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Abstract: Wireless sensor networks deployed within metallic cavities are known to suffer from
a very severe fading, even in strong line-of-sight propagation conditions. This behavior is
well-captured by the Two-Wave with Diffuse Power (TWDP) fading distribution, which shows great
fit to field measurements in such scenarios. In this paper, we address the joint estimation of the
parameters K and ∆ that characterize the TWDP fading model, based on the observation of the
received signal envelope. We use a moment-based approach to derive closed-form expressions for
the estimators of K and ∆, as well as closed-form expressions for their asymptotic variance. Results
show that the estimation error is close to the Cramer-Rao lower bound for a wide range of values
of the parameters K and ∆. The performance degradation due to a finite number of observations is
also analyzed.

Keywords: Cramer-Rao bound; moment-based estimation; fading channels; Rician fading;
Two-Wave with diffuse power

1. Introduction

Rician fading model is extensively used to characterize the random fluctuations of the received
signal amplitude in line-of-sight (LOS) environments [1]. In such scenarios, the scattering waves
arriving at the receiver can be split into the dominant LOS component plus a diffuse component,
which accounts for the effect of the non-LOS (NLOS) propagation. The relative strength of the LOS
component with respect to the NLOS one is measured by the Rician K-factor, defined as the ratio
between the powers of both components.

The estimation of the Rician K-factor is of paramount importance in the context of wireless
communications systems, as the proper system operation heavily relies on the quality of the
estimation of K [2,3]. As a matter of fact, a flurry of papers have addressed this estimation problem
from different perspectives [4–8] in the last years.

However, in some indoor and outdoor LOS environments the Rician distribution falls short to
accurately modeling small-scale fading effects. This is of special relevance in the case of wireless
sensor networks (WSN) deployed on the inner surface of cavities (e.g., tunnels, plane and helicopter
airframes, buses, shipping containers) used to measure data for maintenance, comfort, health and
security purposes [9–11] or in vehicle-to-vehicle links [12], or in general, machine-to-machine systems
like WSN deployed inside and/or around complex structures. In all the aforementioned scenarios,
field measurements show that fading in the presence of LOS components may even degenerate into
a regime more severe than Rayleigh fading [9–12].
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Among the different distributions in the literature which may be useful to account for this
special propagation regime, the Two-Wave with diffuse power (TWDP) fading model is the preferred
alternative because of its flexibility [11] and clear physical interpretation. This fading model was
first presented in [13] as a generalization of the Rician fading model, by incorporating a second
dominant LOS component with uniformly distributed phase. The effect of this new LOS component
is captured through the parameter ∆, which measures the relative magnitudes of the two LOS
components to one another. This model has succeeded on characterizing a wide variety of fading
behaviors, from purely Rician to worse than Rayleigh fading [14,15], and has been considered by
many authors [16–19] in order to evaluate the performance of communication systems operating
under this peculiar fading condition.

Despite its relevance, the estimation of the parameters K and ∆ for the TWDP fading model
has not been addressed in the literature to the best of our knowledge, except for the preliminary
results in [20] based on maximum-likelihood estimation. Thence, we aim to fill this gap by
studying the problem of jointly estimating K and ∆ from the observation of the received signal
envelope. Specifically, we design a moment-based estimator for the TWDP fading parameters
leveraging the closed-form expressions of the moments recently proposed in [15]. We also derive
the asymptotic variance of the estimator, and compare it to the Cramer-Rao lower bound (CRB) via
Monte Carlo simulations. The effect of a finite number of observations on the estimator performance
is also quantified.

The remainder of this paper is structured as follows: Section 2 introduces the main aspects of
the TWDP fading model, which will be of use in the following derivations. The parameter estimation
is addressed in Section 3, whereas the CRB and the asymptotic variance of the proposed estimators
are presented in Section 4. The effect of having a finite number of observations in the estimation
performance is studied in Section 5, and the main conclusions are outlined in Section 6.

