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Abstract: Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography
(CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and
blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals.
Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing
algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant
women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a
challenging problem. In this paper, we propose a method for estimating the FHR using sequential
total variation denoising and compare its performance with that of other single-channel fetal ECG
extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover,
we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance.
The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach
could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately
estimate the FHR.
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1. Introduction

Identification of fetal distress is important in fetal monitoring during pregnancy. A noninvasive
fetal monitoring method for measuring the fetal heart rate (FHR) is essential to assess the health of
a fetus [1]. Cardiotocography (CTG) and fetal electrocardiogram (ECG) are common methods for
monitoring the FHR [2]. The Doppler ultrasonic technique measures the FHR from the fetal heart
activity using the Doppler effect. However, fetal movements and the blood flow through the maternal
blood vessels always influence the Doppler ultrasound signal [3]. As the ultrasound signal includes
these influences, the R-peak detection of the FHR becomes very challenging. Moreover, the mother
should maintain a reclining position for one hour while the FHR data is being collected. Therefore,
this approach is not suitable for long term continuous monitoring [4].

Various techniques have been proposed to extract the fetal ECG from the abdominal ECG
signals of pregnant women [5–7]. Long-term monitoring is possible using these techniques; currently,
independent component analysis (ICA) and principle component analysis (PCA) has been applied to
the maternal ECG signal from the abdomen to extract the fetal ECG [7]. However, multichannel data
are required for the ICA. If the number of ECG signals from the maternal abdomen is insufficient, the
pure fetal ECG signals cannot be extracted using ICA [8].

On the other hand, various FHR estimation methods have been developed for single-channel data
in several studies [9–12]. The template subtraction (TS) method, in particular, was commonly used for
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removing the maternal ECG components and extracting the fetal ECG [9,10]. However, the residual
signal after removing the maternal ECG is still affected by several artifacts. This makes it difficult to
find the exact location of the fetal ECG R-peaks using the TS method. The extended Kalman filter
(EKF) framework has shown good performance for the extraction of the FHR [11–14]; it focuses on the
cancellation of the maternal ECG. However, this method cannot extract the R-peak of the fetal ECG if
the residual signal after eliminating the maternal ECG has a low-amplitude fetal ECG. Furthermore,
when the QRS complexes of the maternal ECG and fetal ECG overlap, the residual signal can lose
the QRS-complex segment of the fetal ECG. Therefore, the EKF framework may miss the detection of
the fetal R-peak. Another estimation method is the wavelet-based approach [15]. Wavelet analysis
is a time-frequency decomposition approach that can simultaneously eliminate the baseline and the
high-frequency noises from the abdominal ECG and then, efficiently detect the fetal R-peaks from
the filtered abdominal ECG. Although the wavelet-based approach also shows satisfactory results,
the R-peak of the fetal ECG cannot be detected from the noisy residual signals after cancelling the
maternal ECG.

Recently, sparse representations for signal processing have been studied for noise reduction [16,17].
Total variation denoising (TVD) has been widely used to reduce noise in image processing [18]. This
approach can preserve the sharp edges of the underlying signal. Recently, Ning et al. proposed
sparse derivative denoising for ECG enhancement using TVD [19]. This method can be used as a
preprocessing stage for ECG analysis.

In this paper, we propose a method for measuring the FHR from the single-channel abdominal
ECG signal of a pregnant woman using sequential TVD (STVD). To extract the fetal ECG, we established
an abdominal ECG model and then, TVD [18] was applied twice, sequentially. Recent advanced
research provided a standard methodology for benchmarking of fetal ECG extraction methods [20,21].
We followed the testing methodology to evaluate our proposed method. The remainder of this paper is
organized as follows. In Section 2, the proposed STVD algorithm is described. In Section 3, we compare
the performance of this method with those of three other single-channel fetal-ECG-extraction methods
including the EKF and TSPCA using simulation signals and real signals from medical databases [22].
To prove the importance of the second TVD step, a method in which TVD is applied only once to
extract the fetal ECG, i.e., a combining TVD and TSPCA (TVD + TSPCA) is also compared with the
proposed method. Finally, a discussion about the results of our proposed method and the conclusions
are presented in Section 4.

