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Abstract: Structural parameter calibration for the binocular stereo vision sensor (BSVS) is an
important guarantee for high-precision measurements. We propose a method to calibrate the
structural parameters of BSVS based on a double-sphere target. The target, consisting of two identical
spheres with a known fixed distance, is freely placed in different positions and orientations. Any
three non-collinear sphere centres determine a spatial plane whose normal vector under the two
camera-coordinate-frames is obtained by means of an intermediate parallel plane calculated by the
image points of sphere centres and the depth-scale factors. Hence, the rotation matrix R is solved.
The translation vector T is determined using a linear method derived from the epipolar geometry.
Furthermore, R and T are refined by nonlinear optimization. We also provide theoretical analysis
on the error propagation related to the positional deviation of the sphere image and an approach
to mitigate its effect. Computer simulations are conducted to test the performance of the proposed
method with respect to the image noise level, target placement times and the depth-scale factor.
Experimental results on real data show that the accuracy of measurement is higher than 0.9‰, with a
distance of 800 mm and a view field of 250 ˆ 200 mm2.

Keywords: binocular stereo vision sensor; structural parameters calibration; double-sphere target

1. Introduction

As one of the main structures of machine vision sensors, BSVS acquires 3D scene geometric
information through one pair of images and has many applications in industrial product inspection,
robot navigation, virtual reality, etc. [1–3]. Structural parameter calibration is always an important and
concerning issue in BSVS. Current calibration methods can be roughly classified into three categories:
methods based on 3D targets, 2D targets and 1D targets. 3D target-based methods [4,5] obtain
the structural parameters by placing the target only once in the sensor field of view. However, its
disadvantages lie in the fact that large size 3D targets are exceedingly difficult to machine, and it is
usually impossible to maintain the calibration image with all feature points at the same level of clarity.
2D target-based methods [2,6] require the plane target to be placed freely at least twice with different
positions and orientations, and different target calibration features are unified to a common sensor
coordinate frame through the camera coordinate frame. Therefore, calibration operation becomes more
convenient than in 3D target-based methods. However, there are also weaknesses in two primary
aspects. One is that repeated calibration feature unification will increase transformation errors. The
other is that when the two cameras form a large viewing angle or the multi-camera system requires
calibration, it is difficult to simultaneously maintain the calibration image with all features at the
same level of clarity for all cameras. Regarding 1D target-based methods [7], which are much more
convenient than 2D target-based methods, the target is freely placed no less than four times with
different positions and orientations. The image points of the calibration feature points are used to
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determine the rotation matrix R and the translation vector T, and the scale factor of T is obtained by
the known distance constraint. Unfortunately, 1D target-based methods have the same weaknesses as
2D target-based methods. Moreover, in practice, 1D targets should be placed many times to obtain
enough feature points.

The sphere is widely used in machine vision calibration owing to its spatial uniformity and
symmetry [8–17]. Agrawal et al. [11] and Zhang et al. [16] both used spheres to calibrate intrinsic
camera parameters using the relationship between the projected ellipse of the sphere and the dual
image of the absolute conic (DIAC). Moreover, they also mentioned that the structural parameters
between two or more cameras could be obtained by using the 3D points cloud registration method.
However, this method requires many feature points to guarantee high accuracy. Wong et al. [17]
proposed two methods to recover the fundamental matrix, and then structural parameters could
be deduced when the intrinsic parameters of the two cameras are known. One method is to use
sphere centres, intersection points and visual points of tangency to compute the fundamental matrix.
The other is to determine the fundamental matrix using the homography matrix and the epipoles,
which are computed via plane-induced homography. However, the second method requires an extra
plane target to transfer the projected ellipse from the first view to the second view.

In this paper, we propose a method using a double-sphere target to calibrate the structural
parameters of BSVS. The target consists of two identical spheres fixed by a rigid bar of known length
and unknown radii. During calibration, the double-sphere target is placed freely at least twice in
different positions and orientations. From the projected ellipses of spheres, the image points of
sphere centres and a so-called depth-scale factor for each sphere can be calculated. Because any three
non-collinear sphere centres determine a spatial plane πs, if we have at least three non-parallel planes
with their normal vectors obtained in both camera coordinate frames, the rotation matrix R can be
solved. However, πs could not be directly obtained. We obtained its normal vector by an intermediate
plane paralleling to the plane πs, which is recovered by the depth-scale factors and the image points of
sphere centres. From the epipolar geometry, a linear relation between the translation vector T including
a scale factor and the image points is derived, and then SVD is used to solve it. Furthermore, the scale
factor is determined based on the known distance constraint. Finally, R and T are combined to be
refined by Levenberg-Marquardt algorithm. Due to the complete symmetry of the sphere, wherever
the sphere is placed in the sensor vision field, all cameras can capture the same high-quality images of
the sphere, which are essential to maintain the calibration consistency, even if the angle between the
principal rays of the two cameras is large. Moreover, regarding multi-camera system calibration, it is
often difficult to make the target features simultaneously visible in all views because of the variety
of positions and orientations of the cameras. In general, the cameras are divided into several smaller
groups, and each group is calibrated separately, and finally all cameras are registered into a common
reference coordinate frame [17]. However, using the double-sphere target can obtain the relationship
of the cameras with common view district by once calibration. A kind of terrible configuration of
two cameras mentioned above will be often taken place in multi-camera calibration. Therefore, using
the double-sphere target can reduce the times of calibration and make calibration operation easy
and efficient.