2. TWDP Fading Model

In the TWDP fading model, the complex baseband signal Vr at the receiver side can be expressed
as ([13] Equation (4))

Vr = V1 exp(jφ1) + V2 exp(jφ2) + Vd (1)

We observe two LOS components with uniformly distributed phases φ1, φ2 ∼ U (0, 2π) (The
symbol ∼ reads as statistically distributed as.) and constant amplitudes V1 and V2, plus a diffuse
component Vd = X + jY regarded as a complex Gaussian random variable, being X, Y ∼ N (0, σ2)

and independent. The TWDP model is fully characterized by the parameters K, ∆ and Ω defined as

K =
V2

1 + V2
2

2σ2 , ∆ =
2V1V2

V2
1 + V2

2
, Ω = V2

1 + V2
2 + 2σ2 (2)

The parameter K ∈ [0, ∞) has an equivalent interpretation as in the Rician case, whereas the
parameter ∆ ∈ [0, 1] indicates whether the two LOS components have equal amplitude (∆ = 1) or not
(∆ < 1), degenerating in the Rician fading model for ∆ = 0. The pdf of r = |Vr| is given by ([13]
Equation (32))

f (r) =
r

2πσ2 e−
r2

2σ2−K
∫ 2π

0
eK∆ cos(θ) I0

( r
σ

cθ

)
dθ (3)

where I0(·) is the modified Bessel function of the first kind and order zero, and
cθ =

√
2K[1 + ∆ cos(θ)]. Finally, the parameter Ω corresponds to the average received signal

power and hence is merely a scale factor for the model. Although we focus our study exclusively in
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the estimation of the K and ∆ parameters, the parameter Ω is also unknown and related to K and ∆
and must therefore be estimated as well.

In ([15] Equation (30)), the moments of the squared signal envelope γ = r2 were calculated as a
finite-range integral involving the Kummer confluent hypergeometric function 1F1(·, ·; ·). Using the
connection between the Kummer function and the Laguerre polynomials Lk(·) [21] [Equation 8.972],
we have

E(γk) =
k!Ωk

(1 + K)k2π

∫ 2π

0
Lk (−K(1 + ∆ cos θ)) dθ (4)

Noting that the Laguerre polynomials can be expressed as [21] [Equation 8.970]

Lk(−x) =
k

∑
m=0

(
k
m

)
xm

m!
(5)

the moments can be computed in closed-form by direct integration of Equation (4) as

E(γk) =
k!Ωk

(1 + K)k2π

k

∑
m=0

(
k
m

)
Km

m!

∫ 2π

0
(1 + ∆ cos θ)mdθ (6)

by using a simple change of variables t = cos θ. Besides, the first moments of γ coincide with the first
even moments of r2, and can be computed from Equation (6) as

E(γ) = µ2 = Ω (7)

E(γ2) = µ4 =
Ω2(4 + K(8 + K(2 + ∆2)))

2(1 + K)2 (8)

E(γ3) = µ6 =
Ω3(12 + K(3 + K)(12 + K(2 + 3∆2)))

2(1 + K)3 (9)

where µn is the n-th order moment of the received signal envelope, i.e., µn = E[rn]. The second,
fourth and sixth-order moments µ2, µ4, µ6 are expressed in closed-form in terms of the parameters K
and ∆ and Ω. We will use these expressions to design a moment-based joint estimator.

3. Moment-Based Estimation of K and ∆

Dividing Equation (8) by µ2
2 and Equation (9) by µ3

2, we obtain

µ4

µ2
2
=

4 + K(8 + K(2 + ∆2))

2(1 + K)2 (10)

µ6

µ3
2
=

12 + K(3 + K)(12 + K(2 + 3∆2))

2(1 + K)3 (11)

Using the sample moments µ̂n = 1
N ∑N

l=1 rn
l instead of the ensemble averages µn, Equations (10)

and (11) can be solved for K and ∆ resulting in moment-based estimators (A similar procedure is used
in [6] for designing moment-based estimators of the Rician K factor where a function to denote the
ratio of different moments is introduced and denoted as fn,m. The terms µ4

µ2
2

and µ6
µ3

2
on the left hand

side of Equations (10) and (11) would correspond to
√

f4,2 and
√

f6,2 respectively.). In this procedure
notice that the third parameter Ω is also being estimated when using µ̂2 instead of µ2 as indicated
in Equation (7). Solving Equation (10) for ∆ and substituting it in Equation (11) results in the cubic
polynomial equation on K̂
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K̂3 + a1K̂2 + a2K̂ + a3 = 0 (12)

with coefficients

a1 =
6µ̂6 − 30µ̂4µ̂2 + 24µ̂3

2
2µ̂6 − 6µ̂4µ̂2 + 4µ̂3

2

a2 =
6µ̂6 − 42µ̂4µ̂2 + 48µ̂3

2
2µ̂6 − 6µ̂4µ̂2 + 4µ̂3

2

a3 =
2µ̂6 − 18µ̂4µ̂2 + 24µ̂3

2
2µ̂6 − 6µ̂4µ̂2 + 4µ̂3

2
(13)