2. Methods

2.1. Preprocessing

The abdominal ECG signal is usually contaminated by baseline wandering, electromyogram
(EMG) noise, and power-line noise. We applied a third-order Butterworth band-pass filter with 3-Hz
and 90-Hz cutoff frequencies to remove both the baseline wandering and EMG noise [10]. A 50 or
60-Hz notch filter was used to eliminate the power-line noise [10].

2.2. Proposed Method: Sequential TVD with TSPCA

The proposed algorithm consists of three steps. First, the abdominal ECG is filtered using TVD.
Then, the maternal ECG is extracted from the abdominal ECG using the TSPCA method. Finally, TVD
is applied again as a cascaded process to the residual signal for estimating the fetal ECG. Figure 1
briefly illustrates the processes in our proposed algorithm.
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Figure 1. Block diagram of STVD to extract the fetal ECG from single-channel abdominal ECG. 

2.2.1. First TVD: Enhancing the Abdominal ECG 

The maternal abdominal ECG signal 1y  is given by: 

1 1 y x e  (1) 

where the vector x  is a clean abdominal signal of length N and 1e  is the residual noise. 1y  is the 
contaminated measurement of x . The clean abdominal signal x  is given by: 

FECGMECG xxx   (2) 

where the vectors MECGx  and FECGx  with N time points represent the maternal ECG and fetal ECG 
signals, respectively. x  can be extracted using the TVD problem as follows: 

12121
*

2
1minarg xDxyx

x
λ  (3) 

where 
n

  is the ℓn (n = 1, 2) norm in ℝN (N: data length), the regularization parameter λ1 > 0, and 2D  

is the second-order difference matrix. As the ECG can be approximated by piecewise linear  
function [18], 2D  makes the signal sparser. By increasing λ1, more weight is given to the second 
term that measures the fluctuation of the signal x . The second-order difference matrix is given by: 




























12100
0

1210
00121

2







D  (4) 

In general, 2D  is a Toeplitz matrix of size NN  )2( . 
To extract a clean abdominal ECG, Equation (3) must be solved. However, this optimization 

problem cannot be solved explicitly. The Majorization–Minimization (MM) algorithm is a method 
for finding the solution to the optimization problem [23]. A convex function )(xQ  was minimized 
using iteration as follows: 

121
2
212

1)( xDxyx λQ   (5) 

( 1) arg min ( 0, 1, 2) ,i i i  L ,     
x

x x  (6) 

)(xiL  should be a majorizer of )(xQ , that is, 

( ) ( ), ,iL Q   x x x  (7) 

Figure 1. Block diagram of STVD to extract the fetal ECG from single-channel abdominal ECG.

2.2.1. First TVD: Enhancing the Abdominal ECG

The maternal abdominal ECG signal y1 is given by:

y1 “ x` e1 (1)

where the vector x is a clean abdominal signal of length N and e1 is the residual noise. y1 is the
contaminated measurement of x. The clean abdominal signal x is given by:

x “ xMECG ` xFECG (2)

where the vectors xMECG and xFECG with N time points represent the maternal ECG and fetal ECG
signals, respectively. x can be extracted using the TVD problem as follows:

x˚ “ argmin
x

1
2

||y1 ´ x||2 ` λ1||D2x||1 (3)

where || ¨ ||n is the `n (n = 1, 2) norm in RN (N: data length), the regularization parameter λ1 > 0,
and D2 is the second-order difference matrix. As the ECG can be approximated by piecewise linear
function [18], D2 makes the signal sparser. By increasing λ1, more weight is given to the second term
that measures the fluctuation of the signal x. The second-order difference matrix is given by:

D2 “

»
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(4)