The remaining sections of this paper are organized as follows: Section 2 briefly describes a few
basic properties of the projected ellipse of the sphere. Section 3 elaborates the principles of the proposed
calibration method based on the double-sphere target. Section 4 provides detailed analysis of the
impact on the image point of the sphere centre when the projected ellipse is not accurately extracted
with positional deviation. Section 5 presents computer simulations and real data experiments to verify
the proposed method. The conclusions are given in Section 6.

2. Basic Principles

This section mainly describes some related properties of the projected ellipse of sphere.
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2.1. Derivation of the Projected Ellipse

Agrawal [11] and Zhang [14] each give the formula of the projected ellipse of the sphere.
We further synthesize the two different derivation approaches to gain an easily understood explanation,
which is briefly described as follows:

Consider a camera P “ K rI3ˆ3|0 s“ rK|0 s viewing a sphere Q with radius R0 centered at
X = [X0 Y0 Z0]T in the camera coordinate frame O~XYZ, where K is the camera intrinsic matrix.
Q is expressed as (X ´ X0)2 + (Y ´ Y0)2 + (Z ´ Z0)2 = R2

0.

Denoting
b

X2
0 `Y2

0 ` Z2
0 by h0; then we have:

X “
”

X0 Y0 Z0

ıT
“ h0d (1)

where d is the unit vector of X.
Sphere Q is further expressed by the following coefficient matrix:

Q “

«

I3ˆ3 ´X
´XT XTX´ R2

0

ff

“

»

—

—

—

–

1 0 0 ´X0

0 1 0 ´Y0

0 0 1 ´Z0

´X0 ´Y0 ´Z0 h2
0 ´ R2

0

fi

ffi

ffi

ffi

fl

(2)

Thus, the dual Q* of Q is defined as:

Q˚“Q´1 (3)

Next, we obtain the dual C* of the projected ellipse C of sphere Q under camera P [4]:

C˚ “ PQ˚PT “ KKT ´
h2

0
R2

0
KddTKT (4)

Denoting h0/R0 by µ. From Equation (4), we have:

C˚ “ KKT ´ µ2KddTKT “ KKT ´ ooT (5)

with o = µKd, which is the image point of sphere centre X.

2.2. Derivation of the Image Point of the Sphere Centre

From Equation (5), C* can also be written as:

ρC˚ “ ω˚ ´ ooT (6)

where ρ is an unknown scale factor, and ω˚ “ KKT.
Let C1

˚, C2
˚ be the dual of projected ellipses of spheres Q1, Q2 under camera P, respectively;

then we have:
#

ρ1C1
˚ “ ω˚ ´ o1o1

T

ρ2C2
˚ “ ω˚ ´ o2o2

T (7)

where ρ1, ρ2 are two unknown scale factors, o1 = µ1Kd1, o2 = µ2Kd2, and µ1, µ2, d1, d2 have the same
meanings as µ in Equation (5) and d in Equation (1).

Let XQ1O, XQ2O denote the centres of spheres Q1, Q2, respectively. These two points and the
camera centre O determine a plane. Denote the vanishing line of this plane by l12; then we know
from [14] that:

C2C1
˚l12 “

ρ2

ρ1
l12 (8)
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From Equation (8), it is observed that l12 is the eigenvector corresponding to the eigenvalue ρ2{ρ1

regarding matrix C2C1
˚, which has two real intersections with each projected ellipse C1 and C2.

Because l12 passes through the image points o1 and o2, l12 “ o1 ˆ o2. Hence, if we know three
projected ellipses C1, C2 and C3 of spheres Q1, Q2 and Q3, the image points o1, o2 and o3 of these
three spheres centres will be given by:

o1 “ l12 ˆ l13, o2 “ l12 ˆ l23, o3 “ l13 ˆ l23 (9)

2.3. Computation of the Depth-Scale Factor µ

Motivated by [18], we give a simple method to solve the depth-scale factor. As known, there
are two mutually orthogonal unit vectors d1 and d2 perpendicular with d in Equation (5). Denote
”

d1 d2 d
ı

by R; then, the dual C˚ of the ellipse is also expressed as follows:

C˚“ K
´

I´ µ2ddT
¯

KT “ K
´

RRT
`R diagt0, 0,´µ2uRT

¯

KT

“ KR diagt1, 1,´µ2 ` 1uRTKT
(10)

Ellipse C is then given by:

ρcC “ K´TRdiagt1, 1,
1

´µ2 ` 1
uRTK´1 (11)

where ρc is an unknown scale factor. If K is known, Equation (11) will be rewritten as:

ρcKTCK “ Rdiagt1, 1,
1

´µ2 ` 1
uRT (12)

Denoting KTCK by A; then we have:

A “
1
ρc

Rdiagt1, 1,
1

´µ2 ` 1
uRT (13)

As known, R is an orthogonal matrix, so the singular values of matrix A are 1{ |ρc|, 1{ |ρc| and
1{

“

|ρc|
`

´µ2 ` 1
˘‰

, and µ can be obtained by SVD. For µ “ h0{R0 and h0 ą R0, µ is greater than 1.
For different spheres with the same radius, µ is proportional to the corresponding h0.

