addition of two real numbers need 6 FLOPs and 1 FLOP, respectively. A FFT or IFFT with a length of N points needs [image: there is no content] FLOPs [18].



Suppose sampling numbers along azimuth and range are [image: there is no content] and [image: there is no content], respectively. The computational loads of the proposed algorithm, CSA, and BPA with 8-fold interpolation, are respectively:


[image: there is no content]



(70)







In order to achieve 2 m resolution and a swath of 80 km × 80 km, [image: there is no content] and [image: there is no content] should be 140,000 and 50,000 at least. According to Equation (70), analysis results are listed in Table 6. Although the computational load of the proposed algorithm is more than twice that of CSA, the increasement is acceptable because of the significant improvement of imaging quality. And the computational load is about 1/1000 of that of BPA, indicating that the proposed algorithm is efficient.



Table 6. Comparison of Computational Load.







	
Target

	
Proposed Algorithm

	
BPA

	
CSA






	
Computational load (GFLOP)

	
6790.6512

	
6,865,799.04

	
2415.32












6. Conclusions


This work models the spatial variance in the time and frequency domains based on a fifth-order polynomial slant range model. And a GEO SAR imaging algorithm is proposed, whose basic method is to correct the linear and quadratic spatial variance of RCM in the range and azimuth directions based on time-frequency scaling. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.



The algorithm can be applied in the squint mode for more flexible observation, although it is developed under the condition of zero Doppler centroid. For the squint mode, the Doppler centroid is spatially variant. As a result, data segmentation has to be used to divide the echo into blocks. Every block is processed by linear RCM correction [24] and the proposed algorithm successively. Imaging results of blocks are mosaicked to form the final image.
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Appendix A


Let [image: there is no content] denote the one-way slant range between the satellite and target when transmitting a pulse, whose representation is:


[image: there is no content]



(A1)




where [image: there is no content] and [image: there is no content] are position vectors of the satellite and the target in the Earth Centered Rotating (ECR) coordinate system [18], respectively. By applying series expansion, Equation (A1) can be expressed as:


[image: there is no content]



(A2)




[image: there is no content] denotes the nth-order coefficient. Furthermore, [image: there is no content] can also be expressed as:


[image: there is no content]



(A3)







Let [image: there is no content] denote the one-way slant range when receiving the echo, where [image: there is no content] denotes the round-trip delay time. For GEO SAR, the farthest slant range is about 41,680 km, which makes the round-trip delay time less than 0.28 s. As a result, the radius of the GEO SAR trajectory during the round-trip delay time is approximately invariable, which indicates [image: there is no content]. By combining Equations (A1) and (A2), [image: there is no content] equals:


Rr(η+Δη)=|R→g_sat(η+Δη)|2+|R→g_tar|2−2⟨R→g_sat(η+Δη),R→g_tar⟩≈Rt2(η)−2⟨R→g_sat(η+Δη)−R→g_sat(η),R→g_tar⟩



(A4)







[image: there is no content] and [image: there is no content] also satisfies the following propagation equation:


[image: there is no content]



(A5)







Combining Equations (A4) and (A5), the following equation can be achieved:


[image: there is no content]



(A6)







The satellite position at [image: there is no content] can be approximated as:


[image: there is no content]



(A7)




where [image: there is no content] and [image: there is no content] are the velocity and acceleration vectors of the satellite, respectively. By replacing the component of [image: there is no content] in Equation (A6) with Equation (A7), [image: there is no content] can be solved:


[image: there is no content]



(A8)







Since [image: there is no content], [image: there is no content] can be approximated as:


[image: there is no content]



(A9)







At the beam crossing time [image: there is no content], the satellite position vector [image: there is no content] can be represented as:


[image: there is no content]



(A10)




where [image: there is no content] denotes the nth-order derivative of [image: there is no content] at [image: there is no content]. Especially, [image: there is no content], [image: there is no content] and [image: there is no content] represent position vector, velocity vector and acceleration vector, respectively.