In general, D2 is a Toeplitz matrix of size pN ´ 2q ˆ N.
To extract a clean abdominal ECG, Equation (3) must be solved. However, this optimization

problem cannot be solved explicitly. The Majorization–Minimization (MM) algorithm is a method for
finding the solution to the optimization problem [23]. A convex function Qpxqwas minimized using
iteration as follows:

Qpxq “
1
2

||y1 ´ x||2
2 ` λ1||D2x||1 (5)

xpi`1q “ argmin
x

Lipxq, i “ 0, 1, 2, . . . (6)

Lipxq should be a majorizer of Qpxq, that is,

Lipxq ě Qpxq, @x, (7)
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and Lipxq should satisfy Qpxq at xi,
Lipxiq “ Qpxiq (8)

where Lipxq and Qpxiq are a convex function. xi converged to the minimizer of Qpxiq by the MM
algorithm. When Lipxiq coincide with Qpxiq at xi, xi`1 can be obtained by the minimizing Lipxq using
the MM approach. Finally, we can solve the minimization problem. The MM algorithm is briefly
summarized as follows:

1. Set i = 0, initialize x0.
2. Choose Li(x) such that

(1) Lipxq ě Qpxq, for all x
(2) Lipxiq “ Qpxiq

3. Set xi`1 as the minimizer of Lipxq,
4. Set i = i + 1 and go back to step 2.

2.2.2. TSPCA: Elimination of Maternal ECG

Several TS methods were implemented for the extraction of fetal ECG. Locating the maternal QRS
complexes is necessary to remove the maternal ECG using TS. In this study, TSPCA method was used
since this showed better performance than other TS methods in the previous study [10,19]. TSPCA is
described in the TSPCA section (see Section 2.3.3).

2.2.3. Second TVD: Extracting Fetal ECG

After removing the maternal ECG segments from the abdominal ECG, we can obtain the fetal
ECG signal from the residual signal. However, the fetal ECG signal will still contain the maternal ECG
and noise components. Hence, additional TVD is applied to the residual signal to enhance the fetal
ECG signal as shown below:

y2 “ xFECG ` e2 (9)

x˚FECG “ argmin
xFECG

1
2

||y2 ´ xFECG||2 ` λ2||D2xFECG||1 (10)

where the vector e2 represents the residual artifacts including remains of the maternal ECG and noise.
The same optimization process, which uses the MM approach to solve the TVD problem, is repeated.
Finally, the fetal ECG R-peaks are detected from the final estimated fetal ECG.

2.3. Methods for Comparison

2.3.1. Extended Kalman Filter

The EKF is the nonlinear version of the standard Kalman filter. When we consider a discrete-time
nonlinear system with the state vector pk and measurement vector qk at time instant k, this model is
written with nonlinear functions f p¨q and hp¨q:

#

pk`1 “ f ppk, wkq

qk`1 “ hppk`1, vk`1q
(11)

where the random variables wk and vk correspond to the process and measurement noises vectors,
related to the process noise covariance Q and measurement noise covariance R, respectively. In
this paper, we used a synthetic dynamic ECG model [24] to extract fetal ECG from the abdominal
ECG [11–14]. One heartbeat ECG cycle is generally represented by the letters P, Q, R, S, and T. We used
five Gaussian functions to establish one ECG signal model defined by peak amplitude (αi), width (bi),
and each center of Gaussian function (ξi) with respect to the PQRST sub-waveform [13]. The index i
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represents the number of Gaussian function. pk is defined by θk and zk: pk “ rθk, zks
T , where θk and zk

are phase and amplitude of the maternal ECG at time instant k. The state equation can describe the
ECG nonlinear dynamics such as the PQRST morphology by assuming a small sampling period δ and
wk “ r0, ηks

T as follows:

f ppk, wkq ð

$

’

&

’

