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Abstract: Pervasive data sensing is a major issue that transverses various research areas and
application domains. It allows identifying people’s behaviour and patterns without overwhelming
the monitored persons. Although there are many pervasive data sensing applications, they are
typically focused on addressing specific problems in a single application domain, making them
difficult to generalize or reuse. On the other hand, the platforms for supporting pervasive data
sensing impose restrictions to the devices and operational environments that make them unsuitable
for monitoring loosely-coupled or fully distributed work. In order to help address this challenge
this paper present a framework that supports distributed pervasive data sensing in a generic way.
Developers can use this framework to facilitate the implementations of their applications, thus
reducing complexity and effort in such an activity. The framework was evaluated using simulations
and also through an empirical test, and the obtained results indicate that it is useful to support such
a sensing activity in loosely-coupled or fully distributed work scenarios.

Keywords: distributed pervasive data sensing; pervasive monitoring; mobile collaboration; software
development framework

1. Introduction

Pervasive monitoring allows capturing and characterizing people’s practices and patterns in
various scenarios, such as learning, shopping or homecare. This monitoring requires the capture of
data from different kinds of sensors, across the different situations and contexts that the people might
encounter in their everyday lives. Although smartphones can be used to address this activity, these
devices still have some limitations to perform pervasive monitoring; for instance: (1) their sensors
are not very accurate; (2) the continuous sensing process involves a high energy cost [1], and their
computing power is usually not enough to perform computationally intensive classifications and
inference tasks (e.g., speech or image recognition) [2].

These limitations have promoted the appearance of both collaborative sensing techniques that
help improve data quality and save energy [3-6], and also software platforms that help developers
create monitoring applications for smartphones. Most these solutions involve the use of centralized
components, or assume homogeneity of the devices’ capabilities or stability of the communication
links among the participants [7-9]. These assumptions do not represent a limitation for conducting
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some monitoring activities (e.g., crowdsensing [10] or participatory sensing [11]); however, they do
for monitoring collaboration scenarios where the smartphone users perform loosely-coupled mobile
interactions [12]; for instance, firemen performing first response activities or students involved in
mobile learning activities.

In order to support the development of distributed pervasive monitoring applications for
this particular niche (i.e., loosely-coupled mobile work), we present a framework named Mobile
Autonomous Sensing Unit (MASU) that is able to collect and share data among devices involved in
smartphone-based pervasive sensing. Although this framework was initially conceived to support
pervasive monitoring in mobile learning contexts, it can also be used to perform pervasive monitoring
in a variety of work scenarios.

The MASU framework was evaluated to determine its performance and usage costs in terms of
energy, computation and network traffic. The evaluation included simulations and also an empirical
test. The preliminary results indicate that this infrastructure is not only useful for data gathering and
sharing, but also for reducing the battery consumption of the devices involved in the sensing tasks.

The next section presents and discusses the related work. Section 3 describes the design of the
proposed pervasive sensing framework, including its architecture, services, interaction protocols,
messages and data retrieval mechanism. Sections 4 and 5 describe the evaluation process using
simulation and an empirical test, respectively, and discuss the obtained results. Section 6 presents
a comparison between well-known sensing frameworks and the one presented in this paper, by showing
similarities and differences. Finally, Section 7 presents our conclusions and possible future work.

2. Related Work

Pervasive applications that monitor loosely-coupled mobile work should consider the dynamism
of the interaction context, in which smartphone users can be while performing a collaborative activity.
Therefore, pervasive data sensing solutions should provide services for implicit and explicit data
sharing, and these services should work in both infrastructure-based and ad hoc networks.

Participatory sensing [2,11] usually involves the voluntary cooperation between smartphone
users in order to collect, analyse and share information about their local context. These processes
usually require explicit participation of the user, who is actively involved in the data collection process.
An example of this voluntary information sharing is when an individual uses his smartphone to
take a picture, provide descriptions of his particular context (e.g., in a meeting, cycling, etc.) or
tags his current location (e.g., my favourite cafeteria, my brother’s place, etc.). Similarly, mobile
crowdsensing [10,13,14] also requires user intervention to provide sensor information. However,
it reuses user-entered data from Internet services and social networking sites. These capabilities
have allowed people to become active participants of these processes and get a benefit for that.
Some services based on these sensing paradigms allow people, for example to identify opportunities
for hitchhiking [15] or to evaluate their personal security [16]. Typically, these sensing approaches use
infrastructure-based communication that allows mobile sensors to access centralized data repositories,
which are in charge of supporting the data sharing process. These approaches are not particularly
designed to perform opportunistic sensing, where heterogeneous mobile devices (i.e., devices with
distinct sensing capabilities) collaborate to provide each other with contextual data that each device
alone could not otherwise sense. For this reason, a different sensing approach is also necessary.
Opportunistic sensing [2,6], provides a method to capture contextual information automatically from
sensors available in the smartphone. In this case, the user is not directly involved in the data collection
process and the information is sensed unobtrusively.

Although there are various applications that provide specific solutions for addressing particular
problems, most of them are not easy to use in other contexts, and also require specialized development
expertise. For this reason, the development of these types of applications requires to address various
challenges related to the limitations of the communication networks and types of interactions in
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certain contexts, such as unstable communication links, devices heterogeneity, energy constraints, user
mobility patterns, etc.

There are also platforms that consider unstable communication scenarios and provide interaction
autonomy to the devices participating in a sensing activity, for instance, by using mobile ad hoc
networks (MANETs). Nevertheless, they do not take advantage of long-range communication
infrastructures when they are available (e.g., Internet connections, cellular networks, etc.) [8,17], which
limits the system capability to interact with remote components when they are available. Given the
communication in MANETs is usually unstable, there are some proposals (e.g., to support mobile
sensing task scheduling [9,18]) that are focused on reducing the data missing rate of mobile nodes, and
thereby increasing the gathering rate of the required sensing data.

Some other platforms, like Remora [19] and C-SPINE [20] are designed to exploit device proximity
through body sensor networks (BSN). Neighbouring BSNs can opportunistically perform freeriding by
using the overheard data from all in-range sensors. The contrary approach is adopted by middleware,
like MobloT [21], which support mobile collaborative sensing at a large scale. However, most these
middleware have scalability limitations that are addressed by controlling the participation of redundant
sensing devices. These solutions are limited to support pervasive sensing since they compel software
designers to choose between short- or large-range data sensing.

Using a hybrid approach platform like METIS [22] (an adaptive smartphone-based sensing system)
it is possible to support social sensing by combining smartphones with other devices. This platform
decides whether to perform sensing tasks on the local smartphone or on fixed remote sensors,
considering the energy costs and the mobility patterns of the user. Following the same line, the
middleware proposed in [23] supports collaborative sensing by allowing smartphones to delegate part
of their sensing activities to other nearby devices. This leads to an overall reduction in the battery
drain of the group of devices involved. Similarly, the CoMon [8] platform supports cooperation, by
sharing sensed data among nearby smartphone users, to address the energy drain problem caused by
continuous sensing and processing tasks required by monitoring applications. This platform is focused
on the detection of potential collaborators (mobile users) and trying to maximize the mutual benefits
for the people involved. These last three platforms only try to maximize the benefits of collaborative
sensing (in terms of energy consumption) by using smartphones. The lack of capability to involve
heterogeneous devices limits their support for pervasive sensing.

Some other platforms, like EasiSee [24], have addressed quite well the sensing scenario by
adopting a pervasive approach; in this case, for counting and classifying vehicles in real-time. However,
the solution is ad hoc to the problem being addressed (e.g., it considers sensing activities conducted
only by a camera and magnetic sensors), which limits its usefulness in other application scenarios.