The closed-form solution of a cubic polynomial results in the estimator

K̂ =

(
p +

(
p2 + q3

) 1
2

) 1
3
+

(
p−

(
p2 + q3

) 1
2

) 1
3
− a1

3 (14)

with

p = 1
54 (9a1a2 − 27a3 − 2a3

1),

q = 1
9 (3a2 − a2

1) (15)

Note that, while Equation (12) has three possible solutions, only one of them yields a valid
estimation of K (i.e., real and positive); this is the solution stated in Equation (14). Plugging the
estimate of K in Equation (10) yields a quadratic polynomial in ∆, for which the following estimator
is obtained:

∆̂ =

√
2 µ̂4

µ̂2
2
(1 + K̂)2 − 2K̂2 − 8K̂− 4

K̂
(16)

where the positive-valued solution has been selected, as ∆ ≥ 0 by definition.

4. Asymptotic Variance and Cramer-Rao Bound

To assess the performance of the proposed estimators, we will first calculate the asymptotic
variance. Then, we will compare it to the CRB bound, which determines the minimum achievable
variance of any unbiased estimator.

It is well-known that for any moment-based estimator, as the number of independent and
identically distributed (i.i.d.) observations N increases, the estimator bias tends asymptotically to
zero. Similarly, in this situation the estimator variance tends to vary proportionally to 1/N (it is a√

N-consistent estimator). In our problem, the proposed estimators are a function of three sample
moments, i.e., K̂ = h1(µ̂2, µ̂4, µ̂6) and ∆̂ = h2(µ̂2, µ̂4, µ̂6) where the function h1(·) is obtained by
substituting Equations (13) and (15) in Equation (14) and the function h2(·) is obtained by substituting
Equation (14) in Equation (16). The asymptotic variance for the estimation of K is given by [22]
[Equation 9.16]:

AsVK = gKΣ gT
K (17)

where gK is the vector of derivatives of K with respect to each sample moment, evaluated at the
corresponding statistical moment value, i.e.,
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gK =

[
∂K̂
∂µ̂2

,
∂K̂
∂µ̂4

,
∂K̂
∂µ̂6

]∣∣∣∣
µ̂2=µ2,µ̂4=µ4,µ̂6=µ6

(18)

and Σ is the 3 × 3 covariance matrix of the ensemble averages whose entries are defined as
[Σ]ij = cov(µ̂2i, µ̂2j), i, j = 1, 2, 3. It can be easily shown that

[Σ]ij =
1
N (µ2i+2j − µ2iµ2j), i, j = 1, 2, 3 (19)

Evaluation of Equation (19) requires the use of all the even order moments up to order 12.
The first three moments are shown in Equations (7)–(9). Closed-form expressions for µ8, µ10 and
µ12 can be easily obtained by evaluating Equation (6), and are shown in Appendix A. Replacing K by
∆ in Equations (17) and (18) yields the corresponding expression for AsV∆.

The Cramer-Rao lower bound is directly related to the Fisher Information Matrix (FIM), which
will be denoted by I(θ) with entries [I(θ)]ij where θ = [K, ∆, Ω] is the parameter vector to be
estimated. For i.i.d. observations the FIM matrix is a 3 × 3 matrix with

[I(θ)]ij = N E
[

∂ln f (r)
∂θi

· ∂ln f (r)
∂θj

]

i,j=1,2,3

(20)

where N is the number of observations and f (r) is the TWDP pdf in Equation (3).
The CRBs for the estimation of K and ∆ will be denoted here as CRBK and CRB∆ respectively.

According to [22] , these can be expressed as the elements (1,1) and (2,2) of the inverse FIM matrix,
respectively, i.e., CRBK = [I(θ)−1]11 and CRB∆ = [I(θ)−1]22. See that the CRBs decrease with the
number of observations as 1/N. In order to compute the FIM entries we must first obtain the
derivatives in Equation (20), and then perform numerical integration. As stated before, although
we are interested in the estimation of K and ∆, the parameter Ω must likewise be estimated and
accounted for in the CRB calculation. Whether Ω is known or not indeed affects the CRB, but the
specific value of Ω is irrelevant because the CRB is scale invariant.