%

θk`1 “ pθk `ωδqmodp2πq

zk`1 “ zk ` ηk ´
ř

iPtP,Q,R,S,Tu
δ αiω

b2
i
pθk ´ ξiqexp

ˆ

´
pθk´ξiq

2

2b2
i

˙

(12)

where ηk is a random additive noise. Here, the phase θk is used as an additional observation [13].
The R-peak of ECG is set to be located at θk “ 0, and the ECG segments between two consecutive
R-peaks are assumed to have a phase between 0 and 2π [13]. Consequentially, the observed phase
ϕk can be determined by detected R-peaks through ϕk`1 “ θk`1 ` uk`1. qk`1 “ hppk`1, vk`1q is
finally expressed as qk`1 “ pk`1 ` vk`1, where qk`1 “ rϕk`1, sk`1s

T and vk`1 “ ruk`1, vk`1s
T with

sk`1 “ zk`1 ` vk`1. sk`1 represents the observed amplitude. The maternal ECGs can be estimated
by consecutive EKF steps. The first EKF extracts the maternal ECG from the abdominal ECG. After
subtracting the maternal ECG from the abdominal ECG, the second EKF estimate fetal ECG from the
residual signal.

2.3.2. TVD + TSPCA

The process of the TVD + TSPCA is similar to the STVD method. This approach first filters
the abdominal ECG signal using TVD and then applies TSPCA to filtered abdominal ECG signal to
eliminate the maternal ECG. After applying TSPCA, fetal R-peak detection is performed on the residual
signal. In the TVD + TSPCA, λ was set to the same value as the λ1 in the STVD approach.

2.3.3. TSPCA

TSPCA was introduced by Kanjilal et al. [25]. The design matrix X was built with several rows in
which each row corresponds to one maternal ECG cycle with all R-peaks lying at the same column
as follows:

X “

»

—

–

x11 ¨ ¨ ¨ x1n
...

. . .
...

xm1 ¨ ¨ ¨ xmn

fi

ffi

fl

(13)

where m and n represents the number of maternal ECG cycles and sample sizes. The principle
components (PCs) of X can be obtained using singular value decomposition. The PCs related to
maternal ECG can be subtracted from the overall cycles as follows:

Xr “ X´
p
ÿ

j“1

wjwT
j X (14)

where p is the number of PCs and wj is the direction vector of the j-th PC. The residual signal Xr is
then the fetal ECG. This method needs to update the design matrix.

2.4. Data

There is no standard tool for the evaluation of the single-channel fetal ECG recording [11];
simulations are required to provide quantitative assessments for the proposed method. The fecgsyn, a
non-invasive fetal ECG model simulator [26], can generate several types of maternal and fetal ECG
mixed signals. Recently, Andreotti et al. developed the Fetal ECG Synthetic Database (FECGSYNDB)
using the fecgsyn for benchmarking of fetal ECG extraction and detection algorithms [20]. This database
includes 1750 realistic simulated abdominal ECG signal with 34 channels (2 channels: maternal ECG,
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32 channels: abdominal ECG), generated at a 250 Hz sampling frequency for 5 min. The simulation
signals were divided into seven cases with five signal-to-noise ratio (SNR) levels (0, 3, 6, 9 and 12 dB)
and 10 different maternal and fetal heart dipole’s arrangements. Each simulation signal was generated
five times for statistical purposes. Table 1 represents several cases of simulation signal. A recent work
selected 8 channels (1, 8, 11, 14, 19, 22, 25 and 32) among 34 channels for evaluating algorithms [20].
We also used the same channels.

Table 1. Generating simulation signal for seven different physiological events.

Case Description

Baseline (B) Abdominal ECG without any noise or events (maternal ECG + fetal ECG)
Case 0 (C0) Baseline (no events) + noise
Case 1 (C1) Fetal movement noise + noise
Case 2 (C2) Acceleration or deceleration of maternal and fetal heart rate + noise
Case 3 (C3) Uterine contraction + noise
Case 4 (C4) Ectopic beats of maternal and fetal + noise
Case 5 (C5) Twin + noise

Noise includes maternal movement and EMG artifacts.

