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Abstract: The ability of road vehicles to efficiently execute different sensing tasks varies because of
the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task,
which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems,
particularly those with limited sensing capabilities. A utility-based sensing task decomposition
and offloading algorithm is proposed in this paper. The utility function for a task executed by a
certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well
as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the
sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of
the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that
the proposed task offloading is able to collect much more comprehensive and uniformly distributed
sensing data than other algorithms.
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1. Introduction

In mobile crowd sensing systems, ordinary citizens are recruited to collect and share data from
their surrounding environments through mobile devices [1,2]. On the basis of collected sensing data,
mobile crowd sensing systems are able to provide users with various novel applications [3], such as
real-time air quality reports [4] and road traffic monitoring [5,6]. Various sensing devices and mobile
communication interfaces are installed in an increasing number of vehicles, which are able to collect
and share various types of sensing data in urban environments. The extensive distribution of these
vehicles in urban areas has realized vehicular mobile crowd sensing.

In a vehicular mobile sensing system, sensing data are collected by vehicles and then transmitted
to a sensing data center via wireless networks. Vehicular mobile crowd sensing can collect a large
amount of comprehensive data, which are collaboratively collected by multiple sensing vehicles.
To meet the sensing data requirements of vehicular mobile crowd sensing applications, a large amount
of sensing tasks should be generated by the sensing system to collect user-required sensing data.
Therefore, vehicular mobile crowd sensing systems mainly collect various kinds of sensing data that
encompass all the tempo-spatial dimensions required by sensing tasks. However, sensing vehicles are
heterogeneous in terms of sensing interfaces and mobility trajectories. Thus, collecting all required
data for sensing tasks by one sensing vehicle is impossible.

Sensing data are temporal, and collected sensing data may expire after certain time. For example,
atmospheric temperature changes with time in any given day; as a result, collected temperature data
will be expired after a few hours. Moreover, different types of sensing data may have different life
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cycles. For example, the life cycle of noise data is much shorter than that of temperature data. Thus,
vehicular crowd sensing systems should continuously generate sensing tasks and collect sensing data
in target sensing areas to ensure relevance of the user-required data.

In vehicular mobile crowd sensing systems, the quality of collected sensing data increases with
the increase in number of sensing vehicles used to collect data, which, consequently, equates to high
cost [7]. Therefore, continuous collection of tempo-spatial sensing data required for a task with a
limited number of heterogeneous sensing vehicles is a critical issue.

This work proposed a utility-based sensing task decomposition and offloading algorithm.
A mobility model based on a continuous-time Markov chain is established to forecast the spatial
distribution of sensing vehicles. A utility function is designed to estimate the sensing task execution
capacity of sensing vehicles on the basis of the spatial distribution and interfaces of sensing vehicles,
tempo-spatial coverage of collected data, requirements of the tempo-spatial coverage, and types of
sensing data. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according
to the utilities of the neighboring vehicles to the decomposed sensing tasks.

The remainder of this paper is organized as follows. Section 2 reviews the related studies on mobile
crowd sensing and vehicle sensing. Section 3 presents the vehicular mobile crowd sensing system
model, the tempo-spatial sensing data model, and the mobility model of the sensing vehicles. A sensing
utility function of a vehicle to sensing tasks is proposed in Section 4, based on the heterogeneity of
the sensing abilities of the sensing vehicles and the sensing task required sensing data tempo-spatial
coverage. Then, a sensing Task Offloading algorithm is proposed based on the proposed utility function
in Section 4. Section 5 evaluates the performance of the proposed strategy through real trace-driven
simulations. Section 6 presents the conclusions.

2. Related Work

Mobile crowd sensing [1] is a promising means of collecting comprehensive sensing data in
urban areas. Different from traditional wireless sensor networks [8,9], sensors are equipped in mobile
phones or on board units and carried by people or vehicles. In recent years, a large number of novel
applications [3] based on mobile crowd sensing have been deployed. For example, The Common Sense
project [10] monitored the contents of pollutants in the air by collecting sensing data from handheld
air quality monitors. Yu et al. [11] recovered noise situation throughout New York City (NYC) based
on mobile crowd sensing and inferred the fine-grained noise situation at different times of the day for
each region of NYC with the use of data from the city complaint platform, together with social media,
road network data, and points of interests. The Mahali project [12] used GPS signals that penetrate the
ionosphere for science rather than positioning; a large number of ground-based sensors fed data into a
cloud-based processing environment through mobile devices, thus enabling a tomographic analysis
of the global ionosphere at an unprecedented resolution and coverage. Zhou et al. [13] presented a
novel bus arrival time prediction system based on crowd sensing and predicted bus arrival times by
encouraging passengers to collect generally available and energy-efficient sensing resources, including
cell tower signals, movement statuses, and audio recordings. The TomTom City project [14] provides
live and historical traffic and travel information services, and the traffic data is collected by mobile
vehicles. However, existing mobile sensing applications suffer from poor sensing data qualities owing
to the lack of theoretical research on mobile crowd sensing; thus, the commercial deployment of mobile
crowd sensing systems is restricted.