Because [image: there is no content] and [image: there is no content] are the first-order and second-order derivatives of [image: there is no content], so the following equations are achieved based on Equation (A10):


[image: there is no content]



(A11)







By substituting Equations (A2) and (A11) into Equation (A9), the equivalent slant range [image: there is no content] equals:


R(η)=c0Δη/2=r0,sin+∑n=1∞rn,sinn!(η−ηc)n−1c0∑n=1∞kn(n−1)!(η−ηc)n−1−[1c02∑n=2∞kn(n−2)!(η−ηc)n−2][r0,sin+∑n=1∞rn,sinn!(η−ηc)n]



(A12)




where [image: there is no content] denotes [image: there is no content].



Equation (A12) can be simplified as:


[image: there is no content]



(A13)




where:


[image: there is no content]



(A14)




and [image: there is no content].




Appendix B


Applying azimuth FT on Equation (7), the integration phase is:


[image: there is no content]



(B1)







According to the principle of stationary phase and Equation (2) with [image: there is no content], the following equation can be acquired from Equation (B1) by making the derivative of [image: there is no content] be zero:


[image: there is no content]



(B2)







Based on the series reversion method, [image: there is no content] can be expressed as:


[image: there is no content]



(B3)




where y denotes [image: there is no content]. [image: there is no content] through [image: there is no content] denote stationary phase point coefficients to be solved below.



Substituting Equation (B3) into Equation (B2), the following equation holds:


[image: there is no content]



(B4)







From Equation (B4), a set of coefficient equations is acquired as follows:


[image: there is no content]



(B5)







By solving Equation (B5), [image: there is no content] satisfies:


[image: there is no content]



(B6)







Substituting Equation (B3) into Equation (B1), the spectrum phase in the two dimensional frequency domain is acquired:


[image: there is no content]



(B7)







By applying series expansion, Equation (B7) can be expressed as a polynomial of [image: there is no content]:


[image: there is no content]



(B8)




where:


[image: there is no content]



(B9)




and:


[image: there is no content]



(B10)







Because [image: there is no content] depends on [image: there is no content] and the highest orders along range and azimuth are both 2 shown in Equation (6), [image: there is no content] can be modeled as:


[image: there is no content]



(B11)







According to Equations (B6) and (B10), every coefficient in Equation (B11) can be obtained. Then coefficients in Equation (13) can be acquired:


[image: there is no content]



(B12)






[image: there is no content]



(B13)






[image: there is no content]



(B14)






[image: there is no content]



(B15)




and:


[image: there is no content]



(B16)








Appendix C


After multiplying Equation (34) with Equation (37), the two-dimensional spectrum is:


S2df″(fη,fτ)=σ⋅Wa[fη]⋅rect[fτBr]exp{j2π∑k=13ϕk′fτk}exp{j2πφ0′}⋅exp{j2π3Yfτ3}exp{−j2πfηηc}



(C1)







Implementing range IFT on it, the signal in the RD domain is obtained by the series reversion method:


[image: there is no content]



(C2)




where [image: there is no content], [image: there is no content] and [image: there is no content].



Some important curves and variables in the RD domain are illustrated in Figure C1, where:


[image: there is no content]



(C3)






Figure C1. Illustration of important curves and variables in RD domain. [image: there is no content] and [image: there is no content] represent migration curves corresponding to swath center and any target in the swath, respectively. [image: there is no content] and [image: there is no content] represent migration curves corresponding to any target whose [image: there is no content] before and after RCMC, respectively. [image: there is no content] is the difference between [image: there is no content] and [image: there is no content] . [image: there is no content] is the range offset induced by first azimuth scaling.