Before presenting the results for CRB and AsV, we would like to remark an important aspect
relative to normalization. In the context of moment-based estimators it is common (see Figure 2
in [6]) to normalize the AsV and the CRB by N because the (asymptotic) behavior of the proposed
estimator when N is high can be seen in one single figure and compared to the CRB. Therefore in
the sequel, results for both the CRB and the AsV will be normalized with respect to N. A further
normalization with respect to the estimated parameter true value will be carried out in order to have
bounds on relative errors (instead of absolute errors) which give better information of the goodness of
the estimation. Finally, it is usual in the literature to represent the bound on the standard deviation
of the error instead of on the variance. Hence, the square root of CRB and AsV will be considered.
For the sake of compactness, in the text we will refer to the square root of the CRB for the estimation

of K, normalized to both K and N as sqrt-normalized CRBK which stands for
√

CRBK N
K2 and the same

holds for the sqrt-normalized CRB∆, AsVK and AsV∆.
In Figure 1, the sqrt-normalized CRBK and the sqrt-normalized AsVK are plotted as a function

of K. Different plots correspond to different values of the unknown parameter ∆. Focusing first on
the CRB, see that the sqrt-normalized CRBK grows as ∆ decreases. This means that the error bound
in estimating the ratio of the LOS components power to the diffuse components power is higher
when there is only one LOS component. The estimation can improve as the two LOS components
become of similar magnitude. See also that the error bound decreases drastically as K increases
from 0 to a moderate value (around K = 2 for ∆ < 0.5); this is, as the power of the diffuse
components diminishes. Finally, for larger K the error converges to a constant value as K goes to
infinity. The value of the sqrt-normalized AsVK is remarkably close to the sqrt-normalized CRBK for
the entire considered range of parameters. This means that the proposed estimator of the K parameter
is almost asymptotically efficient.
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Proceeding in an analogous manner, in Figure 2, we have represented the sqrt-normalized CRB∆
and the sqrt-normalized AsV∆ as a function of ∆. Different plots correspond to different values of
the unknown parameter K. With regard to the sqrt-normalized CRB∆, we notice once again that the
estimation improves when K grows large. We also observe that for a given K, the sqrt-normalized
CRB∆ increases as ∆ → 0; this implies that it is difficult to determine the relative amplitudes of the
two LOS components as one of them vanishes. The converse can be argued when both tend to be
equal (i.e., ∆→ 1). We also see that the values of the sqrt-normalized AsV∆ are relatively close to the
sqrt-normalized CRB∆ for the range of parameters analyzed, but not as close as when estimating K.
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Figure 1. Sqrt-normalized CRBK and AsVK as a function of K, for different values of ∆.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

√
CRB∆N/∆2, K = 1√
AsV ∆N/∆2, K = 1√
CRB∆N/∆2, K = 2√
AsV ∆N/∆2, K = 2

√
CRB∆N/∆2, K = 3√
AsV ∆N/∆2, K = 3√
CRB∆N/∆2, K = 10√
AsV ∆N/∆2, K = 10

∆

E
st

im
at

io
n

E
rr

or

Figure 2. Sqrt-normalized CRB∆ and AsV∆ as a function of ∆, for different values of K.
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5. Effect of a Finite Number of Observations

The performance of the proposed estimators for finite N is studied by resorting to Monte-Carlo
simulations. For every fixed pair of K and ∆, we have generated 500 sets of N i.i.d. realizations
of the TWDP random variable. As an initial sanity check, Figure 3 shows the estimated K using
Equation (14) vs. the true K value for a fixed value of ∆. The dashed line on the graphic results from
averaging the estimate over the trials while the solid lined corresponds to the unit slope line that
serves as a reference. From this type of plot we can extract qualitative results about the behavior of
the estimators. As can be seen in Figure 3, the estimator K̂ shows a reduced bias for the range of K
values shown in the figure. See also that the dispersion of the estimated values grows with growing
K. Accordingly, Figure 4 shows the estimated ∆ using Equation (16) vs. the true ∆ value for a fixed
value of K. In this case the estimator shows a growing bias and dispersion of values as ∆ decreases.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

K

K̂

Estimation sample

Unit slope line

Mean K̂

Figure 3. Samples of K̂ using Equation (14) vs. true K for ∆ = 0.5.
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Figure 4. Samples of ∆̂ Equation (16) vs. true ∆ for K = 10.
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In order to perform a quantitative analysis of the estimators performance we have computed the
sample mean squared errors MSEK and MSE∆ where MSEK = 1

500 ∑500
i=1 ε2 with ε = K̂− K and where

MSE∆ is defined in an analogous way. The double normalization used with the CRB and AsV is also
applied to the MSE, and hence term sqrt-normalized MSEK denotes the square root of the MSE in

the estimation of K normalized to both K and N and corresponds to
√

MSEK N
K2 . The same holds for

sqrt-normalized MSE∆.
In Figure 5, the sqrt-normalized MSEK using Equation (14) is plotted as a function of K for

∆ = 0.5 and different values of N. Accordingly, in Figure 6, the sqrt-normalized MSE∆ using
Equation (16) is plotted as a function of ∆ for K = 3 and different values of N. In both figures
the corresponding sqrt-normalized CRB and AsV have been included as a reference.
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Figure 5. Sqrt-normalized MSEK for the estimation of K using Equation (14) for ∆ = 0.5 and
different number of observations N. Also shown are the corresponding sqrt-normalized AsVK and
sqrt-normalized CRBK .

