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Abstract: Motion parameter estimation of a ground moving target is an important issue in synthetic
aperture radar ground moving target indication (SAR-GMTI) which has significant applications
for civilian and military. The SAR image of a moving target may be displaced and defocused
due to the radial and along-track velocity components, respectively. The sharpness cost function
presents a measure of the degree of focus of the image. In this work, a new ground moving
target parameter estimation algorithm based on the sharpness optimization criterion is proposed.
The relationships between the quadratic phase errors and the target’s velocity components are
derived. Using two-dimensional searching of the sharpness cost function, we can obtain the velocity
components of the target and the focused target image simultaneously. The proposed moving target
parameter estimation method and image sharpness metrics are analyzed in detail. Finally, numerical
results illustrate the effective and superior velocity estimation performance of the proposed method
when compared to existing algorithms.
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1. Introduction

Ground moving target indication (GMTI) combined with synthetic aperture radar (SAR) has
become a well-established technique for civil and military applications. The challenge of GMTI
includes both the detection of targets and the estimation of their velocity components. Recently, the
topic of moving target detection has been extensively studied [1–5]. In conventional SAR images,
the target will be displaced and defocused because of the target’s radial (cross-track) and along-track
velocities, respectively [6]. The target’s moving parameters, such as radial velocity, along-track velocity,
and original azimuth position, play an important role in monitoring ground vehicles. Using these
parameters, we can reposition them to the true azimuth location and extrapolate a target’s future
position [7,8]. Generally, the interferometric phase is employed to determine the radial velocity while
the along-track velocity is acquired by the target’s Doppler parameters. For a space-borne SAR system,
the speed of ground slow moving targets are rather slow compared with the high speed of the satellite
platform (typical platform velocities are in the range of 7000 m/s to 7500 m/s), therefore, the influence
of the target’s along-track velocity can be ignored. In contrast, for airborne SAR systems, the target’s
along-track velocity component will inevitably cause the image to be defocused, consequently reducing
the detection capability.

In this paper, the main effort lays in the estimation of the motion parameters of a point moving
target whose along-track velocity must be considered. Assuming that the moving targets have been
detected using the displaced phase center antenna (DPCA) method, the along-track interferometric
(ATI) method, or some other method, a new moving target parameter estimation algorithm based
on the image sharpness optimization criterion is proposed. The target’s velocity components can
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be obtained by optimizing the sharpness cost function. The algorithm shows effective and superior
velocity estimation performance in a number of simulations.

The paper is arranged as follows: Section 2 provides the echoes model of a typical SAR-GMTI
system. In Section 3, we provide a brief introduction to the image sharpness metrics. In Section 4, the
new moving target parameter estimation algorithm is described in detail. In Section 5, the algorithm is
applied to the simulated SAR data; the performance of the algorithm is proved to be effective. In the
closing section, a summary of the findings is presented.

2. Echoes Model of a Ground Moving Target

Recently, the majority of SAR-GMTI algorithms utilize multiple apertures to provide an additional
degree of freedom with which unwanted clutters may be suppressed. For simplicity and without loss
of generality, we consider a single aperture SAR system model for the echoes backscattered from a
ground point moving target [9,10]. Assume that the SAR system functions in side-looking mode with
a fixed pointing angle orthogonal to the flight path. The moving target and radar geometry relation
is illustrated in Figure 1, where the projection of the aircraft flying direction is defined as the X-axis,
and the Y-axis is the radial (cross-track) direction, and the Z-axis represents the altitude. The platform
moves at a constant speed va and a fixed altitude H. An arbitrary point ground moving target P is
assumed to be at position (X0,Y0,0) at t = 0 and moving with along-track and cross-track velocity
components vx and vy, respectively. Suppose that when t = 0, the slant range of radar to target P

is R0 “

b

H2 ` X2
0 `Y2

0 . For a small antenna azimuth beamwidth, it is possible to approximate the
instantaneous range between radar and the point target by a second-order Taylor series:

Rptq « R0 `
vyY0

R0
t´

pva ´ vxqX0

R0
t`

v2
y ` pva ´ vxq

2

2R0
t2 (1)

Assuming the radar transmits a linear frequency modulated signal, after range compression, the
signal can be expressed as:

S1ptq “ ATrectp
t
T
qexpp´j

4π

λ
Rptqq (2)

where T is the signal pulse period and λ is the wavelength.
After Fourier transformation, the signal can be expressed as follows:

S1p f q “ AT

d

1
| fdr|

rect
ˆ

f ` fdc
B

˙

exp
ˆ

´
j2π fdc f

fdr

˙

exp
ˆ

´jπ f 2

fdr

˙

(3)

where AT is the magnitude, B is the transmission bandwidth, fdc is the Doppler center frequency of the
target, and fdr is the Doppler rate of the target. Derived from Equation (1), fdc and fdr can be given as:

fdc “ ´
2
λ
ˆ

dRptq
dt

“
2

λR0

“

X0pva ´ vxq ´ vyY0
‰

(4)

fdr “ ´
2
λ
ˆ

d2Rptq
dt2 “ ´

2
λR0

”

pva ´ vxq
2
` v2

y

ı

(5)

For a stationary scene, the Doppler center frequency and Doppler rate are:

fdc0 “ fdc

ˇ

ˇ

ˇvx“0,vy“0 “
2X0va

λR0
(6)

fdr0 “ fdr

ˇ

ˇ

ˇvx“0,vy“0 “ ´
2v2

a
λR0

(7)
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In SAR imaging, the reference function used in azimuth processing is constructed using the
stationary target’s Doppler parameters. The reference function can be formed as follows:

sre fap f q “ exppjπ f 2{ fdr0q (8)

Synthetic aperture radar can image a stationary scene with fine resolution. However, for a moving
target, smearing, defocusing, and displacement are inevitable because the Doppler parameters of a
moving target are different from those of a stationary scene.

Consequently, the signal after azimuth processing in the Doppler domain can be expressed as:

S11p f q “ AT

d

1
| fdr|

rect
ˆ

f ` fdc
B

˙

exp
ˆ

´
j2π fdc f

fdr

˙

exp
ˆ

´
jπ f 2

fdr
`

jπ f 2

fdr0

˙

(9)

From Equation (9), for a moving target, the quadratic phase term is not equal to zero because
fdr ‰ fdr0. In other words, the Doppler rate of the moving target is not completely compensated and
there still exists quadratic phase errors. For SAR images, the linear phase errors may cause image
displacement, whereas the quadratic phase errors may introduce image defocus and reduce the signal
amplitude. If the quadratic phase errors can be estimated and fully compensated for the signal, then
the image will be focused and the signal energy will be converged in the center, see Equation (11).

Let γ represent the quadratic phase error in Equation (9):

γ “
jπ
fdr
´

jπ
fdr0

“ jπ

#

λR0
2X0va

´
λR0

2
”

pva´vxq
2
`v2

y

ı

+

(10)

After phase error compensation, the focused image in the Doppler domain can be expressed as:

S1compenp f q “ S11p f qexppγ f 2q (11)

After compensation, the quadratic phase is equal to zero, see Equation (12):

´
jπ f 2

fdr
`

jπ f 2

fdr0
` γ “ 0 (12)

One of the measurements of the degree of image focus is named image sharpness. In the next
section, we will provide a brief introduction to image sharpness metrics.
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Figure 1. Geometry of a SAR system with a moving target. 
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3. Image Sharpness Metrics

Sharpness is considered as the ratio of the difference in luminance of an object and its immediate
surroundings. In SAR images, sharpness can be considered as a measurement of the degree of the
focus of the image because the sharpness allows one to emphasize the difference in the intensity of
the scene. The amplitude of the focused image is concentrated in the center pixels. As a result, the
focused image has several pronounced peaks corresponding to the scatters of the target that produce
high fluctuations of the image intensity. Conversely, the amplitude of the unfocused image exhibits
small fluctuations around its mean value. Thus, we expect a high sharpness value of the focused image
because there are great differences in the intensity. Instead, the amplitude of an unfocused image is
concentrated around its mean value and the sharpness value is low.

Because of unknown platform movement and ground target motion, SAR suffers from image
degradation due to the presence of phase errors in the received signal. These phase errors act as a
blurring filter, resulting in loss of resolution, spurious targets and a decrease in image sharpness. If the
quadratic phase errors can be estimated and compensated for the signal, then the image can be focused
and the sharpness value will reach the highest value. Determining how to estimate the phase errors is
the key problem for image focusing.

Figure 2 shows a small part of real SAR image; it contains 5 ˆ 5 pixels. The amplitude of each
pixel is presented by different colors.
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where M and N are the number of pixels in range and azimuth directions, respectively. A{} is the 
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Figure 2. A part of a SAR image.