Zhang et al. [15] proposed a four-stage life cycle (i.e., task creation, task assignment, individual
task execution, and crowd data integration) to characterize the mobile crowd sensing process. Selecting
the most efficient sensing nodes to collect sensing data is a commonly used method in task creation
and assignment stages to guarantee coverage of sensing data [16]. The basic principle of participant
selection is to collect sensing data with the highest coverage ratio by limited number of participants [17].
Reddy et al. [18] developed a selection framework to allow organizers to identify well-suited sensing
nodes for data collection on the basis of their geographic and temporal availabilities, as well as their
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habits. Tuncay et al. [19] exploited the stability of user behavior and selected sensing nodes according
to the fitness of the mobility history profiles of users. Moreover, modeling the mobility of sensing
nodes and forecasting the traces of sensing nodes can reduce the required amount of participating
sensing nodes [20,21]. When selecting sensing nodes, forecasting the traces of the nodes with their call
logs can reduce energy consumption and result in high sensing data coverage ratio [22].

Song et al. [23] satisfied most requirements of sensing tasks by limited incentives to achieve favorable
coverage ratio of collected sensing data. Guang et al. [24] constructed contractual arrangements as
incentive mechanism for system administrator to encourage participants to help detecting the malicious
user. Chien et al. [25] introduced the online task assignment problem, in which heterogeneous tasks are
assigned to workers with different unknown skill sets. Furthermore, this method is able to complete
more sensing tasks in time because both the target location of the sensing tasks and the movement
range of the participants are considered [26].

Frequent encounters between mobile vehicles provides sensing vehicles opportunity to collaborate
with each other. Xiang et al. [27] reduced energy consumption of mobile phone sensing by designing a
cloud-assisted collaborative sensing method. Bin et al. [28] generated context characteristics according
to collaborative sensing. MOSDEN (mobile sensor data engine) [29] operated on smartphones to collect
and share sensing data among multiple distributed applications and users.

Collaboration between vehicles in the task execution stage can further improve the coverage
of collected sensing data. For example, in the task execution stage, offloading sensing tasks from
mobile devices to the environmental embedded sensors can improve quality of collected sensing
data and reduce energy consumption of mobile devices [30,31]. In mobile cloud computing, task
offloading [32] migrates the heavy computation task from mobile devices to the cloud to reduce load
of mobile devices [33]. Mtibaa et al. [34] proposed a mobile device cloud framework, in which the
computing task could be offloaded from one device to another upon interaction. Zheng et al. [35]
proposed a participatory computing paradigm to harness the computational power on mobile devices.
They propose a general randomized task assignment frame work to minimal workload for individual
participating devices. In mobile crowd sensing, Ma et al. [36] delivered collected sensing data between
mobile devices to improve data transmission efficiency. Thus, we introduce sensing Task Offloading
into the task execution stage to improve quality of collected sensing data.

In early vehicle-based environmental sensing applications, vehicles were used to monitor
locations [37], air quality [38], rainy weather [39], or a street view map [40]. However, sensing
data are not shared among vehicles in these applications. On the other hand, the emerging Vehicular
Ad Hoc Networks (VANETs) reduces the cellular traffic for in-vehicle data services in a cost effective
way [41]. Therefore, vehicles are able to exchange information with each other by VANET:s [42]. In a
previous study [43], multiple probe vehicles were utilized to estimate large-scale traffic in an urban
environment. Our previous work [44] proposed a collaborative sensing strategy to collect top quality
sensing data with limited sensing vehicles. Vehicular collaborative sensing can also be utilized for safe
driving [45]. Collecting all sensing data required by applications is the foremost criterion of vehicular
mobile crowd sensing systems. However, none of the previous studies considered decomposition and
offloading sensing tasks between sensing vehicles to improve efficiency of sensing task execution.

3. System Model

3.1. System Architecture

A vehicular mobile crowd sensing system is composed of sensing data servers, wireless networks,
and vehicles (i.e., sensing nodes), as shown in Figure 1. A sensing node is a vehicle installed with
multiple types of sensing devices and wireless communication interfaces. All sensing nodes should
be willing to participate in the collection of sensing data. The sensing data center is in charge of a
vehicular sensing system, and collected sensing data are stored in the sensing data center. Users of the



Sensors 2016, 16, 1090 4 of 22

sensing system can make queries on the sensing data of interest from the data server. Then, the data
requirements are delivered to sensing vehicles in the form of sensing tasks.
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Figure 1. Architecture of vehicular mobile crowd sensing systems.

v
Sensing@‘ @
i .
_________ | wiee SensingData
R

- Nework Center
3 vehicle b == (9)

The sensing data center generates sensing tasks according to the data requirements from the
system users. Then, the sensing tasks are delivered to the sensing vehicles to collect matching sensing
data. Sensing task-based data collection can collect data with limited sensing resources. In practical
scenarios with a significantly large number of sensing tasks and available heterogeneous sensing
vehicles, the execution of a sensing task by an appropriate sensing vehicle becomes an arduous
problem. This work presents a sensing task decomposition and offloading strategy (Figure 2) that can
execute as many as possible sensing tasks with a limited number of vehicles.

vehicle a

vehicle b

Figure 2. Sensing task offloading.

3.2. Sensing Data Model

The geographic area where the vehicular crowd sensing system is going to collect sensing data
is called target sensing area (or sensing area). The sensing area is divided into lattice cells based on
the geographical location (Figure 2), and each lattice cell is called a subarea. A subarea is a unit area
of the sensing system; the assumption is that sensing data sampled at any point in the subarea can
indicate the sensing value of the subarea. The entire sensing area is divided into N subareas in the
form of grids based on geographical coordinates (Figure 2). Let I = {1,2,---, N} denote the set of
subareas in the sensing area. Leti (i € I,1 < i < N) denote one of the subareas. Table 1 lists notations
used in this paper.
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Table 1. List of notations.