See that for a very high number of observations (N = 106) the sqrt-normalized MSE is close
to the sqrt-normalized AsV in both cases, as expected. As N decreases, the sqrt-normalized MSE
falls below the sqrt-normalized CRB for values of K . 4 in Figure 5 and for values of ∆ . 0.6 in
Figure 6. The reason for this is that the bias of the proposed estimators grows when decreasing N.
It is well-known that the CRB sets a limit on the variance of unbiased estimators. However, in case
the estimators are biased the CRB is not practical and the MSE (which accounts for both variance and
bias) may take a lower value. This behavior is also observed in the moment-based Rice parameter
estimators proposed in the literature for values of the Rician parameter K close to zero and finite
N (e.g., see Figure 5 in [6]). Although a CRB and a MSE bound for biased estimators can be also
resorted [23], they are impractical since they require an a priori choice of the bias gradient. Although
not explicitly included in Figures 5 and 6 a similar behavior is observed for other values of K and
∆. Due to the double normalization applied to the sqrt-normalized MSE, care must be taken when
interpreting the relative values of the different sqrt-normalized MSE curves shown in Figures 5 and 6.
For instance, in Figure 6, the sqrt-normalized MSE curve corresponding to N = 5× 103 takes a higher
value than that of N = 103 in most of the range where ∆ varies. De-normalizing the sqrt-normalized
MSE with respect to N reveals that the sqrt-normalized MSE with N = 5× 103 is lower than that
with N = 103 for the whole range of ∆; i.e., the estimation error is in fact lower for higher number of
observations, as expected.



Sensors 2016, 16, 1014 9 of 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

∆

E
st

im
a
ti

o
n

E
rr

o
r

√
CRB∆N/∆2

√
AsV ∆N/∆2

√
MSE∆N/∆2, N = 103

√
MSE∆N/∆2, N = 5 × 103

√
MSE∆N/∆2, N = 106

Figure 6. Sqrt-normalized MSE∆ for the estimation of ∆ using Equation (16) for K = 3 and
different number of observations N. Also shown are the corresponding sqrt-normalized AsV∆ and
sqrt-normalized CRB∆.

This fact is explicitly shown in Figures 7 and 8 where in this case both the CRB and MSE are not
normalized by N. See how both the CRB and the MSE decrease as N grows from 500 to 104 for all the
values of K and ∆ in Figures 7 and 8, respectively.
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Figure 7. Square root of CRBK and MSEK normalized by K for the estimation of K using Equation (14)
for ∆ = 0.5 and different number of observations N.
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Figure 8. Square root of CRB∆ and MSE∆ normalized by ∆ for the estimation of ∆ using Equation (16)
for K = 3 and different number of observations N.

6. Conclusions

In this work, the joint estimation of the two parameters of the TWDP fading model has been
addressed. A simple but accurate closed-form moment-based estimator for both parameters was
used for the estimation. Results show that the proposed estimators operate relatively close to the CRB
for a wide range of parameter values. However, the estimator of K is comparatively better than the
estimator of ∆, as the AsV is closer to the CRB. The results here presented can set the underpinnings
for alternative solutions for the parameter estimation of the TWDP fading model.
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Appendix A: Expressions for the Higher Order Moments µ8, µ10 and µ12

Computation of the covariance matrix Σ in Equation (19) requires the use of the higher order
moments µ8, µ10 and µ12. By direct integration of Equation (6), the following expressions for the
higher order moments of the signal envelope can be obtained as



Sensors 2016, 16, 1014 11 of 12

µ8 =
Ω4

8(1 + K)4 (192 + K(8(4 + K)(24 + K(12 + K))+

24K(2 + K)(6 + K)∆2 + 3K3∆4))

(A1)

µ10 =
Ω5

8(1 + K)5 (960 + K(8(20 + K(10 + K))(30 + K(15 + K))+

40K(60 + K(60 + K(15 + K)))∆2 + 15K3(5 + K)∆4))

(A2)

µ12 =
Ω6

16(1 + K)6 (16(720 + K(6 + K)(720 + K(780 + K(270 + K(30 + K)))))+

120K2(360 + K(480 + K(180 + K(24 + K))))∆2+

90K4(30 + K(12 + K))∆4 + 5K6∆6)

(A3)
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