Provided that pervasive monitoring usually entails diverse types of sensing devices and is
dynamic in terms of communication support and users mobility patterns, the monitoring platform
should also provide context-awareness [25] and support for device heterogeneity (i.e., allowing
interoperability and considering hardware and energy limitations). In this sense, most of the platforms
described in this section include centralized components, require a stable communication link to access
remote resources, do not support heterogeneous devices or are specific for a certain application domain.
Any of these issues jeopardize the suitability of the platforms to support pervasive sensing in various
application domains. Next section presents the MASU framework, which is proposed to deal with
these issues.

3. The MASU Framework

The MASU framework supports opportunistic mobile collaborative sensing activities performed
over dynamic and distributed communication scenarios that include both stable and unpredictable
communication links. This framework is based on what we call MASU units (potentially mobile
nodes), which are smartphones or other devices that run the MASU software infrastructure and
interact among them in a peer-to-peer fashion. These nodes not only can work autonomously and
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perform independent sensing tasks, but also interact opportunistically with other units to perform
collaborative sensing. In this sense, the framework allows nodes to act as both consumers and providers
of sensing services while preserving their autonomy. The collaboration among a group of MASU
units allows the provision of complex and high quality sensing services that could not be provided by
individual sensing devices, due to limitations in their capabilities (e.g., CPU, memory, sensor quality,
etc.) or to the high cost involved in the sensing tasks. For this reason, the interaction between various
units enables a number of collaborative sensing services that are beneficial for the overall group of
devices involved in terms of hardware resources, energy consumption and information quality.

In order to model a variety of processes and services involved in a collaborative sensing activity,
the MASU framework defines a number of roles played by different units. A role can be seen as
a particular set of services provided and/or consumed by a specific unit. A MASU unit can play one or
more roles within a collaborative sensing activity. Moreover, it can have various instances of the same
type of role activated at the same time. A unit can also participate in a number of parallel collaborative
sensing activities, interacting simultaneously with units that are part of different activities and playing
the same or different roles in them. In other words, a MASU unit can be seen as an autonomous node
playing one or more roles in various work sessions.

Figure 1 shows an overview of the MASU work scenario, when two collaborative sensing activities
are being performed among a group of units. It shows two different groups of units that, according
to the roles played by them, provide and/or consume diverse services within the activity they are
participating. In addition, one of the units is participating in both sensing activities so that it can
contribute to and benefit from both of them.
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Figure 1. Overview of the MASU work scenario.

The process to conceive, develop and evaluate the MASU framework was inspired in the design
science research approach [26], which is a problem solving process that involves seven steps (guidelines)
for finding a solution to the stated problem (an information system). Following these guidelines we
defined the MASU design (guideline 1) for addressing the pervasive sensing problem (guideline 2).
We evaluated the performance and capability of such a design using simulations and also through
an empirical test using a MASU-based application (guideline 3). The evaluation results indicated the
framework was able to manage the device heterogeneity in a distributed way, considering various
types of communication links among nodes; which represents a clear contribution for the development
of pervasive sensing solutions (guideline 4). The MASU design was represented using contextualized
component diagrams (guideline 5), and these design solutions were revised through periodic formal
technical reviews [27] that helped us find effective solutions to the design challenges of the system
(guideline 6). Finally, the design results were communicated to the technical audience involved in the
MASU evaluation process in order to help them make an effective use of the framework (guideline 7).
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The design evaluation methods used during the development of MASU were diverse; each one was
chosen depending on the development stage of the product. Particularly, architecture analysis (design
inspections [27]) was used during system conception and evolution. Then simulations were utilized
to determine the performance and capability of the system before implementing it. These properties
of the system were verified using black-box testing, and its usefulness was evaluated using a real
application scenario; particularly, a MASU-based application was developed to conduct a pervasive
sensing process. The steps of the design science research approach followed in the development and
evaluation of the MASU framework are described more in details in the next subsections.

3.1. System Architecture

The architecture of the MASU framework includes two separate layers (Figure 2): the Control
Tier and the Sensing Tier, which interact among themselves and define two different categories of
roles. This is a crosslayer architecture that enables interactions with other layers of the computing
system, and benefits from the information that other layers may provide (i.e., hardware and network
information). The particular pervasive sensing applications developed over MASU are in the upper
layer, and therefore they consume the services provided by the framework.

Pervasive Sensing Application

Control Tier
Manager Monitor

Sensing Tier

I T -

N N

<{ Producer ’j‘.—.{\ Consumer’j«——v(\ Storage ’:,,,_,(:
\\/,4 \\.f/" 2o

Device Hardware

:

Network Infrastructure

Topology De{av Traffic

‘ == |ntra-layer interactions  ===p Inter-layer interactions === Crosslayer interactions

Figure 2. Architecture of the MASU Framework.

The Control Tier provides all the services required for the management and monitoring of the
overall collaborative sensing activity, coordinating the tasks within the activity and also among
different activities, if required. This layer is also in charge of managing the use of resources within
each sensing device (MASU unit).

This layer includes two roles: Manager and Monitor, which interact among themselves to
coordinate the operation of this tier and provide the collaborative sensing services. Therefore,
the Control Tier performs role selection and activation functions, and it also has control over the
Sensing Tier. This layer also monitors the state of the device’s hardware components, such as battery
level, processor load, memory available and quality of the sensors available (hardware monitoring).
Moreover, it keeps track of events related to the underlying network infrastructure, including
topological changes, network traffic, congestion and delay (network monitoring). Such monitoring
allows the MASU units to be context-aware and make appropriate role selection and activation
decisions, as well as to adapt to the unpredictability of dynamic environments, activating or
deactivating roles accordingly.
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The Sensing Tier, which is in charge of performing the specific data sensing and sharing tasks, has
four distinct roles: Producer, Consumer, Storage and Relay. These roles interact among themselves
enabling the provision of complex data sensing services.

3.2. Node Structure

The node running the MASU platform can play one or more of the roles defined in the framework.
Figure 3 represents the role composition structure of a MASU node.

y y
»’\ Manager { Monitor )

< Consumer < Producer -

Relay / . / ’Storage‘;; ’ Collector  Processor

Figure 3. Structure of a MASU node.

A node can also have various instances of the same role activated at the same time, but in different
sensing sessions. These roles are dynamic and can evolve over time according to the characteristics of
the network infrastructure, the mobility of the nodes, or changes in the number of nodes involved in
the activity.

In order to conduct a collaborative sensing activity, it is necessary that at least two nodes are willing
to collaborate, and such collaboration implies some benefit for the participating nodes. Otherwise, the
MASU units would be working independently, in autonomous mode. A node performing sensing
activities independently in a stand-alone fashion, would be at the same time Producer and Consumer
of its own sensing services. It would, therefore, only require the activation of particular Producer roles
for the required services and the corresponding Consumers of such services. By contrast, in a scenario
where a set of nodes is working collaboratively to perform a sensing activity, there can be diverse
combinations on the number and type of roles that must be activated in different nodes, depending on
the requirements of the activity and on the characteristics and capabilities of the participating devices.
However, this collaborative sensing activity would require that at least one Manager, one Monitor,
one Producer and one Consumer roles be activated in the activity.

Typically, most nodes collaborating in a sensing activity will have at least a Consumer role
activated, because we assume that they will be interested in at least part of the sensed data.
Nevertheless, if some of the MASU units participating in the activity are Internet of Things (IoT)-based
devices, there can be cases where they would require the activation of a Consumer role (e.g., a shared
display receiving an image), but in other cases, they would only provide sensing services and would
not have any Consumer role active (e.g., sensors in smart buildings).

There can be two different kinds of Producer roles: Collector and Processor, depending on the
type of information that they generate or in the method used by them to obtain it. Moreover, Relay
and Storage roles can be activated depending on the network conditions and on the characteristics of
the sensing activity and of the participating nodes.