Notation Description

I The set of subareas

i,je [ 1<i<N One subarea

w) Life cycle of the Ith type of sensing data

o, B Sensing vehicles

Yo = (y$,y5,---,¥%) Sensing interfaces of vehicle a

¢t The time that vehicle « arrives at subarea i

0; Residence time of vehicle in subarea i

Z(t) Valid sensing data in the sensing data center at time ¢

Zii(t) Valid function of the sensing data of type I in subarea i at time ¢

X={X(t),t >0} Mobility procedure of a vehicle

P (1) The transition probability of a vehicle from sub area i to sub area j after
time duration ¢

Ty Sensing task k

1y (Ty) Utility of sensing vehicle « to task Tj

Given that sensing data are usually sensitive to time (e.g., air temperature data collected an
hour ago are no longer accurate), sensing data should be sampled periodically in each unit sensing
area. We suppose that there are M types of sensing interfaces embedded in the vehicle sensing nodes.
Let w; denote the validity period of the Ith type of sensing data. Let Y, = (y{,y5,- - - ,y%,) denote the
sensing ability of the vehicular sensing node «,

ﬁ={? )

where yj' = 1 indicated that a can collect the sensing data of type /, and y = 0 indicates that & cannot
collect the data of type [.

Vehicles collect sensing data of a specific subarea when it is travelling in the subarea. Let ¢?
denote the moment when vehicle « travels into subarea 7, and 6} denote the duration vehicle a stay
in subarea i. Then, the valid function of the sensing data of type ! collected by a« when it travels in
subarea i could be denoted as follows:

@

. R g
ha(l'l't):{y(; : ofllaer Z l

Z (t) is the valid sensing data in the sensing data center at time ¢.

C1a(t)  Ci2(t) -+ Cym(t)

O1(t)  G2p(t) To,m(t)

Z(t) = 3)

Ing o Cnp(t) - ONm(t)

where ;(t) is the valid function of the sensing data of type I in subarea i at time .

1 the sensing data is effective at ¢
@m{ & @

0 the sensing data is ineffective at ¢

3.3. Mobility Model

In the vehicular crowd sensing system, vehicles move in and transfer between the subareas. Let
X = {X(t),t > 0} denote the mobility procedure, where X(t) is the state of the vehicle at time ¢
(i.e., the subarea in which the vehicle stays at time ). Normally, the state of the vehicle is only related
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to its state at the last moment. Thus, forany 0 <ty <t; < --- <t, <tyy,andiy € [0 <k<n+1,

we have
P{X(tn_H) = in+1|X(t0) = io,X(tl) =iy, ,X(tn) = in}

=P{X (th41) = int1|X (tn) = in}

Equation (5) indicates that the vehicle mobility procedure X = {X (¢),t > 0} is a time-continuous
Markov chain. For any s,t > 0,and i,j € I, we have

©)

PAX(s+1t) =j|X(s) = i}
= P{X(t) = jIX(0) = i} ©6)
= P; (1)
where P;; (t) is the transition probability of a vehicle from subarea i to subarea j after time duration .
Let P (t) = (P;j (1)), 1,j € I denote the matrix of transition probability.

We define the transfer rate matrix of the mobility procedure X = {X (t),t >0} as Q = (g;j) ,
which is also called the Q matrix. For any i € I, we define

11— Py (AN
S ii 7
A v At @
Foranyi,jel,j#i
— qim D080 ®)
9= M50 At

where g;; is the transition intensity of the vehicle from subarea i to subarea j. Since the number of
the subareas in the sensing area is limited, for Vi € I, 0 < }_ g;; = q; < oo. The average length of
j#i
the duration that the vehicle stay in state X (0) = i is determined by g;. Thus, the value of g; can be
estimated by the historical mobility traces of the vehicles.
According to the Kolmogorov backward differential equation

P'(t) = QP (t) ©)
Let P (0) = I. Then, the transition probability of the Markov chain X could be derived as follows:
P(f) = (10)

4. Sensing Task Offloading

In this section, a utility function is designed to estimate the sensing task execution capacity of
sensing vehicles on the basis of the spatial distribution and interfaces of sensing vehicles, tempo-spatial
coverage of collected data, requirements of the tempo-spatial coverage, and types of sensing data.
Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities
of the neighboring vehicles to the decomposed sensing tasks. By decomposing and offloading the
sensing tasks, each part of the sensing tasks can be executed more efficiently. Therefore, the sensing
efficiency of the whole sensing system will be improved.

4.1. Sensing Task Decomposition

Let Ty = {I, I, fx} denote a sensing task, where I} is a set of target subareas of the sensing task,
I is the required sensing data types of the sensing task, and f is the temporal coverage duration of
required sensing data. We define the utility of sensing vehicle « to task Tj as follows:

Uy (T) = ¥ Z/td e (i1, 1) dt (11)

iel; Il
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where 1, (i,1,t) is the utility of sensing vehicle a to the sensing data of type [ in subarea i at time .
ug (i,1,t) = hy (i,1,t) —he (i,1,4) C (i,1,1) (12)

where h, (i,1,t) is the effective duration length of the sensing data of type I collected by « in subarea
i. The calculation of the utility of a node will consume resources of the sensing node, and the node
should predict its location in finite time. Thus, a system duty cycle ¢, is set to reduce the cost of utility
calculation. The vehicle trace prediction is within one system duty cycle t,.. The utility of the vehicle
sensing nodes are also updated on a t, cycle. If « arrives the subarea i at time ¢, and then stay in the
subarea i for time 7, (i.e., i = t, 0% = 1), then

oty
/ o (i, 1, ) dt = T + 10, (13)
Jt=0

Thus, for any &} and 6, we have

tll
/ he (i, 1, 1) dt
a (14)

0
- P(E*=1¢4)-P (6% = ) deds
S comeciony PE =10 =0 (c ) -de

where P (§* = t) is the probability density of the time that vehicle a arrives at subarea i. P (6% = 7) is
the probability density of the duration that vehicle « stays in subarea i.