3. Calibration Principles

3.1. Acquisition of the Rotation Matrix

If K is known, the normalized back-projected vector d of the sphere centre in the camera coordinate
frame will be:

d “
K´1o

||K´1o||
(14)

Denote µd by D; then:

D “ µd “
h0

R0
d “

1
R0

XQO (15)

where XQO is the sphere centre.
From Section 2.3, we can obtain the depth-scale factor µ, and when there are three spheres Q1, Q2

and Q3 with the same radius centered at XQ1O, XQ2O and XQ3O, we can obtain three vectors D1, D2

and D3 to determine a plane D1D2D3. The plane D1D2D3 is parallel to the plane πs formed by XQ1O,
XQ2O and XQ3O. Therefore, the normal vector n of the plane πs is calculated by:

n “ pD2 ´D1q ˆ pD3 ´D1q (16)
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Refer to Figure 1; for the BSVS, we can obtain the normal vectors nl and nr of the same plane πs

in the left camera coordinate frame (LCCF) and the right camera coordinate frame (RCCF) respectively.
Thus, the following equation stands:

nr “ Rnl (17)

where R is the rotation matrix between LCCF and RCCF.
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r r r

|

|

s

s
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
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where ls , rs  are two unknown scale factors, and R, T are the rotation matrix and translation vector 
of the BSVS, respectively. 

Define a skew-symmetric matrix  T  by T  as  
z y

z x

y x

0

0

0

T T

T T

T T


 
 

  
  

T . Denote -1
l l l=p K x , 

-1
r r r=p K x , and r ls s s ; then from Equation (18), we have: 

   l rs
 

T Rp T p  (19) 

Denote lRp  by lp̂ , and R  is known, so we can obtain the final expression as: 
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Figure 1. Using a double-sphere target to calibrate a binocular stereo vision system.

If there are m spheres with non-coplanar centres and m ě 4, we can obtain the C3
m equations of

Equation (17) to solve R.

3.2. Acquisition of the Translation Vector

In the BSVS, suppose that the left camera is Kl rI3ˆ3|0 s and the right camera is Kr rR|T s, and xl,
xr are the image points of the 3D point X; then we have:

#

slxl “ Kl rI|0sX
srxr “ Kr rR|TsX

(18)

where sl, sr are two unknown scale factors, and R, T are the rotation matrix and translation vector of
the BSVS, respectively.

Define a skew-symmetric matrix rTsˆ by T as rTsˆ “

»

—

–

0 ´Tz Ty

Tz 0 ´Tx

´Ty Tx 0

fi

ffi

fl

. Denote pl “ K´1
l xl,

pr “ K´1
r xr, and s “ sr{sl; then from Equation (18), we have:

rTsˆ Rpl “ s rTsˆ pr (19)

Denote Rpl by p̂l, and R is known, so we can obtain the final expression as:

pT
r rTsˆ p̂l “ 0 (20)

Obviously, Equation (20) is a homogenous equation of T. Given at least three pairs of image points
of the sphere centres, we can solve T with a scale factor κ as T0 (see Appendix A for more details); i.e.,
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T “ κT0. Furthermore, based on the known distance L0 between the two sphere centres of the target
and the common sense of a positive for the Z coordinate of the sphere centre, κ is determined.

3.3. Nonlinear Optimization

Consider that R and T are separately obtained; in this section, we take them as the initial values
to obtain more accurate results by combining them.

Establish the object function as:

minF pxq “
n
ÿ

i“1

¨

˝

2
ÿ

j“1

d
´

pi
jl , p̂i

jl

¯

`

2
ÿ

j“1

d
´

pi
jr, p̂i

jr

¯

` λ
´

Li ´ L0

¯

˛

‚ (21)

where x “ tR, Tu, dpq represents the Euclidean distance, pi
jl , pi

jr are the real non-homogeneous image

coordinates of the sphere centres, p̂i
jl , p̂i

rl are the non-homogeneous reprojection image coordinates of

the sphere centres, Li is the calculated distance of the two sphere centres, L0 is the known distance of
the two sphere centres, n is the number of placement times, and λ is the weight factor.

To maintain the orthogonal constraint of the rotation matrix, parameter R is transformed into the
Rodriguez vector r “

`

rx, ry, rz
˘T, so x “ rr; Ts. Considering the principle of error distribution, λ is

taken to be 10. The Levenberg-Marquardt optimization algorithm is used to obtain the final results of
R and T.

3.4. Summary

The implementation procedure of our proposed calibration is as follows:

1. Calibrate the intrinsic parameters of two cameras.
2. Take enough images of the double-sphere target with different positions and orientations by

moving the target.
3. Extract the subpixel contour points of the projected ellipses using Steger’s method [19], and then

perform ellipse fitting [20].
4. Compute the image points of each sphere centre, and then conduct image points matching.
5. Compute the scale factor µ of each sphere.
6. Solve the structural parameters R and T using the algorithm described in Sections 3.1 and 3.2.
7. Refine the parameters by solving Equation (21).

4. Error Analysis

The general equation of the ellipse is Ax2 ` Bxy` Cy2 `Dx` Ey` 1 “ 0, and the coordinates of
the ellipse centre are given as follows:

#

xc “
BE´2CD
4AC´B2

yc “
BD´2AE
4AC´B2

(22)

The matrix form of the ellipse is written as C “

¨

˚

˝

A B{2 D{2
B{2 C E{2
D{2 E{2 1

˛

‹

‚

. The dual C˚ of C is

given by:

C˚ “ ρ˚c C´1 “

¨

˚

˚

˝

4C´E2

4AC´B2
DE´2B

4AC´B2
BE´2CD
4AC´B2

DE´2B
4AC´B2

4A´D2

4AC´B2
BD´2AE
4AC´B2

BE´2CD
4AC´B2

BD´2AE
4AC´B2 1

˛

‹

‹

‚

(23)
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where ρ˚c is an unknown scale factor. Combining Equations (22) and (23), we can then obtain the
following relationship between the ellipse centre pxc, ycq and the elements of matrix C˚:

#

C˚ p1, 3q “ xc

C˚ p2, 3q “ yc
(24)

As known, there are many factors affecting the extraction of the ellipse contour points. Regarding
the extracted points, the positional deviation may occur due to noise. We will then discuss how the
computation of the image point of the sphere centre is influenced under this condition.