Figure 2a shows the simulated maternal ECG. The fetal ECG was also constructed using the
simulator (Figure 2b). The simulated fetal ECG was added to the simulated maternal ECG along with
motion and EMG artifacts produced by the simulator to generate the final simulated signal (Figure 2c).
To verify the efficiency of the proposed method on real data, we used PhysioNet fetal ECG databases
with varying SNRs [10,21]. The database is the 2013 PhysioNet/Computing in Cardiology Challenge
Database (PCDB) [22]. PCDB consisted of three data sets (set-a, set-b and set-c). We used set-a for the
assessment of extraction algorithms since reference fetal QRS locations were offered. This database
contained 1-min abdominal ECGs from four abdominal ECG channels at 1000 Hz. This database
includes 75 datasets. However, records a33, a38, a47, a52, a54, a71, and a74 have inaccurate fetal QRS
annotations. Therefore, we excluded these data and used a total of 68 datasets.
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For the best channel selection, we used beat comparison measure (BCM) in each database [10].
BCM scans the maternal QRS position already removed along the residual signal, and then selects the
channel in which the amplitudes of maternal QRS segments are the lowest. After selecting the best
channel, the extraction fetal ECG procedure was performed. When EKF and TSPCA were applied for
the extraction of fetal ECG, we used open-source code in the FECGSYN toolbox [26].

2.5. Evaluation and Detection of Fetal ECG R-Peak

To analyze the simulation results, we detected the fetal ECG R-peaks to compare the four
techniques according to the sensitivity (Se), positive predictive value (PPV) and the F1-measure.
The formulae for Se, PPV, and F1 are as follows [20]:

Se “
TP

TP` FN
(15)

PPV “
TP

TP` FP
(16)

F1 “ 2 ¨
PPV ¨ Se
PPV ` Se

“
2 ¨ TP

2 ¨ TP` FN ` FP
(17)

where TP, FP, and FN denote the true positive rate, false positive rate, and false negative rate,
respectively. TP indicates that true fetal ECG R-peaks were detected. FP indicates that an artifact was
detected as a true fetal ECG R-peak, while FN indicates false R-peak misdetection. In addition, Se
indicates the ability to detect the R-peak, and PPV provides the probability that the true fetal ECG
R-peaks are detected. F1 indicates the overall probability that the fetal ECG R-peaks are detected
correctly. The acceptance interval between detection and reference location of fetal R-peak was
defined to be ˘50 ms [10,20]. For fetal R-peak detection, many detection algorithms were offered
as open-sources. Since the detection performance varies depending on algorithms, we selected
the adapted version of the Pan and Tompkins algorithm which is commonly used for ECG R-peak
detection [10,20]. The FECGSYN toolbox also includes this source code. Moreover, the mean absolute
error (MAE) of the absolute time difference between the reference fetal R-peak location and detected
fetal R-peak location was calculated to compare the four methods—STVD, EKF, TVD + TSPCA, and
TSPCA, in diverse situations. MAE is expressed as:

MAE “
1

NTP
¨

NTP
ÿ

i“1

|ai ´ âi| (18)

where ai and âi are the reference R-peak time location and detected R-peak time location. NTP is the
total number of TP.

3. Results

3.1. Parameter Optimization

Grid search was performed to find optimal parameters for STVD and EKF. On the other hand,
we chose the number of maternal ECG cycles with the highest F1 to build the maternal ECG template
for TSPCA. Figure 3 shows heat map and performance change with different numbers of maternal
ECG cycles for each database (simulation: FECGSYNDB, real data: set-a). In this study, we multiplied
covariance matrix Q and R by their gains to obtain the best performance for EFK [10]. Two gains were
denoted as GQ and GR, respectively. We found optimized GQ and GR values using grid search. In
TSPCA case, the number of PCs and the number of maternal ECG cycles influence on the performance
of TSPCA. When the number of PCs was set to 2, we got the best result for all databases. Therefore, we
searched for only the optimal number of maternal ECG cycles. Table 2 illustrates optimal parameters
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of each algorithm for different databases. For set-a, optimal parameters of EKF and TSPCA had the
same values as previous work [10].Sensors 2016, 16, 1020 8 of 14 
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Table 2. Optimal parameters of each extraction method for different databases.