3.3. Roles and Services

MASU units playing some roles can interact with each other by subscribing to the services
provided by specific roles. When a unit subscribes to a particular role, it is then, subscribing to all the
services provided by such a role. The role manager acts as coordinator of the collaborative sensing
activity, and there can be various managers coordinating the activity. The monitors supervise the
performance of MASU units. The producers perform sensing tasks using any of the sensors available
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in the device. The consumers are typical service consumers that use the data sensed by the producers.
They can access this data directly from the producers, and also through storages or relays. The storage
acts as an active data repository that can be subscribed to the data obtained from the producers.
The relays are in charge to retransmit recent data generated by producers, to consumers that lost or
could not receive the data sent by the producers properly.

Figure 4 shows an example of a collaborative sensing activity involving four MASU units and
various roles. The arcs represent the interactions between roles. According to Figure 4, the Manager
activates all the roles present in the activity and also performs service monitoring over them. On the
other hand, the Monitor performs network monitoring, service monitoring over the Manager and
hardware monitoring over the four participating units. In the activity we have two Producers:
one acting as Collector and the other as Processor. In this case, the Processor receives the data
sensed previously by the Collector, performs some classification or inferences tasks and sends the
resulting information to the Storage. Finally, the Storage sends this information to the Consumer.

Manager

\
N

Consumer
P 4

Monitor -
Processor ”~

Storage

Network™

Role activation
== Service monitoring
Hardware monitoring
------ » Network monitoring

= Sensed data interchange

Figure 4. Interactions between MASU roles.

3.4. Internal Mechanisms

Three internal mechanisms govern the dynamic of the individual and collective work of the
mobile units. Next we briefly explain these mechanism.

3.4.1. Mechanisms for Role Selection and Activation

Once the set of devices that will take part in the collaborative sensing activity is determined, all
the participating units share their hardware capabilities. Then, they have to select and activate the local
roles in each tier. In this sense, we distinguish between two basic operations: (i) Role Selection and
Activation in the Control Tier and (ii) Role Selection and Activation in the Sensing Tier. MASU supports
dynamic centralized or distributed approaches for conducting this operation. Table 1 shows a summary
of the methods followed for the selection of roles in the different Tiers, according to the role chosen for
the Control Tier. If the role activated in the Control Tier is Dynamic Centralized, the selection of roles
in this Tier will be determined by the results of the election algorithm. Furthermore, due to the fact
that in this architecture we only have one manager, the selection of roles in the Sensing Tier will be
determined by such a manager. Nevertheless, if the role architecture of the Control Tier is distributed,
all the units that are part of the collaborative sensing activity and that are active and have connectivity
will play the roles of the Control Tier. In addition, the Selection and Activation of roles in the Sensing
Tier will be determined by the results of the consensus algorithm.
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Table 1. Role selection and activation mechanisms for the different role settings.

Dynamic Centralized Distributed
Control Tier By leader election algorithm All active units
Sensing Tier By the manager By consensus algorithm

3.4.2. Cost Function and Resource Optimization

Before selecting and activating roles in the Sensing Tier, the Manager uses the information received
from the MASU units to run a Cost Function. The output of this function will determine whether it
would be beneficial for the whole group of units to work collaboratively or not. According to such
output, the Manager will activate or not the Role Selection and Activation processes in the Sensing Tier.
Consequently, if the output of the Cost Function is negative, there will not be collaborative activity
and all the units will work independently. The Cost Function determines the viability and usefulness
of performing collaborative sensing.

The Cost Function is also associated with the results of the Resource Optimization Algorithm
(ROA), which helps optimize the use of the resources of the whole group of participating units.
The ROA algorithm runs every time that the MASU framework wants to initiate the Role Selection and
Activation process in the Sensing Tier. Such an algorithm influences how roles are selected, calculating
the estimated costs of the services provided by each one of the roles, and considering the specific
requirements of the activity and the characteristics and state of the devices. The ROA determines,
for a group of units, who has to activate a given role, who has to collect data from specific sensors
and share the results with the rest of the members, etc. The ROA will also decide, between these
two Producer units, which one have to capture data from microphone and which one have to sense
GPS data. As a result, the rest of the units acting as consumers will deactivate their sensors and wait
until they receive the sensed information from these two producer units.

3.4.3. Fault Tolerance Mechanisms

Due to the dynamism and uncertainty of some network infrastructures, the MASU defines various
fault tolerance mechanisms to deal with changes and failures in active roles that are taking part in
a collaborative sensing activity. Such mechanisms can be classified into two categories: tolerant to role
failure and tolerant to resource limitations. In order to detect a role failure, the framework monitors the
state of each one of the roles that were activated to perform the activity. As explained previously, the
manager role monitors the state and behaviour of the services offered by all the other roles. Similarly,
both manager and monitor perform mutual service monitoring on each other.

Concerning the mechanisms of tolerance to resource limitation (e.g., battery, memory or CPU)
the monitor and manager keep track of any event in the collaborative activity: new units join, some
disappear, others have poor network connectivity or run out battery, CPU or storage capacity, etc.
If any of these changes occur, the Cost Function must be executed to determine the viability and
usefulness of the collaborative sensing activity. If the output of this function is positive, the MASU
framework will restart the Role Selection and Activation mechanisms for the Sensing Tier, reassigning
roles as appropriated according to the results of the ROA algorithm.

In the case that many new units join the collaborative sensing activity, it is possible that the cost
required to share the sensed data is too high, and therefore the output of the Cost Function is negative.
This situation would imply that the collaborative sensing activity is not beneficial for the overall group
of participating units so that it has to end. However, this situation could be solved by creating two
parallel sensing activities.

3.5. Control Messages

In order to support the interaction among units, the MASU framework defines the following
six types of messages of the Control Tier. The Unit Detection messages that are used to detect the units
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that are present in the collaborative sensing activity. Therefore, these messages are used to monitor
changes in the composition of the activity, regarding the units and roles that are present in such activity.
The Device Information messages that are used by the units to share information about their hardware
capabilities, such as battery level, processor load or available memory. The Election messages that
are sent by the distributed leader election algorithm, used to select the manager and monitor roles in
a dynamic centralized role architecture of the Control Tier. The Consensus messages that are used in
a distributed role architecture of the Control Tier, so that all the managers could agree on the selection
of roles in the Sensing Tier. The Role Activation messages are only used in case of a Dynamic Centralized
role architecture of the Control Tier. They are sent by the manager to activate roles in the Sensing Tier
or to activate the Monitor if it fails. Finally, the Network Monitoring messages represents a special type
of message that is necessary for the network monitoring functions performed by the monitor.

3.6. Data Retrieval Mechanism

The interactions between the different roles of the Sensing Tier enables the MASU units,
participating in the collaborative sensing activity, to collect and share data so that all the units can have
the information required by the activity. These interactions are mediated by the Collaborative Sensing
Module (CoSM), which is in charge of the data retrieval and allows the differential activation of each
one of the roles of the Sensing Tier (i.e., consumer, producer, storage and relay).

This component offers four basic services for service discovery [28] and information distribution:
Publish, Find, Subscribe, and Data Dissemination. Figure 5 shows the structure of CoSM, which
is composed by three main modules: the Sensing module, the Data Source Manager and the Data
Dissemination Manager. They are responsible of the services that enable the differential activation of
the roles in the Sensing Tier. The Sensing module interacts with the other two to determine the type of
data that a particular unit has to sense and the method that it will use to obtain such data. Next we
explain more in detail these components.

Sensing Tier Role

CoSM

Data Source Manager Data Dissemination Manager

Sensing Module

Figure 5. Structure of the Collaborative Sensing Module (CoSM).