Suppose that the shape of the ellipse remains constant and the ellipse does not rotate; then we
use the ellipse centre to represent the position of the ellipse. Let Q denote the sphere, C denote the
projected ellipse of sphere Q, and px, yq denote the image point of the sphere centre.

To simplify the discussion, consider the condition in which the sphere centre is in the first quadrant
of the camera coordinate frame. Because the sphere centre can be located in the first quadrant of the
camera coordinate frame by rotating the camera, this discussion can be generalized.

First of all, let us discuss the element a of C˚ (Note: C˚p3, 3q “ 1). Expanding Equation (5) by the

replacements d ÞÑ p dx dy dz q
T

, K ÞÑ

¨

˚

˝

αx 0 u0

ay v0

1

˛

‹

‚

, o ÞÑ η

¨

˚

˝

x
y
1

˛

‹

‚

gives:

a “
µ2pu0dz ` αxdxq

2
´ pα2

x ` u2
0q

µ2d2
z ´ 1

(25)

The sphere is always in front of the camera, and the sphere centre is located in the first quadrant
of the camera coordinate frame, so we have Z ą R0 ą 0, dx ą 0, dy ą 0, dz ą 0 and u0 ă x ă 2u0.
Based on these equations, we can obtain:

a ą 0 when X ě R0 (26)

The details are described in Appendix B.
Next, we discuss the factors that have influences on calculating the image point of the sphere

centre. Denoting C˚ by

¨

˚

˝

a b{2 d{2
b{2 c e{2
d{2 e{2 1

˛

‹

‚

, we can obtain the following equation from Equation (5):

p2u0 ´ dq x2 ´ 2
´

α2
x ` u2

0 ´ a
¯

x`
´

α2
x ` u2

0

¯

d´ 2u0a “ 0 (27)

Substituting d “ xc{2, e “ yc{2 into Equation (27), we get:

pu0 ´ xcq x2 ´
´

α2
x ` u2

0 ´ a
¯

x`
´

α2
x ` u2

0

¯

xc ´ u0a “ 0 (28)

By Equation (28), we can obtain:

x “
´
`

α2
x ` u2

0 ´ a
˘

`

b

`

α2
x ` u2

0 ´ a
˘2
` 4 pxc ´ u0q

“`

α2
x ` u2

0
˘

xc ´ u0a
‰

2 pxc ´ u0q
(29)

From Equation (29), computing the partial derivative of x with respect to xc gives:

Bx
Bxc

“
α2

x ` u2
0 ´ a

2 pxc ´ u0q
2 ¨

?
M´

“

2u0 pxc ´ u0q `
`

α2
x ` u2

0 ´ a
˘‰

?
M

(30)
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where M “
`

α2
x ` u2

0 ´ a
˘2
` 4 pxc ´ u0q

“`

α2
x ` u2

0
˘

xc ´ u0a
‰

.
Let:

ρxxc “
α2

x ` u2
0 ´ a

2 pxc ´ u0q
2 ¨

?
M´

“

2u0 pxc ´ u0q `
`

α2
x ` u2

0 ´ a
˘‰

?
M

(31)

and we can deduce that ρxxc satisfies 0 ă ρxxc ă 1 when αx{u0 ą
?

3 is valid (see Appendix C for
more details).

Suppose that ∆xc is the positional deviation of the fitted ellipse, and ∆x is the computation error
of image point x. Equation (30) is then written as:

∆x “ ρxxc ∆xc (32)

When αx{u0 ą
?

3 and X ě R0 are valid, ρxxc satisfies 0 ă ρxxc ă 1, which shows that computation
error ∆x caused by ∆xc is reduced.

Because the extracted ellipse contour points have a positional deviation, the fitted ellipse also has
a similar deviation. The following section discusses the solution for how to reduce the computation
error of the image point of the sphere centre in this condition.

Firstly, consider the relationship between a and µ2. From Equation (25), we can obtain:

Ba
Bµ2 “

α2
xd2

z

„

´

´

dx
dz

¯2
´ 2 u0

αx
dx
dz
` 1



pµ2d2
z ´ 1q2

(33)

When αx{u0 ą
?

3 is valid, we can deduce Ba
Bµ2 ą 0. Hence, a is a monotonically increasing

parameter with respect to µ (µ ą 0).
Second, from Equation (28), we have:

Bx
Bxc

“
α2

x ` u2
0 ´ x2

2 pxc ´ u0q x` α2
x ` u2

0 ´ a
(34)

When αx{u0 ą
?

3, we can obtain:
Bx
Bxc

ą 0 (35)

(see Appendix D for more details).
Suppose ∆xc is the positional deviation of the fitted ellipse, and ∆x is the computation error

caused by ∆xc. Equation (34) can then be written as:

∆x “
α2

x ` u2
0 ´ x2

2 pxc ´ u0q x` α2
x ` u2

0 ´ a
∆xc (36)

Based on Equations (26), (35) and (36), we can deduce that ∆x has a positive relationship with µ.
Similarly, we can obtain:

∆y “
α2

y ` v2
0 ´ y2

2 pxc ´ v0q y` α2
y ` v2

0 ´ c
∆yc (37)

If Y ě R0, αy{v0 ă
?

3 are valid, we can deduce that c is a monotonically increasing parameter
with respect to µ, and also ∆y has a positive relationship with µ.