Method Parameters
FECGSYNDB

Set-a
0 dB 3 dB 6 dB 9 dB 12 dB

STVD
λ1 34 12 4 1 1 4
λ2 16 9 2 1 1 3

EKF
GQ 10 5 2 1 1 5
GR 84 75 10 1 1 100

TSPCA The number of maternal ECG cycles 23 23 15 14 14 20

3.2. Simulation

Realistic simulated signals were used to assess the performance of the STVD method for
comparison with the performances of the other methods. The extraction of the fetal ECG signals
by several algorithms is shown in Figure 4. As shown in Figure 4, the fetal ECG signals extracted
by TVD + TSPCA and TSPCA are still influenced by artifacts. That is, as TVD + TSPCA and TSPCA had
considerable amounts of remaining noise, it was difficult to find the exact R-peak (see red boxes in
Figure 4). Moreover, the EKF could not extract the R-peaks of the fetal ECG occasionally (see red circles
in Figure 4). However, the STVD method could extract all R-peaks accurately in Figure 4.

Tables 3 and 4 show various results for evaluating the performance of each algorithm. The STVD
method performs much better than other three algorithms with higher F1 for all cases. Especially,
STVD has the highest F1 in uterine contraction (case 3) and ectopic beats (case 4) cases. However, the
MAE results of STVD are higher than EKF method (STVD: 3.9 ms, EKF: 3.8 ms).
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EKF sometimes eliminates the R-peaks of fetal ECG (red circles). Considerable noise remains after the
extraction of fetal ECG by TVD + TSPCA and TSPCA methods (red boxes).

Table 3. Evaluation results on F1 for FECGSYNDB, shown as median (interquartile range, %).

Method Baseline Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Total

STVD 100 (0.0) 98.4 (4.3) 99.4 (8.9) 98.5 (9.5) 80.2 (11.5) 90.6 (5.9) 97.5 (4.2) 97.2 (9.9)
EKF 100 (0.2) 98.1 (9.9) 98.8 (8.2) 98.2 (9.6) 77.8 (10.0) 83.4 (7.3) 94.5 (24.8) 94.5 (19.8)

TVD + TSPCA 100 (0.0) 97.8 (8.7) 99.4 (5.1) 98.1 (8.0) 78.7 (10.2) 88.6 (17.2) 95.9 (16.8) 96.1 (24.8)
TSPCA 100 (0.0) 98.3 (9.9) 99.2 (7.6) 98.7 (9.3) 77.5 (10.2) 88.4 (10.8) 94.9 (23.2) 96 (18.5)

Table 4. Evaluation results on MAE for FECGSYNDB shown as median (interquartile range, ms).

Method Baseline Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Total

STVD 3.3 (2.0) 3.6 (1.9) 3.7 (0.2) 3.2 (1.3) 4.5 (0.4) 3.2 (3.6) 3.3 (3.5) 3.9 (2.2)
EKF 4.5 (6.3) 3.8 (4.4) 3.1 (0.9) 3.1 (1.1) 3.9 (1.6) 4.8 (1.4) 3.5 (3.7) 3.8 (2.7)

TVD + TSPCA 3.4 (3.6) 5.2 (3.5) 5.1 (2.8) 5.5 (3.3) 4.2 (3.6) 3.4 (2.0) 3.8 (2.7) 4.2 (2.1)
TSPCA 4 (2.0) 4.2 (2.1) 4.2 (0.6) 4.1 (0.8) 4.7 (1.1) 5.6 (0.8) 4.3 (1.8) 4.4 (1.6)