3.6.1. Sensing Module

The Sensing Module (SM) supports the data collection process. The data can be collected from the
sensors available on the MASU unit as well as retrieved from other units. For the MASU framework
a sensor is any hardware or software component that act as source of information. Consequently, the
SM module calls a number of services for accessing any type of sensor available on the unit.

This module can obtain raw data, e.g., from the unit’s physical sensors, but also high level
information from other types of sensors. In the former case, a Collector role will be activated, while in
the latter the role played by the unit will be a Processor. The SM also enables the use of data shared
by other units as data source and establishes (for every sensor in the unit) the way how it will obtain
the corresponding data. This way, the activation of particular Producer or Consumers roles can take
place. Accordingly, the SM defines two basic data collection methods: direct and indirect. In the direct
method the unit is responsible for capturing data without relying on any other source. In the second
case, the sensor receives and processes data that has been previously collected by other units. In the
former case the unit will play a producer role, whereas in the latter it will be a Consumer.
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The SM allows both, remote and local activation of the all the sensing services. This fact facilitates
the activation of roles in the MASU units by the manager for collaborative sensing activities as well
as the independent operation of the units for individual sensing tasks. The SM also allows flexible
configuration of the sensing frequency and waiting times.

The data collection methods specified by the SM allow a selective distribution of data from
different sensors. That is, the MASU framework facilitates a flexible selection of the collection methods
that will be used for each one of the sensors available on the units. For example, it can decide to use
a direct method to capture data from the accelerometer of the unit but to use an indirect method to
capture GPS data.

Figure 6 illustrates a data sharing process conducted by three different units. These units have
activated three kinds of sensors. Unit A shares data from two sensors. This data was collected directly
by the unit, which means that these sensors were activated in direct mode. On the other hand, this
unit also has a sensor activated in indirect mode, receiving data from one of the sensors of Unit C.
In addition, Unit B has all its sensors activated in indirect mode. Then, this unit will receive all the
data from Units A and C.

O Direct data collection O D
© Indirect data collection
Data shared <>

Figure 6. Example of data sharing between units.

3.6.2. Data Source Manager

The Data Source Manager (DSM) is in charge of specifying the sensors that the unit will use
to collect the input data. The DSM enables the units to capture diverse types of data from different
sensors so that the MASU units can sense different kinds of information and share it with others.

The MASU framework supports diverse sensors or data sources, such as IoT devices, information
repositories, sensors in smart buildings and sensors embedded in commercial smartphones. These sources
must be able to provide information that is relevant for the applications and users (in our case,
information that is relevant for pervasive monitoring and awareness). Moreover, as stated in [25],
any modern mobile ubiquitous system must provide context-awareness and therefore information
about the environment that is providing services to the users (in our case, the MASU unit). For this
reason, the proposed framework supports a wide range of data sources that are necessary to provide
context-awareness about the MASU units (what we previously called hardware monitoring) as well
as useful information for pervasive monitoring in learning scenarios. Next, we specify the different
categories of data sources that are supported:

e DPhysical sensors: We can differentiate between three kinds of physical sensors: hardware
sensors (e.g., accelerometer, GPS or compass), communication sensors (correspond to built-in
communication interfaces like Bluetooth, infrared or Wi-Fi), and performance sensors (that
determine battery level, or CPU/memory utilization).

e  Virtual sensors: In this group we consider information that can be obtained from the device’s
applications and services; e.g., the screen status, the user’s touch inputs, applications status, log
files and notifications.
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o  Human-based sensors: We include in this category any custom application used to collect
information that require explicit user intervention. These types of sensors require the participation
of a human user to provide information and create new knowledge [29]. Human-based sensors
complement the implicit sensing process performed automatically by unobtrusive sensors.
This way we can obtain both objective (e.g., a picture, a quantitative datum, etc.) and subjective
(e.g., perception, opinion, etc.) information from the user.

e  Context sensors: These are modules that collect information related to the user context [25] from
existing repositories; for instance, the user’s profile, preferences, schedule or performance indicators.

e Logical sensors: These sensors provide high-level information and they can combine data from
a number of sources. Information from this category usually involves some type of aggregation
and processing to interpret the sensed data and contextual information. An example of logical
sensors could be a service that interprets raw data from an accelerometer to infer the type of
physical activity that the user is performing (e.g., sitting, walking, running, etc.).

In the MASU framework there can be units that act as producers and consumers of the different
types of data that these categories of sensors provide. MASU units that use an indirect method to
collect input data from any of these sensors will act as Consumers, whereas units that use a direct
method will fulfil a particular Producer role. In this later case, the MASU units that sense data using
physical, virtual, human-based or context sensors can have a collector or processor role, depending
on whether this data require some level of interpretation (e.g., classification, aggregation, processing,
etc.) or not. On the other hand, those units that retrieve data from logical sensors to perform further
interpretation tasks always play a Processor role.

3.6.3. Data Dissemination Manager

As shown in Figure 7, the Data Dissemination Manager (DDM) establishes three data
dissemination mechanisms: Broadcast, Point-to-Point and Server-Mediated.

P2P proximity network

Resource-intensive Tasks

AccelerometerSensing Connection of Local Networks NFC Sensing

G GPS Sensing

Camera Sensing

Audio Sensing

- A
g g """ Bluetooth Sensing ~» Broadcast or Point-to-Point communication
--» Server-Mediated communication

Figure 7. Example scenario of data dissemination.

The broadcast and point-to-point mechanisms offer different methods to create peer-to-peer
proximity networks amongst devices. It allows the MASU units to share information directly among
them, without depending on any centralized server. This fact opens up the possibility to integrate the
MASU framework with IoT, allowing that the units could interact with nearby networked objects and
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sensors. In the case of broadcast data dissemination, the data sent by a unit can be received by all the
others. On the other hand, the point-to-point mechanism only allow data transfer between pairs of
units and therefore only the particular unit that was specified as destination of the data can receive
and use it.

Finally, the Server-Mediated data dissemination allows communication between units that are
not in the same local network. This mechanism enables data transfer between two independent
groups of units connected to different local networks but reachable through the Internet. For instance,
this two groups could be units that are participating in two different collaborative sensing activities.
Furthermore, the MASU framework can decide to make use of this server to perform some resource
intensive aggregation, processing or classification tasks to optimize the use of local hardware resources
of the units.

4. MASU Evaluation Using Simulations

The first step in the MASU evaluation process was to determine its usefulness and performance
under diverse networking, hardware and mobility conditions, by using simulations. Next we explain
this process and the obtained results.

4.1. Simulations Setup

In this process we used the ns-3 simulator [30], since it allows us to represent diverse scenarios
and collect a number of metrics with the purpose of assessing the impact of the underlying network
infrastructure, as well as the mobility patterns of the MASU units, on the framework performance.
The ns-3 enables the configuration of the nodes that run the MASU framework, the communication
network that supports them and the physical space where they are placed. Consequently, the hardware
capabilities of the nodes, their wireless network interfaces, physical position and mobility patterns
were configured using this simulation tool. We performed 20 simulations for each particular scenario,
and each simulations lasted 20 min.

4.1.1. Nodes and Physical Space

We defined a 360 m x 360 m outdoor area to place the nodes. The size was set not only to allow
the mobility of the nodes and the creation and evolution of different network topologies, but also
considering that diverse everyday activities can take place in such a space.

In this area, we placed 40 mobile nodes that represent the autonomous units running the MASU
framework. We initially considered all nodes similar, having the same technical features. Therefore,
these simulations do not consider the effect of device heterogeneity, which will be addressed in the
evaluation of the system prototype. Particularly, we configured the nodes to have the capabilities
of a phone equivalent to an iPhone 5 (Apple Inc., Cupertino, CA, USA) or a Samsung Galaxy S5
(Samsung Electronics Co., Suwon, Korea). These devices have an effective Wi-Fi communication range
of approximately 80 m in open areas. Table 2 summarizes the general parameters configured in the
ns-3 for the simulations.