Let Ii,j(γ) represent the complex value of pixel (i,j) in the phase compensated image S1compen, which
is a function of γ.

Image sharpness is used to evaluate the degree of focus [11–15]. Because of the point-like nature
of the SAR image model, maximizing sharpness is found to increase the image focus. Because the
complex value of the compensated image pixel is a function of γ, the sharpness can also be expressed
as a function of γ.

In this paper, we study the standard deviation intensity sharpness function, as proposed in [9]:
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where M and N are the number of pixels in range and azimuth directions, respectively. A{‚} is the
spatial mean operator. As an example, application of A{‚} to a real sequence x(p) with p = 1, . . . ,p is
shown in Equation (14):

Arxppqs “
1
p

P
ÿ

p“1

xppq (14)

Sharpness optimization is a method by which a quadratic phase error estimate is chosen to
maximize a particular cost function, see Equation (15):

>γ “ argmax
γ

Cpγq (15)

The properties of the sharpness function C(γ) have been analyzed in detail in [15]. When C(γ)
achieves the maximum value, the quadratic phase error is completely compensated and the image will
be focused. The variable γ corresponds to the estimated quadratic phase errors, which is presented
by >γ.

For example, Figure 3 illustrates the relationship between the sharpness value and the quadratic
phase. For a point moving target, when the quadratic phase error is fully compensated, the quadratic
phase coefficient is equal to zero, and the sharpness value is maximized.
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Figure 3. Relationship between the sharpness value and the quadratic phase.

In SAR imaging, sharpness metrics are always used for image autofocus. Through the process of
estimating the phase errors and compensating them for the unfocused image, a higher definition image
can be acquired. For a moving target, the velocities introduce a phase error, thus causing the image to
be unfocused. The phase error of a moving target can also be estimated using sharpness optimization
metrics. Thus, inspired by the concept of sharpness, we proposed a moving target parameter estimate
method in the next section.

4. Parameter Estimation Using Sharpness Optimization

4.1. Coarse Parameter Estimation

Traditionally, after clutter suppression and moving target detection in the image domain, the
motion parameter of the target can be estimated using ATI [16,17] and DPCA [18,19] techniques.

For ATI techniques, the velocities of the ground moving target can be obtained via the
interferometric phase, using Equations (16) and (17):

>
X0 “

λR0
>
φp

>
f q

2πd
`

d
4

(16)
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>vy “ va

>
X0

Y0
´

λR0
>
f

2Y0
(17)

In which >
φ p f q is the interferometric phase, d is the distance between phase centers, and the other

parameters are the same as mentioned before.
Because the image of moving target is unfocused, the interferometric phase >

φ p f q is also inaccurate.
The motion parameters obtained by Equations (16) and (17) may have large errors. To improve the
estimation accuracy, we propose an accurate target motion parameter estimation method that estimates
the parameters and obtains the focused image simultaneously.

4.2. Accurate Parameter Estimation

Derived from Equation (10), the quadratic phase error γ is a function of the along-track velocity vx

and the radial velocity vy. From Figure 3, if the quadratic phase error is completely compensated, then
the sharpness function reaches peak amplitude and the image is fully focused. Thus, the estimation of
the values of vx and vy involve an optimization problem of the function of Equation (15).

The properties of the sharpness function C(γ) have been analyzed in detail in [13]. C(γ) has
been proven to be a unimodal function, which has only one maximum value. The maximum value
corresponds to a focused image.

The unknown variables in C(γ) are vx and vy, which are independent variables. The problem of
Equation (15) can be simplified as two independent one-dimensional unimodal function optimization
problems. Searching vx and vy, when γ equals to the real quadratic phase errors, C(γ) reaches the peak
value. The corresponding vx and vy are the true velocity components of the target.

From Equations (16) and (17), a coarse estimation of vy can be acquired. As a result, the searching
intervals of vy can be set centered on >vy, which can substantially reduce the computational load.
The searching intervals of>vx can be set adequately large. As the searching process is constrained to a
small image area containing the moving target, the algorithm is not time consuming.