The sensing task Ty is decomposed into n subtasks Tjq - - - Ty, based on the expressions in
Equations (15)—(17)

n
() Ta =@ (15)
a=1
n
U T = Tk (16)
a=1
uy (i,1,1) > ug (i,1,) Y (i,1,t) € Tgy, , B € Q. (17)

Equations (15) and (16) are the restrictions to sensing task decomposition. It means that the
decomposed tasks are not overlapped and the union of all the subtasks equals to the origin sensing
task. Equation (17) decomposes the sensing task according to the utility function of the neighbor nodes
to the sensing task.

4.2. Distribution of Residence Time

If the sensing node arrives in subarea i at time 0, then X (0) = i. If 6; is the residence time of a
vehicle in subarea i, the residence time 6; can be defined as

0; =inf{t:t>0,X(t) # X (0),X(0) =i} (18)

then
P(O; >tX(0)=i)=P[X(u)=1,0<u<tX(0)=i (19)

First, the uncountable events are translated into countable events, as shown in Equation (20).

B={Y:X(u)=i0<u<ty= () {Y:X(u)=1i} (20)

o<u<t

where B indicates that the sensing node stays in subarea i in time duration [0, f]. Then, the interval
[0, t] is uniformly divided into 2" subintervals as follows:
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A, = {y;x <2knt> —ik=0,1,2,--- ,2”}
on
k=0

Ay is the event where the sensing node is in subarea i at time Z%t, wherek =0,1,2,---,2". Given
that: A,41 C Ay, it could be denoted as follows:

(21)

A= ﬂAn:JijgoAn (22)

n=1

A also indicates the event where the sensing node stays in subarea i from time 0 to time f.
Obviously, B = A. Therefore,

P{6; > t|X (0) = i}
= lim P {A,|X (0) = i}

n—o0
; nnp. (L
= r}1_r>ro10 exp {2 In P; (2n>} (23)
In[1—gi (&) +o (4
— lim exp n[ qi (2 )+0(2 )] <_‘7it)
n—00 7qit/2”
= exp (—qit)

Thus, the residence time of a vehicle in subarea i is subject to the exponential distribution with
parameter g;. The average residence time in the subarea is denoted as A;, and A; = g;, which means
that the parameter of the exponential distribution can be estimated by the average residence time of
the sensing vehicles in the subarea.

Consequently, 8; obeys the exponential distribution with parameter A;, which is the average
residence time of the vehicle in subarea i.

P {6 <X (0) = i} =1 exp (—qit) 24)
where q; = A;.

4.3. Distribution of Arrival Time

The arrival time of a vehicle in subarea j from subarea i (i.e., t = 0) is denoted as ¢;; and defined as
Gij=inf{t:t>0,X(t) = jIX(0) =i} (25)

where ¢;; = 0if X (0) = j.
Fjj (t) is defined as the distribution function of ¢;; and is expressed as

Fi()=P{& <t},ijeli#jt>0. (26)
If ) =inf{t:t>0,X(t) # X (0)} is the moment that the vehicle leaves its initial state and
Gi(x) = P (8 < x[X(0) =1) = (1 —exp (—g;x)) (27)
then

t
Fi()=a7'9,Gi(0 -+ Y qu [ By(t—uwdG (u) 28)
ki k£ kel 0
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o =inf{t:t>0,X (% +t) =j}and X' (t) = X (81 + 1), then ¥ = 9; + ¢'. Based on the total
probability formula and the strong Markov property, ¢; and X (¢;) are conditionally independent
when X (0) = i; thus, Equation (28) is true.

4.4. Distributed Task Offloading

Utility of a sensing vehicle to a sensing task can be derived based on the historical traces of the
vehicles, sensing interfaces of the participant vehicles, and task requirements in terms of sensing data
types and tempo-spatial coverage. We divide time into duty for convenient calculation. Therefore,
each task consists of unit tasks, and each unit sensing task covers a unit subarea, sensing data type,
and unit duty cycle.

In Algorithm 1, each utility of the neighbor nodes to each unit sensing task is firstly calculated.
Then, the unit tasks are assigned to different neighbors according to the utilities of the neighbors to the
unit tasks. We suppose the task set of sensing vehicle « is T; the Task Offloading algorithm is shown as
Algorithm 1. In Algorithm 1, T is the task set of . Ty € T is a task in T. Firstly, a identify its neighbor
set N. Then, each Ty € T is divided into unit tasks { T}, }. For each T,, find the neighbor  who has the
highest efficiency to execute unit task T},. Then, insert T;, into task set Tﬁ, which will be offloaded to 8
after all tasks Ty € T is processed.