Table 2. Simulation general parameters.

Parameter Value
Simulation time 1200 s
Simulation area 360 m x 360 m

Number of nodes 40
Node model iPhone 5
Wi-Fi standard IEEE 802.11n
Propagation model YansWifiChannel
Transmission power 0.66 W

Transmission range 80 m
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4.1.2. Mobility Patterns

The nodes” movements were modelled using the BonnMotion tool [31], which includes
well-known models that represent people’s mobility patterns [32]. For the simulations, the nodes’
speed was set between 0 m/s (static nodes) and 1.5 m/s (walking speed) and three mobility patterns
were used: RandomWalk, SLAW, and Nomadic. Table 3 shows the parameters used for the setup of
the mobility models considered.

Table 3. Parameters of the mobility models of the nodes.

Random Walk Value
Maximum speed 1.5m/s
Maximum pause 60s

SLAW Value
Cluster ratio 25m
Maximum pause 60 s
Nomadic Value
Avg. nodes per group 4
Group size deviation 1
Maximum speed 1.5m/s
Maximum pause 60 s
Maximum distance 15m

This configuration helped us simulate a dynamic network, where some existing communication
links can be lost and new links can appear. Such a configuration represents a realistic scenario (e.g.,
opportunistic collaboration in a university campus) where people can move within the physical space,
and eventually interact with other people that they meet.

4.1.3. Network Infrastructures

We configured the simulator to use three different types of networks to support the communication
between the nodes: Access Point (AP)-based, Terminal-to-terminal (T2T) and MANET. These wireless
network infrastructures, based on the IEEE 802.11 standards, were set according to the proposals
presented in [33,34], and they were adapted to be simulated on ns-3. Table 4 shows a detail of the
configuration of the ns-3 simulator for the different types of User Datagram Protocol (UDP) messages
interchanged in the three network infrastructures considered.

Table 4. Message setup for AP, T2T and MANET networks.

Variable AP and T2T
Control messages UDP broadcast
Data messages UDP broadcast
Variable MANET
Control messages UDP broadcast
Unit detection messages -
Data messages UDP unicast
Routing protocol messages UDP broadcast
HELLO interval 2s
Transmission control interval 5s

4.1.4. Role Selection and Activation Methods

The simulations consider Dynamic Centralized and Distributed role architectures. Therefore, we
implemented the three methods defined in the framework for Role Selections and Activation in the



Sensors 2016, 16, 1062 14 of 27

Sensing and Control Tiers: (i) the manager decides; (ii) the leader election algorithm decides or (iii) the
consensus algorithm decides. We implemented a distributed leader election algorithm based on the
proposals presented in [35,36]. Similarly, the distributed consensus algorithm used in the simulator
was based on [37,38].

4.2. Simulation Results

Next we present the simulations results that show the behaviour of the Control Tier of the MASU
framework for the different network infrastructures and mobility patterns. It also considers the costs
of the actions performed by such a tier, in terms of network utilisation. In order to verify that the
Control Tier works as expected, we performed various simulations of the Dynamic Centralized and
the Distributed role architecture approaches considered by the MASU framework and compared
them with a Fixed Centralized method (used as baseline), where there is no dynamic selection and
activation of roles in the Control Tier. For both approaches we implemented real algorithms in order to
confirm that the MASU framework behaves as expected. In case of the Dynamic Centralized approach,
we implemented a distributed election algorithm for the selection of a Manager every time it fails.
Similarly, in the Distributed approach we implemented a distributed consensus algorithm for the
selection of a Producer when necessary. Next we present the evaluation of the role architectures of the
Control Tier considering different (i) network infrastructures and (ii) mobility patterns.

4.2.1. Considering Different Network Infrastructures

For this first set of simulations we used the RandomWalk mobility pattern and evaluated the
performance of the MASU framework for various network infrastructures: AP, T2T and MANET.
As shown in Figure 8, for AP and T2T networks in the Dynamic Centralized and the Distributed
approaches, the average presence of the Producer increases, when no Control Tier was active.
Nevertheless, in the Fixed Centralized method the results for both types of networks are not good
enough when there is less than 60 and 70 of average Producer presence, respectively. Notice that the
results obtained for MANETSs are always the same, independently of the approach followed.
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Figure 8. Performance of the Control Tier for different network infrastructures.

These results show that the Dynamic Centralized and Distributed approaches considered in the
MASU framework allow one to achieve significant improvements in comparison to a Fixed Centralized
approach. Next we evaluate the cost required for such improvements, in terms of the number of
messages sent by the algorithms used for dynamic role Selection and Activation.

For this evaluation, we considered the four (i.e., Unit Detection, Device Information, Election
and Consensus messages) of the six types of control messages defined by the MASU framework
as well as the particular messages required by the routing protocol in MANET networks (routing
messages). However, in the Device Information messages, we did not consider the messages required
for hardware monitoring because we cannot measure changes of the hardware components of the
devices in the simulator. We only considered the Device Information messages sent after a role
Selection and Activation process in the Sensing and/or in the Control Tiers takes place. Thus, we only
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included the messages sent by new network nodes that are unknown for the new Manager selected.
Therefore, the number of Device Information messages is associated with the number of nodes that are
concurrently active when a new Manager is selected.

Figure 9 shows a comparison of the number of messages required for the Dynamic Selection and
Activation of roles in Fixed Centralized, Dynamic Centralized and Distributed role architectures of
the Control Tier. These figures show that the number of messages is very similar for both Dynamic
Centralized and Distributed approaches. Nonetheless, the number of messages is slightly smaller
for the Fixed Centralized approach. This can be explained by the fact that in the Fixed Centralized
approach, the first node that join the network plays both the Manager and the Monitor roles and when
such a node fails, the system stop counting the messages that this node was monitoring.
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Figure 9. Cost of the different role architectures of the Control Tier for different network architectures.
(a) Fixed Centralized; (b) Dynamic Centralized; (c) Distributed.

From Figure 9 we can conclude that the number of messages required by the framework depends
on the network infrastructure, and it is positively correlated with the number of nodes of the network.
Thus, AP infrastructures produce a smaller number of messages, followed by T2T and MANET networks.

4.2.2. Considering Different Mobility Patterns

In order to evaluate the impact of the units mobility patterns on framework performance we
simulated nodes when there is no Control Tier available. Figure 10 shows the average presence
of Producer considering the different network infrastructures and mobility patterns. RandomWalk
and Nomadic mobility patterns achieve a similar percentage of presence of the Producer in AP and
T2T networks, whereas Self-similar Least Action Walk (SLAW) achieves a slightly higher percentage.
Nevertheless, the improvement achieved by the SLAW mobility pattern is not significant.
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Figure 10. Presence of the Producer for different mobility patterns when no Control Tier is available.
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On the other hand, MANET networks achieve the maximum percentage, regardless of the mobility
pattern. These results suggest that more realistic mobility patterns yield to higher presence of the
Producer. This can be explained due to the fact that such patterns consider the social tendency of
human interactions and therefore people’s inclination to form groups.

Then, we evaluated the performance of an ideal Control Tier as well as the average presence
of Consumers for the different mobility patterns considered. Figure 11 shows that the presence of
Consumers varies slightly across mobility patterns and network infrastructures. In addition, the
performance of an ideal Control Tier in terms of presence of the Producer is similar for all mobility
patterns in T2T and MANETs, while RandomWalk obtains slightly better results for AP networks.
Thus, the variation in the results obtained for different mobility patterns are not significant.

Producer BB Consumers 23

Average presence [%]

AP T2T MANET AP T2T MANET AP T2T MANET
RandomWalk Nomadic SLAW

Figure 11. Presence of the Producer and the Consumers for different mobility patterns using an ideal
Control Tier.