Because C(γ) contains only one maximum, unimodal function optimization methods can
be applied to effectively solve the optimization problem, such as the advance-and-retreat search
method [20] and the golden-section search method [21]. Taking as an example the golden-section
search method, whose flowchart is illustrated in Figure 4.
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The searching steps can be summarized below:

(1) Choose the search interval of vy: [vya,vyb].
(2) Choose the search interval of vx: [vxa,vxb].
(3) Let vy = vya; search vx in [vxa,vxb], set ε = 0.001. According to the process shown in Figure 4, obtain

the maximum value C˚a and the corresponding v˚ax.
(4) Let vy = vyi = vya + ∆y, where ∆y is the step size acquired by the flowchart in Figure 4. According

to the process shown in Figure 4, obtain the maximum value C˚i and the corresponding v˚ix.
(5) Repeat Step (4); until vy = vyb, and then obtain C˚b and v˚bx.
(6) Let C˚max “ max

 

C˚a , . . . , C˚b , the corresponding vx and vy are the estimates of the target’s
velocity components.

4.3. Flow Chart of Parameter Estimation of a Ground Moving Target

Based on the principle presented above, the flowchart of the proposed approach is illustrated in
Figure 5. The main steps of the ground moving target parameter estimation algorithm using sharpness
optimization are summarized as follows:

(1) Imaging of the raw SAR data.
(2) Clutter suppression and detection of the moving target in the image domain.
(3) Extraction of the small part of the image containing the moving target.
(4) Corse estimation of the motion parameters.
(5) Joint searching of vx and vy to obtain the quadratic phase error.
(6) Calculation of the sharpness cost function C(γ).
(7) Repeat Steps (5) and (6); when C(γ) achieves the maximum value, stop. The corresponding vx

and vy are the accurate along-track and radial velocity of the target, respectively.
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Figure 5. Flowchart of the moving target parameter estimation process.

5. Experimental Results

In this section, we present and discuss a number of results obtained by applying the proposed
moving target parameter estimation method to simulated SAR data. The simulation conditions are:
aircraft velocity = 150 m/s, transmission wavelength = 0.03 m, pulse repetition frequency = 500 Hz, and
distance between phase centers = 0.96 m. The parameters of the moving target are: radial velocity = 2
m/s, along-track velocity = 4.5 m/s and original azimuth position = 130 m. Following the procedure
shown in Figure 5, following imaging, detection, and extraction, the image of the moving target is
depicted in Figure 6a.
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Figure 6. (a) Unfocused image of the moving target; (b) Focused image of the moving target.

Because of the along-track velocity, the image is unfocused and spread along the azimuth direction.
Both the advance-and-retreat search method and the golden-section search method are applied to
solve the optimization problem. The iteration process is shown in Figure 7. From Figure 7, we can infer
that the golden-section search method has a superior convergence rate than the advance-and-retreat
method. For the moving target in Figure 6a, under the same computer conditions, the golden-section
search method takes 1.292 s, whereas the advance-and-retreat search method takes 1.873 s to obtain
the optimal estimation of the target velocities. The results show that the moving target parameter
estimation proposed in this paper has a very low computation load. The estimated moving target
parameters are: along-track velocity = 4.503 m/s, radial velocity = 2.032 m/s and original azimuth
location = 124.39 m. The estimated parameters are in agreement with the simulated parameters.
Figure 6b shows the focused image obtained by compensating the quadratic phase errors. We also
compared the performance of the proposed parameter estimation method with the traditional ATI
method. Figure 8a shows the radial velocity estimation error versus the signal-to-clutter ratio (SCR),
and Figure 8b shows the along-track velocity estimation error versus the SCR. The proposed method is
found to exhibit higher velocity estimation accuracy than the traditional ATI method.
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Figure 8. (a) Radial velocity estimation error versus the SCR; (b) Along-track velocity estimation error
versus the SCR.

6. Conclusions

This paper introduced a novel motion parameter estimation method using contrast optimization
for a ground moving target. The echo model of a target in a SAR image was analyzed and the
relationships between the quadratic phase errors and the target’s velocity components are derived
first. Next, the concepts of image sharpness metrics were discussed in detail. Based on the sharpness
optimization criterion, the peak magnitude of the sharpness cost function corresponds to the real phase
errors, which are functions of the target’s velocity components. Using two-dimensional searching,
we can obtain the along-track and radial velocities of the target. The proposed method can obtain
the motion parameters and the focused image simultaneously, and obviously enhance the estimation
accuracy. In the simulation section, the method was applied to simulated SAR data, and the results
illustrated that the proposed method can effectively estimate the moving target parameters with better
accuracy than the conventional ATI method.
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