[image: Sensors 16 01091 g011 1024]








Considering the spatial variance model in Equation (35), we can represent [image: there is no content] as:


[image: there is no content]



(C4)







Combining Equations (35) and (C4), the differential RCM of the range cell center defined as [image: there is no content] is obtained:


[image: there is no content]



(C5)




where:


[image: there is no content]



(C6)







[image: there is no content] and [image: there is no content] equal [image: there is no content] and [image: there is no content]. Then, based on Equation (C5), [image: there is no content] can also be represented as a function about [image: there is no content]:


[image: there is no content]



(C7)




where [image: there is no content].



[image: there is no content] and [image: there is no content] can also be represented as functions of [image: there is no content]:


[image: there is no content]



(C8)




where:


[image: there is no content]



(C9)







Based on Equations (C7) and (C8), the signal in Equation (C2) can be represented as Equation (38).




Appendix D


This appendix will show the swath size achieved by the proposed algorithm can reach 150 km (azimuth) × 150 km (range). Simulation parameters are listed in Table D1. The simulated swath is portrayed in Figure D1, and the swath center is at the equator.


Figure D1. T5 is at swath center. T1 is 75 km away from T5 along the azimuth and range directions.



[image: Sensors 16 01091 g012 1024]






Table D1. Parameters for Simulation and Verification.







	
Parameters

	
Value






	
Orbital inclination angle

	
60°




	
Eccentricity

	
0




	
Center time

	
0 s




	
Wavelength

	
0.24 m




	
Pulse width

	
2 [image: there is no content]




	
Bandwidth

	
150 MHz




	
Sampling rate

	
250 MHz




	
Pulse repetition frequency

	
400 Hz




	
Incidence angle

	
35°




	
Squint angle

	
90°




	
Synthetic aperture time

	
630 s














Range and azimuth profiles corresponding to every target are illustrated in Figure D2, and evaluation results are listed in Table D2. As shown in Table D2, the difference of range PSLRs, azimuth PSLRs, range ISLRs, and azimuth ISLRs over the whole swath is ≤0.02 dB, ≤0.06 dB, ≤0.03 dB, and ≤0.09 dB respectively. Some broadening coefficients are less than 1, because the modulation rates corresponding to these points are changed in imaging, and the resolutions become better. The simulation results show that this algorithm can achieve good imaging quality over the swath of 150 km × 150 km.


Figure D2. (a) Azimuth and (b) range profiles corresponding to every point target, represented by blue and red lines, respectively.



[image: Sensors 16 01091 g013 1024]






Table D2. Evaluation Results.







	
Target

	
T1

	
T2

	
T3

	
T4

	
T5

	
T6

	
T7

	
T8

	
T9






	
Azimuth resolution (m)

	
1.95

	
1.93

	
1.95

	
1.96

	
1.95

	
1.96

	
1.98

	
1.98

	
1.97




	
Azimuth broadening

	
0.99

	
1

	
0.99

	
0.98

	
1

	
0.99

	
0.98

	
1

	
1




	
Azimuth PSLR (dB)

	
13.28

	
−13.27

	
−13.30

	
−13.28

	
−13.28

	
−13.29

	
−13.28

	
−13.28

	
−13.24




	
Azimuth ISLR (dB)

	
−10.18

	
−10.21

	
−10.26

	
−10.17

	
−10.17

	
−10.24

	
−10.18

	
−10.17

	
−10.19




	
Range resolution (m)

	
2.09

	
2.09

	
2.08

	
2.07

	
2.07

	
2.06

	
2.08

	
2.06

	
2.06




	
Range broadening

	
0.98

	
1

	
0.99

	
0.98

	
1

	
0.98

	
1

	
1

	
0.98




	
Range PSLR (dB)

	
−13.25

	
−13.25

	
−13.25

	
−13.25

	
−13.25

	
−13.25

	
−13.26

	
−13.25

	
−13.24




	
Range ISLR (dB)

	
−10.16

	
−10.15

	
−10.15

	
−10.14

	
−10.15

	
−10.14

	
−10.15

	
−10.17

	
−10.14
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