Algorithm 1: Distributed Sensing Task Offloading Algorithm
Input: Sensing task set T

1 Find neighbor node set N;

2 foreach T, € T do

3 | Decompose Ty to {T, } where T, is a unit task;

4

5

foreach T, € {T,} do
B < argmaxug (Ty);

BEN
6 Add T, to ng ;
7 end
s end

=]

for each p € N do
10 ‘ Offloading Ty to 8;
11 end

5. Experimental Section

T-Drive trajectory [46,47] is utilized to simulate and evaluate the proposed Task Offloading
strategy. The T-Drive trajectory includes one-week trajectories of 10357 taxis. The total number of GPS
points in this data set is approximately 15 million, and the total distance of the trajectories is 9 million
km. The time frequency of location data sampling in T-Drive is set to 5 s. Taxi drivers can usually find
an optimal route to a destination based on their experience. Therefore, the T-Drive project attempts to
improve the efficiency of the navigation software according to the experience of taxi drivers. The traces
of taxis can reflect the characters of passengers. The mobility of taxis is also predictable given that the
mobility of passengers is not completely random. For example, Huang et al. [48] designed a vehicle
mobility model on the basis of the regular patterns derived from traces of 4000 taxis in Shanghai.

Based on the vehicular traces, we constructed our simulation program using Python language
and Numpy package. In the program, we designed a trace based mobility module, where the traces of
the 1000 vehicle candidates are preloaded into the memory. Before collecting sensing data and sensing
task offloading between sensing vehicles, the vehicles train their time continuous Markov process
based mobility model for 24 h. After mobility model training, sensing vehicles periodically collect
sensing data and offload sensing tasks according to Algorithm 1.
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In our simulations, a rectangular region around the Fourth Ring Road of Beijing is adopted as
the target sensing area, between 39.840018° N and 39.993971° N, and between 116.276206° E and
116.494243° E. The traces in the rectangular area are used in the simulations. Although the traces are
not limited in the target sensing area, we abstract the area out of the target sensing area as subarea 0,
and the subareas in the target sensing area as 1,2, 3, - - - . The 1000 vehicles with the longest traces in
the rectangular region are employed as sensing vehicle candidates, and the traces are used to calculate
the arrival and residence time distribution among the subareas.

The default parameters of the experiments are set as follows. The default number of participant
sensing vehicles is 60, which are selected randomly from the 1000 sensing vehicle candidates. The total
time of the experiment is 533,315 s (>6 days). In reality, the value of most types of sensing data can be
modeled as a continuous tempo-spatial functions (e.g., temperature or humidity). According to the
function, the best sampling tempo-spatial resolution could be estimated based on the Nyquist theorem.
In our simulation, the sensing area is a part of the downtown area of Beijing. The rectangular region is
uniformly divided into 100 (10 x 10) subareas. This resolution is supposed to be high enough for the
sensing system. The system duty cycle is set to 1000 s. Ten types of sensors are employed to collect
data for the sensing system, and each vehicle has 50% possibility to be equipped with each sensor. The
default upper bound of each type of sensing data life cycle is 10 system duty cycles. The simulation
parameters and their default values are shown in Table 2.

Table 2. Simulation parameters.

Parameter Default Value
Simulation time 533,315 s

Number of participant vehicles 60

System duty cycle 1000 s

Sensor types 10

Sensing data life cycle 10 system duty cycles
Area partition 100 (10 x 10)

We configured number of sensing vehicles, mean of task durations and task generation rate in
our simulation, where number of sensing vehicles ranges from 5 to 100; mean of task duration ranges
from 1 system duty cycle to 19 system duty cycle; task generation rate ranges from 10 per system duty
cycle to 100 per system duty cycle. We did not configure the mobility model parameters during the
simulation procedure because of the mobility of the vehicles is determined by the real traces, which
are not configurable.

We compared the Task Offloading algorithm with two other algorithms, namely, Random and
Dynamic Participant Selection (DPS) [23]. In the Random algorithm, participatory sensing vehicles are
selected randomly from all the participants at the beginning of the simulation. In the DPS algorithm,
sensing vehicles are selected according to the utilities of candidate sensing vehicles at the beginning of
the simulation.

5.1. Results

5.1.1. Impact of the Number of Selected Vehicles

Figure 3 shows the relationship between the number of vehicles that participated in the sensing
data collection and the sensing data coverage ratio. The sensing data coverage ratio 7 is the ratio
between the temporal coverage of collected sensing data and the product of simulation duration,
amount of subareas and number of sensing data types, as shown in Equation (29):

rs = Cs/(N X M % Ttotal) (29)
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where C; is cumulative temporal coverage of collected sensing data, N is the number of subareas, M is
the number of sensing data types, and T}y, is the duration of simulation.

0.

—#— Task Offloading

0.7| —@—DPS
o —A— Random
< 0.6
o4
L o5
o
€ 04
o
o
8 0.3
©
[a}
o 0.2
c
)
$ 0.1
n

0.0

20 20 60 80 100

Number of Vehicles

Figure 3. Impact of the number of vehicles on the sensing data coverage ratio.

A sensing record is generated when sampling data, which include sensing time, area, data type,
and value, of a sensing node are recorded. Furthermore, the length of the validity period of sensing
data is determined by the type of sensing data. Therefore, the validity period is also determined after
the sensing time is recorded.

We define a 2-D array S to count the effective coverage of the collected sensing data. S[i, j] is the
effective coverage of sensing data with type j in subarea i. S[i, ] is a list of ordered time pairs (ts, t.),
where t; < t,, which denotes a continuous time period. For Vpy, p, € S[i,j], if x <y, then t, of p;
should be smaller than t; of py. In calculating the cumulative sensing data coverage, we iterate all the
collected sensing records to insert effective coverage period pairs into S. When inserting one sensing
record into S, its effective sensing period pair is inserted into S according to the type of the sensing
data and the subarea where it was collected. The cumulative coverage of collected sensing data should
get rid of the impact of overlapping coverage to the same time, subarea and data type. The algorithm
for inserting an effective sensing data is shown as Algorithm 2. The input L in Algorithm 2 is a list of
ordered time pairs and the input p is the ordered time pair to be inserted into L.