Figure 5 shows results of F1 after applying noninvasive fetal ECG extraction methods in various
cases with different SNR levels. We used a Kruskal-Wallis test to identify a significant effect of the
SNR [19]. In particular, this test was meant to determine whether there is a statistically significant
difference of F1 value according to different SNR levels. If p-values are smaller than 0.05, it means
that the performance of extraction methods is influenced by SNR levels. As shown in Figure 5, EKF,
TVD + TSPCA, and TSPCA are vulnerable to high noise levels (p < 0.05), while STVD shows significant
noise robustness as in case 3, 4, and 5. Furthermore, we performed a post hoc analysis using Sign
test for the assessment of paired differences between fetal ECG extraction methods (see Figure 6) [20].
Since the significant differences could not be identified, we excluded plots for SNR 9 and 12 dB in
Figure 6. Figure 6 illustrates that results of STVD are significantly different from other methods for
low SNR 0 and 3 dB (p < 0.05).
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Figure 6. Results of the post hoc analysis using the Sign test over single-channel fetal ECG extraction
methods. The post hoc analysis was performed regarding F1. Black square refers to significant
differences (p < 0.05) and white means that there is no significant difference (p > 0.05). Results of SNR
9 and 12 dB are excluded because of no significant differences across methods.

3.3. PhysioNet Database

STVD was also applied to PhysioNet databases, and the estimated fetal ECG signals for set-a are
shown in Figure 7. As shown in Figure 7c, the EKF might remove the fetal ECG from set-a dataset
(see red circle). Moreover, the residual signals of the TVD + TSPCA and TSPCA methods are still
influenced by artifacts (see Figure 7d,e). Meanwhile, we have confirmed from the set-a data that our
proposed method can extract the fetal ECG accurately (see Figure 7b). Table 5 presents the results of the
comparison of our proposed method with the other three methods for set-a. STVD presents higher F1

scores (F1: 89.9%) than the other methods (EKF: 81.1%, TVD + TSPCA: 87.4%, TSPCA: 86.7%). Moreover,
this dataset generally has lower SNR; hence, TVD + TSPCA and TSPCA showed worse performances
than STVD. In addition, the time–frequency presentation using the Stockwell-transform [27] in Figure 8
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demonstrates that the EKF could extract the fetal ECG for set-a. However, we can confirm from
Figure 8 that the EKF might detect incorrect fetal ECG R-peaks (see red arrows). Only the STVD could
extract all the R-peaks of the fetal ECGs exactly in Figure 8. As can be observed in Figure 8, the spectral
content of artifacts still remains in the fetal ECG signal extracted via TVD + TSPCA and TSPCA, while
STVD could isolate the spectral contents in the fetal ECG.Sensors 2016, 16, 1020 11 of 14 

 

 
Figure 7. Comparison of fetal ECG extraction by STVD, EKF, TVD + TSPCA and TSPCA using set-a (data 
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Figure 8. Time-frequency representation of extracted fetal ECG using the four different methods for
data ‘a01’ from set-a. EKF could not detect the fetal ECG several times (red arrows). TVD + TSPCA and
TSPCA still contain the spectral contents of artifacts (red boxes).
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Table 5. Evaluation results on fetal R-peak detection for set-a.

Method TP FN FP Se (%) PPV (%) F1 (%) MAE (ms)

STVD 9162 946 1072 90.5 89.4 89.9 9.3
EKF 7989 1719 1984 82.2 80.1 81.1 7.9

TVD + TSPCA 8519 1189 1246 87.7 87.2 87.4 16.4
TSPCA 8475 1233 1367 87.2 86.1 86.7 14.3

Total 68 datasets were used (record a33, a38, a47, a52, a54, a71, and a74 were excluded).

4. Discussion and Conclusions

In this paper, we proposed sequential total variation denoising (STVD) for fetal electrocardiogram
(ECG) extraction from the abdominal ECGs of pregnant women. In this method, two total variation
denoising (TVD) steps were used sequentially. The first TVD reduced the noise components of
the abdominal ECG for effective cancellation of the maternal ECG by template subtraction (TSPCA)
and then the second TVD enhanced the fetal ECG component. The extended Kalman filter (EKF)
framework [11–14], TSPCA [10], and combined TVD with TSPCA (TVD + TSPCA) methods were
compared with our proposed method. TSPCA has been widely used for extracting the fetal ECG
from single-channel abdominal ECGs. However, the results from simulation and real datasets showed
that the TSPCA method was not suitable for noisy abdominal ECGs. The performance of the TSPCA