Finally, based on the condition described above, we can obtain the following conclusion that the
computation errors ∆x, ∆y both have positive relationships with µ. The smaller the value of µ, the
smaller the computation error ∆x, ∆y. By reducing h0 (the depth of the sphere centre) or increasing
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R0 (the radius of the sphere), µ is smaller, so ∆x,∆y will be smaller. In this way, we can improve the
computational accuracy of the image point (x,y) of the sphere centre.

5. Experiments

5.1. Computer Simulations

Using computer simulations, we analyse the following factors affecting the calibration accuracy:
(1) image noise level σ; (2) the number of placement times N of the target; and (3) the depth-scale factor
µ of the sphere.

Table 1 shows the intrinsic parameters of two simulation cameras. The camera distortions are not
considered. Suppose that the LCCF is the world coordinate frame (WCF), and set the simulation BSVS
structural parameters as r = [´0.03,0.47,0.07]T, T = [´490,´49,100]T. The working distance of BSVS is
approximately 1000 mm, and the field of view is approximately 240 ˆ 320 mm. The relative deviation
of the calibration results and the truth values are used for the evaluation of accuracy. The rotation
matrix R is expressed as Rodrigues vector r; then, both the rotation vector r and translation vector T
have dimensions 3 ˆ 1. The Euclidean distances of the simulation vectors and true vectors of r and T
are used to represent absolute errors; the ratio of absolute error and the corresponding mould of the
truth value are then the relative error.

Table 1. Intrinsic parameters of the simulation cameras.

Parameter List Principal Distance
(pixel/mm)

Principal Point
(pixel) Skew Resolution

(pixel)

Left Camera (5100.0, 5100.0) (800.0, 600.0) 0 1600 ˆ 1200
Right Camera (5100.0, 5100.0) (800.0, 600.0) 0 1600 ˆ 1200

5.1.1. Performance w.r.t. the Noise Level and the Number of Placement Times of the Target

In this experiment, Gaussian noise with 0 mean and σ (0.05–0.50 pixel or 0.05–1.00 pixel) standard
deviation is added to the contour points of the projected image. For each noise level and the number
of placement times N (2, 3, 4) of the target, we perform 200 independent trials, and Figures 2 and 3
show the relative error of R and T under different conditions. As we can see, errors increase with
increasing noise level. The relative errors of R and T are even less than 5% with the minimum number
of placement times (namely N = 2), and the relative errors are drastically reduced when increasing
the number of placement times. For σ = 1, N = 4, the calibration errors of R and T are less than 1‰.
However, it is clear that the noise level is less than 1 pixel in practical calibration.Sensors 2016, 16, 1074 10 of 19 
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5.1.2. Performance w.r.t. the Depth-Scale Factor µ

This experiment studies the performance with respect to the depth-scale factor µ, which is the
ratio of the depth h0 of sphere centre and sphere radius R0. To ensure the same orientation, we change
the value of µ by varying only the sphere radius. Gaussian noise with 0 mean and standard deviation σ

= 0.50 pixel is added to the contour points of the projected ellipse, and the target is placed N = 3 times.
We vary the radius from 4 mm to 36 mm and perform 200 independent trials for each radius. Figure 4
shows the results that the relative errors decrease with increasing radius (that is, the depth-scale factor
µ decreases). Note that in practice, if the radius increases too much, the image of sphere may be too
large to display in the image plane.
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5.2. Real Data

In the experimental results on real data, the BSVS is composed of two AVT-Stingray F504B
cameras, a 17 mm Schneider lens and support structures. The image resolution of the cameras is
1600 ˆ 1200 pixels. Figure 5 shows the structure of the BSVS.
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5.2.1. Intrinsic Parameters Calibration

The Matlab toolbox and a checkerboard target (see Figure 6) are used to calibrate the intrinsic
parameters. There are 10 ˆ 10 corner points on the checkerboard target, and the distance between any
two adjacent corner points is 10 mm with 5 µm accuracy. Twenty images of different orientations are
taken for intrinsic parameters calibration of each camera. Table 2 shows the calibration results.
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Table 2. Intrinsic parameters of the cameras.

Intrinsic Parameters αx αy γ u0 v0 k1 k2

Left Camera 5086.806 5086.827 0 787.205 595.726 ´0.243 1.662
Right Camera 5087.828 5087.638 0 831.764 562.411 ´0.240 0.330

5.2.2. Structural Parameters Calibration

The double-sphere target (see Figure 6) is composed of two spheres with the same radius and
support structure. The distance between these two spheres is 149.946 mm with 0.003 mm accuracy.
Set the LCCF as the WCF. To explore the best of number of placement times, a double-sphere target is
placed freely 28 times in the measurement space, and 28 pairs of images are obtained. For evaluating
the accuracy of the calibration, another 15 pairs of images of the double-sphere target are captured.

We then randomly select 8, 10, 12, 14, 16, 18, 22 and 28 pairs of images for calibration using our
method and obtain several sets of structural parameters. Figure 7 illustrates the extraction and fitting
details of a pair of target images.
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Figure 7. Extraction and ellipse fitting of images (a,b) are the origin images and (c,d) are the processed images.

The calibrated BSVS is used to measure the distance between two sphere centres of the
double-sphere target by means of another 15 pairs of measured images. Root-mean-square (RMS)
errors of these measured values are taken as evaluation criteria of calibration accuracy. Table 3 shows
the results, and Figure 8 displays the relative errors and absolute errors of RMS.
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Table 3. Comparison of measured values (mm).