In time pair list L, time pairs are sequential and non-overlapping as shown in Figure 4. After a
sensing data are collected, its temporal coverage is denoted as a time pair. Algorithm 2 inserts the
collected time pair p into time pair list L, as shown in Figure Algorithm 2. In line 20 of Algorithm 2, a
target temp time pair p’ is found in L. The start time of p is between the end time of p’ and its precursor
in L. If the end time of p is smaller than the end time of p’, p will not be processed. If the start time of
p is earlier than the start time of p/, then the new start time is set to the start time of p, else the new
start time will be set to the start time of p’ (line 26-31). Next, the algorithm find the last target pair p”
who is overlapping with p (line 32-42). The new end time is set to the relatively late one in the end
time of p and p” (line 43-47). At last, the new time pair is inserted into L, and the covered temp time
pairs are deleted from L (line 50-57).

Then, the cumulative sensing data coverage Cs can be calculated as the sum of all the period
lengths in S.

In Figure 3, the sensing data coverage ratios of the three algorithms increase with the increase in
the number of participating vehicles. The sensing data coverage ratio of the proposed Task Offloading
scheme is approximately four times higher than those of the other two schemes. With task partition and
offloading, the tasks are offloaded to the vehicles with higher task utilities, and the vehicles with higher
utilities are more likely to complete the corresponding task. In the proposed Task Offloading scheme,
the heterogeneous sensing data types and temporal cover ages are considered, and one sampling of the
sensing data may cover more than one system duty cycle. Both the Random and DPS algorithms do
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not consider the sensing data lifetime, and each sampling of the sensing data covers only one system
duty cycle.

Algorithm 2: Time Pair Insertion Algorithm
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Input: time pair list L, time pair p = (¢, t,)
Output: updated time pair list L

StartTime = t;, EndTime = t,;

if len(L) == 0 then

end

end

append p to L;
return;

i=0;
while i < len(L) do

TempPair = L(i);

TempStartTime = TempPair(0), TempEndTime = TempPair(1);

if StartTime >= TempEndTime then
i++;
if i >=len(L) then
append p to L;
break;
end
else
‘ continue;
end
end
else if StartTime < TempEndTime then
if EndTime < TempEndTime then
‘ break;
end
else
=5
if StartTime < TempStartTime then
‘ NewStartTime = StartTime;
end
else
‘ NewsStartTime = TempStartTime;
end
while EndTime >= TempEndTime do
TempPairStack.push(TempPair);
j++;
if j < len(L) then
TempPair = L(j);

end
else

‘ break;
end

end
if EndTime>=TempEndTime then
‘ NewEndTime = EndTime;
end
else if EndTime >= TempStartTime then
NewEndTime = TempEndTime;
TempPairStack.push(TempPair);
end
else
‘ NewEndTime = EndTime;
end
NewPair = (NewStartTime, NewEndTime);
for k from 0 to len(TempPairStack) do
‘ delete L(i) from L;
end
insert NewPair into L at i; break;

end

end

TempStartTime = TempPair(0), TempEndTime = TempPair(1);
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Figure 4. An illustrative diagram to time pair insertion.

Furthermore, the slope of the Task Offloading curve is also steeper than the other two algorithms.
In other words, the sensing data coverage ratio in the Task Offloading algorithm increases faster than
that of other two algorithms. If more vehicles are recruited into the system, then more opportunities
for collaboration between sensing vehicles are generated, resulting in more chances of offloading one
sensing task to a sensing vehicle with higher sensing utility. As a result, the sensing data coverage
ratio increases much faster than the other two algorithms.

We also compared the sensing data coverage ratio of the Task Offloading algorithm and DPS with
period selection of sensing participants (P-DPS). The duty cycle of the both algorithms is set to 1000 s.
For convenience, we take temporal coverage of the sensing data into consideration in P-DPS, and the
coverage ratios are shown in Figure 5.

—#— Task Offloading ‘
P-DPS

o
e}

o
o))

N
>

o
N,

’_k.__.__”_..——b—'."""‘.. ®

Sensing Data Coverage Ratio

g\

20 40 60 80 100
Number of Vehicles

Figure 5. Sensing data coverage ratio of P-DPS, DPS, and Task Offloading.

The sensing server can get the utilities of all the sensing vehicles given that a centralized
participant selection method is used in the P-DPS algorithm. Then, the P-DPS algorithm is able
to select the best participants out of all the candidates to collect sensing data in the following duty
cycle. However, P-DPS cannot maintain high performance in a distributed sensing scenario, due
to its requirements to global node information. Task Offloading exchanges sensing task between
neighboring vehicles in a distributed way to improve quality of collected sensing data. In the proposed
Task Offloading algorithm, the location prediction and task decomposition and offloading are utilized
to improve the quality of the collected sensing data. Although the sensing data coverage ratio of Task
Offloading is lower than that of P-DPS, the performance of Task Offloading is better than that of DPS
in the distributed scenarios.
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Figure 6 shows the impact of sensing vehicle amount to the sensing data coverage ratio when the
number of sensing vehicles are more than 100. In the first experiment, we suppose that vehicles in a
same subarea are neighbors, and they can offload tasks to each other. In the other two experiments,
the communication range of the sensing vehicles are set to 500 m and 200 m. Vehicles are neighbors
if they are within the communication range of each other. As shown in Figure 6, the coverage ratio
raises with the increase of the number of sensing vehicles. But, the increase rate of the coverage ratio
decreases along with the number of sensing vehicles. On the other hand, if the communication range
is small, the opportunity to offload sensing tasks between the vehicles will be low. As a result, the
coverage ratio decreases with the communication range of sensing vehicles.
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©
31}

o
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Sensing Data Coverage Ratio
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0.2
ol —e— 500m
' —A—200m

|
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Number of Vehicles

o

Figure 6. Sensing data coverage ratio with more sensing vehicles.