4.2.3. Discussion of the Simulation Results

All previous results suggest that MANET networks can provide an interesting alternative to
support pervasive data sensing in dynamic scenarios, since they guarantee higher node presence
values (especially, Consumers since the Control Tier of the framework already deals with the presence
of Producers), regardless of the mobility patterns considered. This fact means that higher data
availability is possible using this types of networks since Consumers can receive data from Producers
regardless of the fluctuations in the communication links and the mobility conditions of the nodes.

The explanation for this high data accessibility can be found in Figure 12. It shows that more than
50% of the time that the Producer is present in the network it is located more than one hop away from
the Consumers. There are even cases where the Consumers receive data from the Producer when it is
at four or five hops away.
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Figure 12. Percentage of presence of the Producer versus the number of hops in MANET networks.
These benefits of MANETSs come at the expense of a higher number of messages that have to be

transmitted over the network, as represented in Figure 13. This figure shows the average number of
messages that are transmitted over the network for different network infrastructures. The number of
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messages is significantly higher in MANETs due to the fact that the data messages transmitted from
the Producer to the Consumers are UDP unicast (1 to 1). For this reason, the Producer has to send
one message to each one of the Consumers that are within the network. Thus, the number of data
messages has a direct correlation with the number of active Consumers. By contrast, in AP and T2T
networks the data messages are UDP broadcast (1 to all) so the number of messages has a positive
correlation with the number of active Producers.
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Figure 13. Average number of messages for different network infrastructures.

The higher cost related to the number of messages in MANETSs is compensated by the fact that
these types of networks allow that a higher number of units could receive the information sensed
by Producers. However, if the number of Consumers is too high, this cost could lead to network
congestion, which would also suppose that the MASU framework will not be able to work properly
under those conditions. As a result, it would be necessary to find a solution to deal with scalability
problems related with the high number of messages sent through the network in MANET.

5. MASU Empirical Evaluation

In order to evaluate empirically the proposed framework, a fully distributed mobile application
was implemented using MASU. The framework provides a number of services for automatic collection
and collaborative distribution of the data gathered from the device sensors. Such services facilitate the
access to the sensors available on the device, enabling data collection and sharing between devices
according to the specifications of the Collaborative Sensing Mechanism (CoSM) of the framework.

5.1. Role Selection and Activation Methods

The implementation of the Role Selection and Activation processes was done according to the
following procedure:

e  The Manager is fixed for the duration of the collaborative sensing activity and it is responsible of
selecting and activating roles in the Sensing Tier (i.e., Consumer, Producer and Storage), sending
messages to other units accordingly.

e  When a new node accesses the network, it announces its state, capabilities and the sensing services
that can provide. As a result, the Manager knows which sensors are available in the network and
therefore which units are suitable candidates to play Producer roles.

e In case that various units meet the requirements to play a particular Producer role, the Manager
takes the decision considering the quality of the sensor and the battery level of the device. Thus,
the units that have sensors with the highest quality and the highest battery level, will be selected
as Producers.

e  After a specific Producer role is selected and activated, the Manager automatically activates
Consumers of the information sensed by that Producer in all the units connected to the network.

e Consumers can receive information from Producers (i) periodically or (ii) only when the
information changes, receiving a notification as well as the new data when it is available.
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e Every time a new node joins the network, the Manager starts the Role Selection and Activation
process in the Sensing Tier, activating a Consumer role in the new node.

e The Manager selects and activates a unit to act as Storage of the data collected by a specific
Producer. This unit stores all the information sent by such a Producer in a SQLite database.

e  Consumers receive data from the Storage periodically, according to the data rate specified by the
Consumers in the data request.

5.2. Data Gathering Methods

Our prototype of the MASU framework implements three different methods for the provision
of the data retrieval services (Publish, Find, Subscribe, and Data Dissemination services) included
in the CoSM mechanism embedded in the MASU framework. The three methods implemented are:
AllJoyn [39], CoAP [40] and GCM [41,42]. Alljoyn and CoAP offer different mechanisms to create
a Peer-to-Peer proximity networks, enabling devices to share information directly among them, without
depending on any centralized server. By contrast, if the devices are not physically close but they have
Internet connectivity, they can share information using the GCM service, which is connected to the
CoSM Server. Next we describe the implemented prototypes.

5.3. Prototypes Implementation

Two different prototypes were developed in order to evaluate the performance of the framework
using various implementation types, network infrastructures and data retrieval mechanisms. Table 5
summarizes the main features of both prototypes. The Prototype I was implemented using the Unity
development platform [43], whereas the Prototype Il was implemented as a native Android application.
Provided that Unity is a cross-layer platform, the Prototype II was deployed for both Android and
Windows OS.

Table 5. Implementation details of the two prototypes.

Implementation Aspect Prototype I Prototype II
Implementation Type Embedded into Unity Native Android application
Network infrastructure AP T2T
Mechanism for the P2P network creation AllJoyn AllJoyn
Location of the Manager role In the first node that joins In the node that acts as AP
Data gathering method Alljoyn CoAP
Data message type TCP UDP unicast

Concerning the network infrastructures, the two prototypes provide distinct methods to create
peer-to-peer proximity networks among MASU units. The Prototype I allows a group of units to
connect to an existing AP, while the other configures automatically the first unit that joins the activity
as AP to provide wireless access for the whole group of units. As a result, AP-based (AP) and
Terminal-to-Terminal (T2T) networks are established, respectively. In both prototypes, the first unit
that joins the network uses AllJoyn to create the peer-to-peer proximity network. Such a unit will also
act as Manager for the overall duration of the collaborative sensing activity. Therefore, we have a Fixed
Centralized role architecture of the Control Tier without any mechanism for the dynamic selection and
activation of roles in such a tier. For this reason, these prototype implementations were useful only to
evaluate the Sensing Tier of the MASU framework.

5.4. Evaluation Results

The performance of the Sensing Tier, for both prototypes, was evaluated in terms of resource
consumption and considering heterogeneous devices. In contrast to the simulation tests, the prototype
evaluation considered devices with diverse capabilities. In order to do that, we deployed the prototype
in different Android devices. We used smartphones and tablets with different OS versions and
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various kinds of CPU, battery and sensor chips. The features of the different types of devices used are
detailed in Table 6. This device heterogeneity allows us to gain some insights about the changes in the
performance of the framework across devices.

Table 6. Devices used in the evaluation of the prototype.

A1, A2, A3 B C D E
Device Type Smartphone Smartphone Smartphone Tablet Tablet

Model HTC Desire HTC One Samsung Note II Google Nexus 7 Google Nexus 7
Android 233 443 442 444 502
Version

. Qualcomm QSD 8250  Qualcomm APQ 8064T Samsung Exynos L1 L1
Chipset Snapdragon S1 Snapdragon 600 4412 Quad Nvidia Tegra 3 Nvidia Tegra 3
. Quad-core 1.7 GHz Quad-core 1.6 GHz  Quad-core 1.2 GHz  Quad-core 1.2 GHz
CPU 1 GHz Scorpion Krait 300 Cortex-A9 Cortex-A9 Cortex-A9

The evaluation considered number of tests where some of devices sensed the environment and
shared the obtained data, and others only received the sensed information. The duration of all the tests
was 20 min, and in every test the battery of all the devices had the same charge level (100%). The tests
performed consider an outdoor space, where the devices are moving arbitrarily at walking speed.

In the evaluation of the Prototype I, the devices remained within the coverage zone of a fixed AP.
By contrast, in the evaluation of the Prototype II, the devices are never outside the coverage zone of the
device that acts as AP or their mutual coverage zone. As a result, both types of tests do not consider
dynamic network topologies or diverse mobility patterns.