Place Times 8 10 12 14 16 18 22 28

Image 1 149.916 149.923 149.906 149.953 149.898 149.950 149.879 149.928
Image 2 149.769 149.811 149.800 149.817 149.776 149.799 149.727 149.785
Image 3 149.930 149.877 149.852 149.885 149.842 149.915 149.904 149.900
Image 4 149.843 149.895 149.934 149.972 149.939 149.847 149.870 149.883
Image 5 149.887 149.926 149.959 150.000 149.970 149.897 149.908 149.920
Image 6 149.911 149.913 149.939 149.971 149.971 149.922 149.932 149.915
Image 7 149.925 149.999 150.010 149.957 149.931 149.856 149.914 149.926
Image 8 149.854 149.904 149.908 149.854 149.825 149.769 149.844 149.840
Image 9 150.068 150.087 150.082 150.028 149.995 149.961 150.058 150.036

Image 10 149.934 149.909 149.888 149.841 149.800 149.809 149.920 149.878
Image 11 149.896 149.969 149.980 150.027 149.973 149.953 149.872 149.948
Image 12 149.987 150.049 150.047 150.084 150.009 150.009 149.956 150.028
Image 13 149.998 150.045 150.036 150.074 149.992 150.009 149.963 150.031
Image 14 149.940 149.896 149.879 149.928 149.864 149.918 149.926 149.925
Image 15 149.914 149.866 149.850 149.892 149.846 149.901 149.899 149.893

RMS (mm) 0.073 0.075 0.079 0.080 0.084 0.084 0.079 0.071
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From Figure 8, we can see that when the number of placement times is greater than 16, the errors
begin to monotonically decrease. Consequently, we must place the double-sphere target approximately
16 times in the experiment.

In this experiment, we have the calibration parameters with 18 times as the final result. By using
the calibration parameters, we reconstruct the target positions in space, and the results are shown in
Figure 9. For comparison, the Matlab toolbox method is also carried out for structural parameters
calibration. Table 4 shows the calibration results of these two methods.
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Table 4. Comparison of the structural parameters.

Structure Parameters rx ry rz tx ty tz

Our Method ´0.0046 0.5993 0.0302 ´473.95 ´5.622 121.70
Toolbox Method ´0.0071 0.6014 0.0290 ´474.97 ´7.181 122.36

5.2.3. Accuracy Evaluation

To evaluate the accuracy of the calibration, another 10 pairs of images of the checkerboard target
are captured. In addition, 15 pairs of previous captured images of the double-sphere target are also
used for accuracy evaluation.

Using the calibrated BSVS by these two methods, we measure the distance between two sphere
centres of the double-sphere target and each distance between two adjacent corner points of the
checkerboard target. The RMS errors of these measured values are taken as the evaluation criteria of
calibration accuracy.

(a) Measure the double-sphere target

Figure 10 displays the measured results of 15 distances, and Table 5 shows a comparison of the errors.
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Table 5. Comparison of measurement accuracy of the double-sphere target (mm).

Methods RMS Relative Error (%) Standard Error

Our method 0.084 0.056 0.073
Toolbox method 0.111 0.074 0.091

The results in Table 5 show that the RMS error of our algorithm is 0.084 mm, and the relative error
is approximately 0.06%; the RMS error of the toolbox method is 0.111 mm, and the relative error is
approximately 0.07%. Consequently, it is obvious that our method is slightly better than the toolbox
method in measuring the distance of two sphere centres. The standard errors of the measured values
show that the measured results by our method are more stable.

(b) Measure the checkerboard target

The details of the checkerboard target have been introduced in the preceding paragraph. Because
the measured values are too numerous, we represent these values by the scatter plots in Figure 11.
Table 6 shows the comparison of errors. For an intuitive display of the calibration results of our method,
we reconstruct the 3D points of the checkerboard target, and Figure 12 shows the results.
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Table 6. Comparison of the measurement accuracy of the checkerboard target (mm).

Method RMS Relative Error (%) Standard Error

Our method 0.008 0.084 0.0055
Toolbox method 0.005 0.053 0.0053

As we can see in Table 6, the RMS errors are 0.008 and 0.005 mm, and the relative errors are 0.08%
and 0.05%, respectively. When measuring the distance of the corner points of the checkerboard, the
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toolbox method is slightly better. According to the standard errors, we can find that these two methods
are both reasonably stable.

As we have observed from the accuracy evaluation, our method exhibits similar calibration
accuracy to the toolbox method. The measured errors of both methods are less than 0.9‰. The sphere
has an excellent property of complete symmetry, which can effectively avoid the simultaneously visible
problem of target features in multi-camera calibration.

The toolbox method based on the plane target is a typical method. However, the algorithm usually
requires the plane target to be placed in different orientations so as to provide enough constraints,
which increases the possibility of occurrence of the simultaneous visibility problem. When the angle
between the principal rays of the two cameras is large, it is difficult to capture high quality image at
the same time, so the calibration accuracy would be heavily influenced. Figure 13 shows a comparison
of the plane target and the double-sphere target in calibration when the angle between the principal
rays is large. As seen in Figure 13, the right image of the plane target is so tilt that the corners cannot
be accurately extracted, while both images of the double-sphere target have the same high level of
clarity and the contours can be accurately extracted. Therefore, it is obvious that the double-sphere
target will perform better than the plane target.
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6. Conclusions

In the paper, we describe a method to calibrate structural parameters. This method requires
a double-sphere target placed a few times in different positions and orientations. We utilize the
normal vectors of spatial planes to compute the rotation matrix and use a linear algorithm to solve the
translation vector. The simulations demonstrate how the noise level, the number of placement times
and the depth-scale factor influence the calibration accuracy. Real data experiments have shown that
when measuring the object with a length of approximately 150 mm, the accuracy is 0.084 mm, and
when measuring 10 mm, the accuracy is 0.008 mm.