Figure 7 shows the impact of the number of vehicles on the task coverage ratio. The task coverage
ratio r¢ is calculated as Equation (30),
re=GCs/C (30)

where Cs is cumulative sensing data coverage, and C; is cumulative task requirements. Both Cs and C;
can be calculated according to Algorithm 2.
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Figure 7. Impact of the number of vehicles on the task coverage ratio.

The task coverage ratios of the three algorithms exhibit the same variation trend with the sensing
coverage ratio under the impact of the number of vehicles. However, the task coverage ratios are
higher than that of the sensing data coverage ratios with the same number of sensing vehicles. In our
task offloading algorithm, since sensing tasks are decomposed and offloaded, each part of the sensing
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tasks is offloaded to the most efficient sensing vehicle. As a result, the task offloading algorithm
outperforms DPS and Random algorithm, where the sensing tasks are not decomposed and offloaded.

The task coverage ratio is higher than 1 when there are more than 25 sensing vehicles in the
Task Offloading algorithm. This phenomenon is unlikely because the task coverage ratio is the ratio
between the coverage of collected sensing data and the cumulative coverage of the sensing task
requirements. In our simulation, the vehicles continuously collect sensing data if there are sensing
task requirements, and the temporal coverage of the collected sensing data may exceed the required
range of the sensing task. Therefore, the coverage of the collected sensing data may be larger than the
cumulative requirements of the sensing tasks.

Figure 8 shows the spatial entropy with different numbers of sensing vehicles. Spatial entropy
is able to reflect the degree of uniformity of the collected sensing data. The spatial entropy of the
collected sensing data is large when the sensing data spatial distribution degree is high. The spatial
entropy of the three algorithms increase with the increase in the number of sensing vehicles, which
means that more sensing vehicles can collect more uniformly distributed sensing data. Given that
the Random algorithm chooses the sensing vehicles randomly at the beginning of the simulation, the
repetition rate of the collected sensing data in the Random algorithm is higher than that of the other
two algorithms. As a result, the spatial entropy of Random is smaller than Task Offloading and DPS
under the same number of sensing vehicles.

Spatial Entropy

—&— Task Offloading
—A— Random
—e— DPS

20 40 60 80 100
Number of Sensing Vehicles

Figure 8. Spatial entropy with different numbers of sensing vehicles.

By offloading the tasks between the sensing vehicles, the Task Offloading algorithm executes
the sensing tasks by the vehicles with high utilities. DPS selects the vehicles with higher utilities
at the beginning of the simulation. Thus, both Task Offloading and DPS are able to improve the
spatial distribution of the collected sensing data. As shown in Figure 8, the Task Offloading algorithm
has bigger spatial entropies than the DPS algorithm, because the Task Offloading algorithm further
optimizes the task execution efficiency by decomposing and offloading the sensing tasks to the vehicles
with higher utilities. However, when the number of selected vehicles is too small (i.e., <10), the chance
for the sensing vehicles to collaborate with each other is too small. Thus, the spatial entropy of the
Task Offloading algorithm becomes lower than that of the DPS algorithm.

Temporal entropy reveals the stability of the sensing system on collecting the sensing data
continuously. As shown in Figure 9, the temporal entropies of the collected sensing data by the
three algorithms show different variation trends with the increase in number of sensing vehicles.
The temporal entropy of Task Offloading increases with the increase in number of vehicles collecting
the sensing data. The growth rate of the temporal entropy of the Task Offloading algorithm decreased
with the increase in number of sensing vehicles. The temporal entropy of DPS slightly decreases
along with the increase in number of sensing vehicles. The temporal entropies of Task Offloading and



Sensors 2016, 16, 1090 16 of 22

DPS are both higher than that of Random, which means that Task Offloading and DPS are better at
continuously collecting sensing data.
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Figure 9. Temporal entropy with different numbers of sensing vehicles.

The temporal entropy of the Random algorithm fluctuates around a small value. The Random
algorithm selects sensing vehicles randomly from the candidates; as a result, the Random algorithm
experiences difficulties in collecting sensing data continuously. For the same reason, the fluctuation
degree of the Random algorithm is also higher than that of the other two algorithms. When the number
of sensing vehicles is small, the temporal entropy of Task Offloading is lower than DPS, given that DPS
selects vehicles according to their utilities, whereas Task Offloading distributes sensing task randomly
to the sensing vehicles at the beginning of the simulation. When the number of sensing vehicles
is small, there are less chances of offloading sensing tasks among sensing vehicles. Therefore, the
temporal entropy of the Task Offloading algorithm is smaller than that of DPS and higher than that of
Random. More opportunities to offload sensing tasks among sensing vehicles are generated with the
increase in number of sensing vehicles. Thus, the temporal entropy of Task Offloading exceeds that of
DPS at high number of sensing vehicles.

5.1.2. Mean Value of Task Durations

The performance of algorithms under different temporal coverage expectations of the sensing
tasks is evaluated. The task coverage ratio is the ratio between the cumulative tempo-spatial coverage
of the collected sensing data and the cumulative tempo-spatial coverage of the sensing tasks.