5.4.1. Benefits of Collaborative Sensing

Next, we present various tests done using the Prototype I to assess the usefulness of sharing data
among MASU units, instead of working autonomously. Although this assessment only considers the
advantages of collaborative sensing in terms of the battery consumption, other aspects must also to
be taken into account, such as better information quality and social welfare (the benefit of the entire
community of users).

First, we evaluated the battery consumption produced by a sensing activity in different devices.
Figure 14 shows the results obtained when the devices are not performing any sensing or sharing
activities, and also when they are sensing GPS data. This graph indicates that there is a significant cost
in battery lifetime, due to the sensing operations. Moreover, this cost differs across devices, having the
device A the highest cost. This difference in battery consumption can be caused by differences in the
versions of the operating system or the GPS sensing chips.
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Figure 14. Sensing costs for different devices.

Then, we evaluated the costs involved in a collaborative sensing activity considering heterogeneous
devices. Therefore, we compared the total battery consumption when sensing data and transmitting it
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using the two local data retrieval mechanisms: AllJoyn and CoAP. We conducted two different sets
of experiments, where four different devices share GPS data, using AllJoyn and CoAP, respectively.
Figure 15 depicts the results when the device Al is sensing and transmitting GPS data (Producer
role) and devices A2, B and C are receiving it (Consumers). As expected, the energy consumption
is higher in the transmitting device than in the receiving ones for both, AllJoyn and CoAP protocols.
In addition, the energy consumption is higher when using AllJoyn than when using CoAP for both,
transmitting and receiving devices. Nevertheless, for some receiving devices, the energy drain is very
similar for both protocols. Notice that the battery consumption differs according to the device type,
even when they have same role (Consumers) and protocol active. This shows the effect of the devices
heterogeneity on the collaborative sensing activity.
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Figure 15. Comparison of the overall collaborative sensing costs of AllJoyn and CoAP for different devices.

These results can be anticipated since the CoAP protocol is very simple and it is therefore, expected
to consume less energy than a more complex protocol (like AllJoyn) that includes network and service
discovery functionalities. We then conducted a number of tests in order to verify the benefits of
collaborative sensing. Unlike the previous tests, here we aim not only to evaluate the overall costs of
collaborative sensing, but also to isolate the costs related to the data retrieval mechanisms used by the
MASU framework. Thus, we intend to differentiate between the sensing costs (which are required
even when the units work in a stand-alone fashion) and the costs caused by the collaborative activity
itself. For these tests, we considered the worst case scenario, that is, when sharing data using the most
energy-intensive protocol. Consequently, the application executing the MASU framework had only
the AllJoyn protocol activated.

Figure 16 shows a comparison of the maximum, minimum and average energy consumption
when: (i) they only have the prototype application (CoSP) running and (ii) the devices are only
sensing GPS; (iii) they have the application running and the AllJoyn service active, but they are not
sharing any data. Thus, we intend to evaluate the cost of maintaining an AllJoyn session (16 mWh in
average), in comparison with the cost of sensing. These results also show that the cost of sensing GPS
is considerably higher than the cost of using AllJoyn.

The second set of bars in Figure 16 shows the average cost of sensing and transmitting GPS data
(corresponding to a Producer role) using AllJoyn, versus the cost of receiving it (Consumer). From the
figure it is clear that the cost of sensing and transmitting is slightly higher than the cost of sensing GPS,
whereas the cost of receiving information is smaller (15.06 mWh in average). This result indicates that
there is an obvious benefit for the receiving device (GPS Consumer), while the cost in the transmitting
device (GPS Producer) is relatively low, which clearly points to the advantages of collaborative sensing
in terms of social welfare because there is some benefit for the overall group of users (3.41 mWh in
average). It seems reasonable to think that, if number of devices increases, these benefits could increase
too. Thus, we could compensate the communication cost introduced by maintaining the AllJoyn
session. Nevertheless, further tests are needed to confirm this claim.
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Figure 16. Evaluation of the cost of AllJoyn in a collaborative sensing activity.

5.4.2. Battery Consumption of Producers and Consumers

Some additional tests were performed to evaluate the energy costs of Producer and Consumer
roles. We compared the performance of Producers and Consumers in case of high and low intensity
data sharing processes, when sharing data using AllJoyn. That is, the cost of sensing from those sensors
that generate low and high amounts of data, including the costs of sharing such data at low and high
data rate, respectively.

The high intensity data process was established by sensing GPS data continuously and sharing it
every time geolocation value changed. This implied that the GPS data was sent continuously due to
the high precision of the GPS sensor and also because the devices were constantly moving. On the
other hand, the low intensity data sharing process was established by sending an audio file captured
from the smartphone microphone.

Figure 17 shows the results obtained. In the case of high intensity data sharing process, the cost of
sensing is slightly smaller than the cost of sensing and transmitting the data, but higher than the cost
of receiving it. Therefore, in case of high data-intensive Producers we can confirm the usefulness of
sharing the sensed data using AllJoyn, even when the data is shared solely with one Consumer.
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Figure 17. Comparison of the energy costs of high data-intensive and low data-intensive sharing processes.

Contrarily, the cost of using AllJoyn for sharing small amounts of data, at a low transmission
rate, is very high and considerably higher than the cost of sensing. For this reason, in case of low
data-intensive Producers it would make much more sense to collect the information directly in the
devices that are going to consume it. However, it seems reasonable to think that if the number of
devices is high enough, this energy cost could be compensated.

5.4.3. Resource Consumption for an Increasing Number of Nodes

The evaluation of the Prototype I, provided various insights about the benefits of collaborative
sensing and the involved costs. This evaluation represented a worst case scenario due to the poor
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efficiency of the software implementation embedded in the Unity platform, as well as due to the higher
costs of AllJoyn as data retrieval method. Therefore, we conducted various tests using the prototype
II, which provides a more realistic experimentation scenario with a more efficient implementation.
In this case, CoAP was used as data retrieval method having only one Producer and a number of
Consumers active. In this scenario, the Producer senses GPS data, creates a CoAP service and sends
the GPS coordinates to the Consumers subscribed to the service.

Figure 18 shows the results of these tests when the Producer sends GPS sensed data to the
Consumers every time that its location changes. The figure illustrates the CPU and energy consumption
of both Consumers and Producers when the number of Consumers of GPS data increases. It shows
that the CPU utilization of the Producer increases with the number of Consumers. This increment
is mainly caused by the high number of CoAP messages that the Producer has to send due to the
high change rate of the GPS data. Particularly, for each 20-min test, the Producer had to send around
900 CoAP messages to each Consumer.
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Figure 18. Producers and Consumers resource utilization when sharing GPS data continuously.
(a) CPU utilization; (b) Battery Consumption.

We can also observe in this figure that the energy cost of the Producer (GPS sensing and
transmitting) is slightly higher than the energy cost of sensing GPS, whereas the energy cost of
the Consumer (receiving information) is significantly smaller. This indicates that there is a clear benefit
for the Consumers, while the cost for the Producer is relatively low. Nevertheless, there is a slight
battery consumption increase when increasing the number of Consumers. This was an expected result
because the amount of energy should increase when more devices are added to the system, due to
more the energy consumption required for the Wi-Fi subsystem maintenance. Despite this, if we
consider the overall battery consumption of the system, we have an important reduction in the energy
consumption (295 mWh in total for one Producer and four Consumers) when we use the prototype for
sharing the sensed data, instead of sensing data independently. Once again, this shows the advantages
of collaborative sensing. In this case, we achieved a 43% of reduction in battery drain, considering
the overall group of devices involved. Therefore, both Consumer and Producer applications are
energy-efficient and most of the energy cost of the Producer is caused by GPS sensing.