If the sphere centres are all coplanar, our method will fail. Therefore, the double-sphere target
should be placed in different positions and orientations to avoid this degradation. Because the
calibration characteristic of the sphere is its contour, we should prevent the double-sphere target
from completely mutual occlusion. As mentioned above, the two spheres should have the same
radius. However, if the two sphere centres are unequal, our method can still work. If the ratio of the
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two radii is known, the ratio value should be considered when recovering the intermediate parallel
planes; other computation procedures remain unchanged. If the ratio is unknown, three arbitrary
projected ellipses with the same sphere should be selected to recover the intermediate parallel plane.
Furthermore, this target must be placed at least four times. Obviously, such a target provides fewer
constraints than the target with a known ratio of sphere radii when solving the rotation matrix.
To calibrate the BSVS with a small public view while guarantee high accuracy, we can couple these
two spheres with large radii to form a double-sphere target. In multi-camera calibration, using the
double-sphere target can avoid the simultaneous visibility problem and performs well.
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The following abbreviations are used in this manuscript:

BSVS binocular stereo vision sensor
LCCF left camera coordinate frame
RCCF right camera coordinate frame
WCF world coordinate frame
RMS Root mean square

Appendix A

This appendix provides a solution to solve Equation (20). Expanding Equation (20),

¨

˚

˝

prx
pry
prz

˛

‹

‚

T »

—

–

0 ´Tz Ty

Tz 0 ´Tx

´Ty Tx 0

fi

ffi

fl

¨

˚

˝

p̂lx
p̂ly
p̂lz

˛

‹

‚

“ 0 (A1)

Equation (A1) can be written as

”

p̂lyprz ´ p̂lzpry p̂lxprz ` p̂lzprx p̂lxpry ´ p̂lyprx

ı ”

Tx Ty Tz

ıT
“ 0 (A2)

From Equation (A2), we have
AiT “ 0

where Ai is now a 1 ˆ 3 matrix. Given at least three pairs of image points, we can obtain an equation
AT “ 0, where A is the coefficient matrix composed of coefficients Ai from each equation AiT “ 0.
Using SVD, we can obtain the solution T0 of equation AT “ 0.

Appendix B

In this appendix, the sign of a in Equation (25) will be discussed. Because Z ą R0 ą 0 holds,
we have

µ2d2
z ´ 1 “

h0
2

R2
0

d2
z ´ 1 “

Z2

R2
0
´ 1 ą 0

Because of dx ą 0, dy ą 0, dz ą 0, u0 ă x ă 2u0, we can deduce
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µ2pu0dz ` αxdxq
2
´ pα2

x ` u2
0q“ pµu0dz ` µαxdxq

2
´ pα2

x ` u2
0q

“ pu0
Z
R0
` αx

X
R0
q

2
´ pα2

x ` u2
0q

If X ě R0, then X{R0 ě 1, therefore

µ2pu0dz ` αxdxq
2
´ pα2

x ` u2
0q ą 0

Now, we have
a ą 0 when X ě R0

Appendix C

In this appendix, we endeavour to determine the range of ρxxc in Equation (31). Because the
ellipse centre is close to the projected image point of the sphere centre, we can approximate
pxc ´ u0q{αx « px´ u0q{αx “ dx{dy.

Denote ρ1 “
 ?

M´
“

2u0 pxc ´ u0q `
`

α2
x ` u2

0 ´ a
˘‰(

{
?

M and ρ2 “
α2

x`u2
0´a

2pxc´u0q
2 , then

ρxxc “ ρ1ρ2

Considering ρ1, we can obtain

ρ1 “
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ˆ

α2
x`u2

0´a
px´u0q

2

˙2
`

4pα2
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(C1)

and then deduce

α2
x ` u2

0 ´ a

px´ u0q
2 “

µ2d2
z

µ2d2
z´1

„

´

´

dx
dz

¯2
´ 2 u0

αx
dx
dz
` 1


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Z2

Z2 ´ 1

«

ˆ

dz

dx

˙2
´ 2

u0

αx

dz

dx
´ 1

ff

(C2)

Denote dz{dx by m. Because 0 ă dx{dz ă u0{αx holds, m satisfies m ą αx{u0. In general, Z satisfies
Z ąą 1, so Z2{pZ2 ´ 1q « 1. Replacing dz{dx with m in Equation (C2), we have

α2
x ` u2

0 ´ a

px´ u0q
2 “ m2 ´ 2

u0

αx
m´ 1 (C3)

Several other polynomials of Equation (C1) are reduced to

α2
x ` u2

0

px´ u0q
2 “

˜

1`
u2

0
α2

x

¸

m2 and
u0

x´ u0
“

u0

αx
m (C4)

Combining Equations (C3) and (C4), ρxxc can be written as

ρxxc “ ρ1ρ2 “
1

m2 ` 1
pm2 ´ 2

u0

αx
m´ 1q (C5)

For a quadratic equation m2 ´ 2 pu0{αxqm´ 1 with respect to m (m ą αx{u0 ą 0), if αx{u0 satisfies
αx{u0 ą

?
3, the quadratic equation will constantly be greater than zero.
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Consequently, ρxxc satisfies 0 ă ρxxc ă 1 when αx{u0 ą
?

3.