Figure 10 shows the impact of the task duration for he required sensing data temporal coverage
on task coverage ratio. The task coverage ratio decreases with the increase in duration of the generated
sensing tasks. The increase in temporal coverage duration of a single task would increase the
cumulative task duration for the required sensing data temporal coverage, thereby decreasing the
task coverage.

In our simulations, each vehicle collects sensing data according to the tempo-spatial coverage
requirements of the sensing tasks. Therefore, more sensing task tempo-spatial coverage requirements
lead to more sensing data collected by the vehicles. However, the increase rate of the amount of
collected sensing data is slower than that of the required tempo-spatial coverage of a task. As a
result, the task coverage ratio exponentially decreases with the increase in sensing task duration for
the required temporal coverage. The task coverage ratio of Task Offloading is higher than that of
the other two algorithms, because sensing tasks are executed by the sensing vehicles with higher
sensing utilities.
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Figure 10. Impact of task durations on task coverage ratio.

The sensing data coverage ratio of Task Offloading is much higher than that of DPS and Random,
because Task Offloading considers the lifetime of the collected sensing data, whereas the collected
sensing data in Random and DPS cover only one system duty cycle. Furthermore, Task Offloading is
able to offload sensing tasks to sensing vehicles with the highest utilities for a specific sensing task,
and the sensing data collected by the task performer offer the highest coverage ratio.

Figure 11 reveals the variations of spatial entropy under different sensing task requirements on
the temporal coverage duration of the collected sensing data. The required temporal coverage duration
of a sensing task has little influence on the spatial entropy of the three algorithms. The spatial entropy
of DPS decreases slightly with the increase of sensing task requirements of the temporal coverage
duration. In particular, the spatial entropies of Task Offloading and Random are barely affected by the
sensing task requirements. The Random algorithm has the lowest spatial entropy, because vehicles are
selected randomly and the overlapping ratio of the collected sensing data is high. The DPS and Task
Offloading algorithms select sensing vehicles based on their utilities, and thus the collected sensing
data are uniformly distributed. As shown in Figure 11, the Task Offloading is able to obtain higher
spatial uniformity than DPS in terms of task offloading among sensing vehicles.
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Figure 11. Spatial entropy under different mean values of task durations.

Figure 12 shows the variation trends of temporal entropy of the three algorithms under different
sensing task requirements on the temporal coverage duration. The temporal entropy of Task Offloading
and DPS is barely affected by the required temporal coverage duration of a sensing task. The temporal
entropy of the Random algorithm increases with the increase in required temporal coverage duration
of the collected sensing data for a sensing task. The required temporal coverage duration of a sensing
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task affects the amount of collected sensing data; more sensing data entail more requirements on
the temporal coverage of the collected sensing data. The Task Offloading algorithm optimizes the
execution of sensing task by decomposing and offloading the sensing tasks to the sensing vehicles with
higher utilities to collect sensing data with less temporal overlapping ratio. Therefore, the temporal
entropy of Task Offloading is higher than that of DPS and Random.
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Figure 12. Temporal entropy under different mean values of task durations.

5.1.3. Impact of Task Generation Rate

The impact of task generation rate on the sensing task coverage ratio and tempo-spatial entropy
of the collected sensing data is evaluated. The task generation rate denotes the amount of generated
sensing task in a system duty cycle. Figure 13 shows the impact of the sensing task generation rate on
the task coverage ratio. The task coverage ratio of the three algorithms decreases with the increase in
sensing task generation rate. Although generating more sensing tasks can increase the requirements
on the tempo-spatial coverage of collected sensing data, and then more sensing data will be collected
by the sensing vehicles, the increase rate of the cumulative coverage of the collected sensing data
is slower than the cumulative required tempo-spatial coverage duration of sensing data. Thus, the
sensing task coverage ratio decreases with the increase in sensing task generation rate.
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Figure 13. Impact of task generation rate on task coverage ratio.
The task coverage ratio of Task Offloading is higher than that of DPS and Random because the

sensing tasks are offloaded to the sensing vehicles with higher utilities. The impact of task generation
rate on the task coverage ratio is similar to the impact of required temporal coverage duration of the
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sensing data for a sensing task on the task coverage ratio, because sensing task generation rate is
increased to increase the tempo-spatial coverage requirements of the sensing tasks.

For the same reason, spatial and temporal entropies have similar variation trends under different
task generation rates as that under different temporal coverage of sensing tasks, as shown in Figures 14
and 15.
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Figure 14. Spatial entropy under different task generation rates.
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Figure 15. Temporal entropy under different task generation rates.

6. Conclusions

Task Offloading algorithm is proposed for vehicular sensing systems to collect comprehensive
covered sensing data. In the proposed Task Offloading algorithm, the mobility of the vehicles is
modeled with a time-continuous Markov chain, and the utility function of a vehicle to a sensing task is
established according to the required tempo-spatial coverage of the sensing data, required sensing data
types, sensing interfaces of the vehicle, and mobility trace of the sensing vehicle. The sensing tasks
are decomposed and offloaded to other participants according to the utilities of the sensing vehicles.
Real trace-driven simulations show that the proposed Task Offloading algorithm is able to obtain
considerably more uniformly-distributed tempo-spatial sensing data and higher task coverage ratio
than the other algorithms, namely, Random and DPS.

Acknowledgments: This research was supported by the National Natural Science Foundation of China under
Grant No. 61370197.

Author Contributions: Yazhi Liu and Wendong Wang conceived and designed the experiments; Yuekun Ma
performed the experiments; Zhigang Yang analyzed the data; Yazhi Liu wrote the paper.



Sensors 2016, 16, 1090 20 of 22

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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