We also evaluated the CPU utilization when the Consumers call the CoAP service of the GPS
Producer periodically, every 60 s (Figure 19). In this case, the Producer does not send GPS data
continuously. It only sends every 60 s the last GPS value measured. This means that, although
the GPS sensor still active, the Producer only does a GPS reading every 60 s. Thus, the number of
CoAP messages sent by the Producer decreases significantly (around 20 messages for each Consumer).
As a result, the CPU utilization of the Producer is significantly smaller than when it was sending data
continuously (Figure 18), and it increases very slowly with the number of Consumers.
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Figure 19. Producers and Consumers CPU utilization when sharing GPS data periodically (low data
transmission rate).

5.4.4. Resource Consumption of Storages and Relays

In order to assess the CPU consumption of the Storage and Relay roles, we performed a test
where two Consumers subscribe to the GPS sensing services of a Producer and a Storage, respectively.
This test is useful to evaluate the computational cost of both Storages and Relays since such a cost is
only related with the rate at which Storages or Relays send data to Consumers. Therefore, it is not
necessary to perform two separate tests to evaluate both types of roles.

In this test the Storage role was assigned to the last node entering the network. This Storage
receives the GPS data sensed by the Producer every 60 s and sends such data to the Consumer
subscribed to it at the same rate. Results in Figure 20 show how the CPU utilization in the Storage
is slightly higher than the in the Consumer but significantly lower than in the Producer. In addition,
the CPU utilization of both Producers and Consumers in the case of having one Producer and
two Consumers only increases slightly when we add one Storage. In this case, we have three units
receiving the information generated by the Producer (i.e., two Consumers and one Relay) but at
a lower cost for the Producer, reducing its CPU utilization a 23. These results indicate the usefulness
of including Storages or Relays when we have two Consumers and one of them cannot receive the
information from the Producer properly.
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Figure 20. CPU utilization of Producers, Consumers and Storages when sharing GPS data periodically
with two Consumers.

6. Comparing MASU with the Existing Frameworks

Although the literature reports a large number of pervasive data sensing applications and
platforms that are suitable in particular application domains, there is a lack of transversal support for
fully distributed and heterogeneous solutions that allow to implement pervasive sensing in variety of
scenarios. Table 7 shows the similarities and differences between MASU and other sensing frameworks.
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Table 7. Comparison between MASU and other frameworks.

Framework/Platform Purpose or Use Similarities with MASU Differences with MASU
General purpose platform.
It supports opportunistically It supports continuous It requires instrumenting the
offloading sensing by sensing and autonomy of sensing area.

METIS [22] involving stationary sensors the nodes. The only criterion used to
embedded in Flexible (by gain determine the sensing strategy
the environment. threshold). is energy saving.

Focused on saving energy.
Collaborative reasoning
framework. Uses It does not support
. machine-learning techniques It supports collaborative sensing,

Darwin [6] i . K . . .
specifically designed to run on device heterogeneity. distributed /ad hoc solutions
sensor-enabled and autonomous nodes.
mobile phones.

G 1 latform. . i
eneral purpose p a. orm, It supports continuous and It does not 'support device
It supports cooperative o . heterogeneity and
: L distributed sensing. . .
ambient monitoring through . one-to-one interactions.

CoMon [8] ip . It supports nodes mobility, o

opportunistic cooperation R The only criterion used to
- autonomy and sensing : .
among nearby mobile users. determine the sensing strategy
. fault tolerance. . :
Focused on saving energy. is energy saving.
It allows performing Focused on grouping devices.
collaborative sensing It does not provide
General purpose platform. . . s . .
It supports opportunistic involving distributed device-to-device
GCF [17] PP PP autonomous nodes. communication or support for

sharing of
contextual information.

It uses various criteria for
selecting the data
sensing strategy.

device heterogeneity.
It does not support long-range
communication infrastructures.

Remora [19]

It implements a body

sensor network.

It shares sensing information
and classifiers for

saving energy.

It allows collaborative
sensing involving
distributed
autonomous nodes.

It does not support device
heterogeneity and one-to-one
or group interactions.

The only criterion used to
determine the sensing strategy
is energy saving.

It does not support long-range
communication infrastructures.

C-SPINE [20]

It implements a body
sensor network.

It supports collaborative
reasoning, computing and
data fusion.

It supports distributed and
ad hoc sensing.

It supports groups of
sensing devices.

It implements

collaborative sensing.

It does not support long-range
communication infrastructures.

EasiSee [24]

It implements collaborative
sensing; particularly for
vehicle counting

and classification.

It performs
collaborative sensing.

It supports only one-to-one
interactions between
stationary nodes.

It uses

centralized components.

AnonySense [44]

General-purpose platform.
It opportunistically shares
anonymized

contextual information.

It supports
collaborative sensing.

It supports ad hoc sensing, but
using a centralized by registry.

As shown in Table 7, these frameworks use some centralize component, do not support devices
heterogeneity or a hybrid communication space (short and large range communication infrastructures).
This is not surprising since they were proposed to support sensing in scenarios where no pervasiveness
is required. In this sense, the MASU platform represents a step forward in that direction.

7. Conclusions and Future Work

Although the literature reports a large number of pervasive data sensing applications and
platforms that are suitable in particular niches, there is a lack of transversal support for fully distributed
data sensing, particularly when the sensed data need to be shared ad hoc and on demand fashion.
This type of sensing can be used in various applications scenarios, like urban search-and-rescue
processes, mobile learning activities and hospital work.

Trying to contribute to address such a need, this paper proposes a framework, named Mobile
Autonomous Sensing Unit (MASU), which provides a set of services that allows mobile devices to
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perform distributed pervasive data sensing, both in an autonomous and collaborative way. The design
of the framework includes the definition of different roles that can be played by a group of devices
that are performing collaborative sensing activities. Developers of this type of applications can take
advantage of this framework, by reusing these services and reducing thus the risks and effort involved
in the development process.

The framework was evaluated using both simulations and empirical tests involving a software
prototype. Both types of evaluations provided various insights on the performance of the framework
under diverse hardware, networking and mobility conditions.

The simulation results demonstrated that the social nature of human interaction can benefit the
performance of the framework, since people’s mobility patterns contribute to have high availability of
the information sensed by the mobile devices. In addition, the simulations helped us determine the
costs of the collaborative sensing, in terms of network utilization. We also showed how Mobile Ad hoc
Networks (MANETSs) provide an interesting communication support that provides higher network
connectivity due to their multi-hop features. Consequently, we demonstrated that MANETSs can also
contribute to the accessibility of the information sensed. Nevertheless, the simulations also revealed
that MANETSs have a slightly higher cost (in terms of number of control messages), but a considerably
higher cost in terms of data messages due to the unicast nature of the communication, as well as due to
the higher node connectivity. These facts could derive in scalability problems of the framework when
using MANETSs as communication support.

Using the prototype, we evaluated the Sensing Tier of the framework. We showed the benefits of
using the framework to perform collaborative sensing in terms of energy savings and social welfare in
comparison to pure phone sensing, achieving a 43% energy savings for the overall system (Section 5.4.3).
We also evaluated the costs associated with the use of the framework for collaborative sensing in
terms of hardware resources of the participating devices. This evaluation considered some device
heterogeneity since we used smartphone and tablets with diverse hardware specifications.

Results from both types of evaluation methods provided empirical evidence on the usefulness
of the proposed framework. These results provided valuable insights about the benefits of the
proposed framework to support pervasive sensing in terms of resource optimization as well as about
its limitations and associated costs.

The obtained results in both evaluation experiences show that the services provided by the
framework are suitable for supporting distributed pervasive data sensing, and also contributes to keep
low the energy consumption of the mobile devices involved in the process. As a next step, we consider
to develop a variety of these applications to assess more in-depth the impact of the MASU framework.
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