Appendix D

In this appendix, we determine the sign of Bx
Bxc

in Equation (34). For the numerator of Equation (34),
because of u0 ă x ă 2u0, αx{u0 ą

?
3,

α2
x ` u2

0 ´ x2 ą 0

constantly holds. For the denominator, we have

α2
x ` u2

0 ´ a` 2 pxc ´ u0q x “
µ2α2

xd2
z

„

´

´

dx
dz

¯2
´ 2 u0

αx
dx
dz
` 1



µ2d2
z ´ 1

` 2 pxc ´ u0q x

If αx{u0 ą
?

3, then´prx{rzq
2
´ 2pu0{αxqprx{rzq` 1 ą 0 holds. Because xc is close to x, xc´ u0 ą 0,

and we have
α2

x ` u2
0 ´ a` 2 pxc ´ u0q x ą 0

Consequently, when αx{u0 ą
?

3, we have Bx
Bxc

ą 0.

References

1. Gao, H. Computer Binocular Stereo Vision; Publishing House of Electronics Industry: Beijing, China, 2012.
2. Steger, C.; Ulrich, M.; Wiedemann, C. Machine Vision Algorithms and Applications; Tsinghua University Press:

Beijing, China, 2008.
3. Zhang, G. Visual Measurement; Science Press: Beijing, China, 2008.
4. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge,

UK, 2003.
5. Ma, S.; Zhang, Z. Computer Vision: Theory and Algorithms; Science Press: Beijing, China, 1998.
6. Bouguet, J.Y. Camera Calibration Toolbox for Matlab. 2010. Available online: http://www.vision.caltech.

edu/bouguetj/calib_doc/ (accessed on 1 May 2015).
7. Zhou, F.; Zhang, G.; Wei, Z.; Jiang, J. Calibrating binocular vision sensor with one-dimensional target of

unknown motion. J. Mech. Eng. 2006, 42, 92–96. [CrossRef]
8. Penna, M.A. Camera calibration: A quick and easy way to determine the scale factor. IEEE Trans. Pattern

Anal. Mach. Intell. 1991, 13, 1240–1245. [CrossRef]
9. Daucher, N.; Dhome, M.; Lapreste, J. Camera calibration from spheres images. In Proceedings of the

European Conference on Computer Vision, Stockholm, Sweden, 2–6 May 1994; pp. 449–454.
10. Teramoto, H.; Xu, G. Camera calibration by a single image of balls: From conics to the absolute conic.

In Proceedings of the 5th Asian Conference on Computer Vision, Melbourne, Australia, 23–25 January 2002;
pp. 499–506.

11. Agrawal, M.; Davis, L.S. Camera calibration using spheres: A semi-definite programming approach.
In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October
2003; pp. 782–789.

12. Wong, K.Y.K.; Mendonça, P.R.S.; Cipolla, R. Camera calibration from surfaces of revolution. IEEE Trans.
Pattern Anal. Mach. Intell. 2003, 25, 147–161. [CrossRef]

13. Ying, X.; Zha, H. Linear approaches to camera calibration from sphere images or active intrinsic calibration
using vanishing points. In Proceedings of the Tenth IEEE International Conference on Computer Vision,
Beijing, China, 15–21 October 2005; pp. 596–603.

14. Zhang, H.; Zhang, G.; Wong, K.Y.K. Camera calibration with spheres: Linear approaches. In Proceedings of
the International Conference on Image Processing, Genova, Italy, 11–14 September 2005; pp. 1150–1153.

15. Zhang, G.; Wong, K.-Y.K. Motion estimation from spheres. In Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006;
pp. 1238–1243.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://dx.doi.org/10.3901/JME.2006.06.092
http://dx.doi.org/10.1109/34.107007
http://dx.doi.org/10.1109/TPAMI.2003.1177148


Sensors 2016, 16, 1074 19 of 19

16. Zhang, H.; Wong, K.Y.K.; Zhang, G. Camera calibration from images of spheres. IEEE Trans. Pattern Anal.
Mach. Intell. 2007, 29, 499–502. [CrossRef] [PubMed]

17. Wong, K.-Y.K.; Zhang, G.; Chen, Z. A stratified approach for camera calibration using spheres. IEEE Trans.
Image Process. 2011, 20, 305–316. [CrossRef] [PubMed]

18. Jia, J. Study on Some Vision Geometry Problems in Muti-Cameras System; Xidian University: Xi’an, China, 2013.
19. Steger, C. Unbiased Extraction of Curvilinear Structures from 2D and 3D Images; Utz, Wiss.: Munich, Germany, 1998.
20. Fitzgibbon, A.; Pilu, M.; Fisher, R.B. Direct Least Square Fitting of Ellipses. IEEE Trans. Pattern Anal.

Mach. Intell. 1999, 21, 476–480. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2007.45
http://www.ncbi.nlm.nih.gov/pubmed/17224619
http://dx.doi.org/10.1109/TIP.2010.2063035
http://www.ncbi.nlm.nih.gov/pubmed/20682473
http://dx.doi.org/10.1109/34.765658
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Basic Principles 
	Derivation of the Projected Ellipse 
	Derivation of the Image Point of the Sphere Centre 
	Computation of the Depth-Scale Factor  

	Calibration Principles 
	Acquisition of the Rotation Matrix 
	Acquisition of the Translation Vector 
	Nonlinear Optimization 
	Summary 

	Error Analysis 
	Experiments 
	Computer Simulations 
	Performance w.r.t. the Noise Level and the Number of Placement Times of the Target 
	Performance w.r.t. the Depth-Scale Factor  

	Real Data 
	Intrinsic Parameters Calibration 
	Structural Parameters Calibration 
	Accuracy Evaluation 


	Conclusions 
	A 
	B 
	C 
	D 