approach heavily depends on accurate detection of maternal ECG R-peaks. When accurate maternal
R-peak cannot be detected because of noise, the TSPCA method cannot remove maternal ECG segments.
Thus, TSPCA showed poor performance for low SNR levels in the simulation. Moreover, the residual
signal, after extracting the maternal ECG from the noisy abdominal ECG using TSPCA, was still noisy;
this makes it difficult to confirm the fetal ECG.

Recently, several studies have employed the EKF framework to extract the fetal ECG [11–14] as
the EKF demonstrates good performance. The drawbacks of the EKF framework were shown by the
simulation and real dataset. When the R-peaks of the fetal ECG and maternal ECG overlapped, it was
difficult for the EKF to distinguish the fetal ECG from the maternal ECG (see Figures 4 and 8) [11].
Therefore, the fetal ECG was also eliminated during the maternal ECG cancellation. Furthermore,
if the amplitude of the fetal ECG was small, this method could not detect the true fetal ECG peaks
(see Figure 7). As the EKF framework requires strong assumptions to establish a dynamic model, it
requires reliable prior information about the fetal ECG R-peaks [28]. The EKF method showed worse
performance than all other approaches for simulation and a real dataset (see Tables 3 and 5). As the
EKF approach removed the fetal ECG R-peak during the process of maternal ECG cancellation, the
number of FNs increased for the two real datasets. Meanwhile, STVD could detect true fetal ECG
R-peaks correctly because of the fetal ECG enhancement by the additional TVD step [18]. Therefore,
STVD had higher Se values than other methods. However, EKF had the best results for MAE. This is
because that EKF method estimated fetal ECG R-peaks using prior information about the fetal ECG
R-peaks. On the other hand, the morphology of fetal ECG was distorted by TVD, even though STVD
performed better to extract fetal ECG R-peaks from single-channel abdominal ECG. Figure 9 shows the
morphological changes of fetal ECG extracted using STVD with different values of λ2. We can confirm
from Figure 9 that the amplitude of PQRST waves was reduced by the TVD method. Furthermore,
location of fetal R-peaks was also distorted. Therefore, MAE results of STVD had higher than EKF.
However, if we can find suitable regularization parameters, STVD can extract fetal ECG with minimal
fetal ECG signal distortion (See Figure 9).

Finally, to verify the importance of the second TVD step, we compared STVD with the combination
of TVD and TSPCA. As shown in Tables 3 and 4, TVD + TSPCA showed better performance than TSPCA,
since the TVD step could enhance the abdominal ECG. After the cancellation of the maternal ECG
segments, the residual signal was less influenced by artifacts than the residual signal produced by
the TSPCA method. However, TVD + TSPCA could not enhance the fetal ECG adequately because of
its residual noise. In contrast, the STVD method could extract the fetal ECG by means of a second
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TVD step. The ECG waveform generally includes spike peaks. We could establish the ECG model
as an approximate piecewise linear model. As the `1 norm term of the TVD problem measures the
fluctuation of the signal, TVD could preserve the signal with high total variation, such as a QRS
complex. This characteristic enhanced the fetal ECG R-peaks [19,29]. Thus, STVD showed much better
performance than the TVD + TSPCA for both simulations and real data. Moreover, the F1 of STVD was
higher than that of TVD + TSPCA. Overall, STVD could effectively detect true fetal ECG R-peaks and
decrease the error rate of detection. Altogether, the results of this study suggest that the STVD is a
promising tool for monitoring the FHR using single-channel abdominal ECGs of pregnant women.
Therefore, our proposed method would help in the continuous detection of changes in the normal
FHR pattern. Moreover, one of the issues for FHR monitoring is the real-time implementation. Since
we already recognized low computational load in our approach, we plan to develop a real-time FHR
monitoring system for future work.
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