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Abstract: The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been
demonstrated to be a favorable method for multi-target tracking. However, the time-varying target
states need to be extracted from the particle approximation of the posterior PHD, which is difficult to
implement due to the unknown relations between the large amount of particles and the PHD peaks
representing potential target locations. To address this problem, a novel multi-target state extraction
algorithm is proposed in this paper. By exploiting the information of measurements and particle
likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective
measurements and particles corresponding to detected targets. Subsequently, the state estimates
of the detected and undetected targets are performed separately: the former are obtained from the
particle clusters directed by effective measurements, while the latter are obtained from the particles
corresponding to undetected targets via clustering method. Simulation results demonstrate that the
proposed method yields better estimation accuracy and reliability compared to existing methods.
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1. Introduction

Multi-target tracking (MTT) has to deal with the detection and estimation problems of multiple
targets in a cluttered environment [1]. Traditional solutions such as multiple hypothesis tracking
(MHT) filter and joint probabilistic data association (JPDA) filter handle this problem through a
divide-and-conquer approach that involves data association and filtering processes [2,3]. As an
alternative to the association-based methods, the random finite sets (RFS) approach is an emerging
technique to multi-target tracking (MTT), and the resulting optimal multi-target Bayes filter provides
a rigorous theoretical basis for many novel multi-target filters [4–6]. In this context, the probability
hypothesis density (PHD) filter [4] which is derived via first-order moment approximation of
the multi-target posterior density, and its implementations such as sequential Monte Carlo PHD
(SMC-PHD) filter [7,8] and Gaussian mixture PHD (GM-PHD) filter [9], have been widely studied in
the area of MTT over the last decade [10–14].

From an engineering point of view, the SMC-PHD filter is more suitable for practical applications
due to its ability to accommodate both nonlinear and non-Gaussian dynamics [8,13]. However,
the SMC method leads to a troublesome problem in extracting the estimates of target states from
the given particle approximation of the PHD (also known as intensity function), and the accuracy
of the estimated multi-target state directly determines the tracking performance of a multi-target
filtering algorithm. Thus it is a critical issue for the SMC-PHD filter to develop a reliable multi-target
state extraction algorithm, which has attracted significant attention [15–21]. Typically, the clustering
techniques such as k-means clustering [7,15] and c-means fuzzy clustering [16], and finite mixture
models (FMM) algorithm via expectation-maximization (EM) [15] or Markov chain Monte Carlo
(MCMC) sampling [17], have been investigated in this aspect. The results in [15] demonstrated that the
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k-means clustering outperforms the FMM algorithm with potential computational efficiency and fewer
spurious estimates. In addition, the CLEAN method [18] was proposed to extract target states from
the SMC-PHD filter. However, since this method only exploits the weight information of particles,
the average performance of the CLEAN method is no better than the k-means clustering in general.
Subsequently, the method in [19] introduced clustering algorithms to overcome the drawbacks of the
CLEAN technique. Despite this, the effect is limited because the clustering algorithms [15,16] are
particularly problematic and unreliable due to the hard limiting on the number of clusters (specified
by the estimated number of targets), especially in the scenarios where there exist closely spaced targets
or incorrect estimates of target number [19–21]. Moreover, such methods have high computational
cost because of the requirement of iterative computing process.

To address these problems, some measurement-oriented methods that consider the relationships
between weighted particles and measurements have been proposed to perform state extraction [20,21],
where the ad-hoc particle clustering methods mentioned above are eliminated. Typically, the grouping
method [20], implemented by replicating the current particle set and re-weighting them corresponding
to individual measurements, has been a popular state extraction method in different versions of the
SMC-PHD filter [10,12]. In contrast, the method in [21] introduced a maximum likelihood criterion
for particle clustering. More recently, a systematic and theoretical analysis about the possibility of
extracting point estimates from PHD with respect to the optimal sub-pattern assignment (OSPA) [22]
metric was investigated in [23], however, how to design a reasonable loss function and extend the
method to general cases need to be further researched. To facilitate the parallel implementation of the
SMC-PHD filter, a new multi-expected a posterior (MEAP) method was outlined in [24], where the
estimation procedure can still be seen as a kind of measurement-oriented technique by introducing
particle-to-measurement association based on the near and nearest neighbor principle. Moreover,
the concept of association measure was introduced to the PHD recursion [25], which theoretically
makes it possible to extract track estimates from the PHD filter. Unfortunately, due to the complexity
of measurement association and the fast augmentation of the number of observation paths, the
feasible implementation method and its potential performance are not clear. Generally speaking, the
measurement-oriented methods are more acceptable and practical than the clustering-based methods
in terms of both reliability and computational efficiency [20,24]. On the other hand, the existing
solutions of this category are all limited by the fact that only the targets that have been detected may
have chances to be reported, which will result in inaccurate estimation when missed detections occur.
Since the PHD recursion is sensitive to missed detections, to date, how to extract state estimates from
the SMC-PHD filter accurately in the presence of detection uncertainty still remains a challenge.

The key contribution of this paper is a novel solution to achieving multi-target state extraction
in the SMC-PHD filter. More specifically, the normalized likelihoods of the predicted particles
with respect to individual measurements are introduced to develop a validation mechanism which
aims at selecting effective measurements and particles, i.e., the target-originated measurements
and the particles corresponding to detected targets. Subsequently, by constructing the association
probability distributions between particles and measurements, the particles of detected targets are
divided into different clusters corresponding to the effective measurements in a probabilistic manner.
Then, according to the estimated target number, the point estimates of the target locations can be
extracted from the resulting clusters. Moreover, benefiting from the proposed validation mechanism,
we introduce a gating technique to further identify the particles of undetected targets, and then
extract the corresponding target states, thereby implying an improved estimation performance in the
circumstances with detection uncertainty. Simulation results demonstrate the effectiveness of our
methods in comparison with the existing methods.

The remainder of this paper is organized as follows: Section 2 provides a brief review of the
PHD filter and the SMC-PHD filter. The proposed multi-target state extraction method is presented
in Section 3. Simulation results and analysis are presented in Section 4 and conclusions are drawn in
Section 5.
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2. Problem Formulation

2.1. The PHD Filter

The RFS method provides an elegant representation of multi-target systems. For example, let nk
and mk represent the time-varying number of targets and measurements at time k, respectively, then
the corresponding target states xk,1,xk,2, . . . xk,nk and measurements zk,1,zk,2, . . . zk,mk can naturally
be modeled as the finite sets Xk = {xk,1,xk,2, . . . xk,nk} and Zk = {zk,1,zk,2, . . . zk,mk}, respectively [7,8].
Based on the RFS theory, the optimal multi-target Bayes filter was developed by Mahler. However, the
calculations of high-dimensional integration of multi-target densities make it intractable to implement
the full multi-target Bayes filter directly. To obtain a practical solution, the sub-optimal PHD filter was
derived via moment approximation [4], which only recursively propagates the posterior intensity of
the multi-target RFS in time. Under the assumptions of Poisson multi-target distributions [4], the PHD
filter (without considering target spawning) is given by:

vk|k´1pxq “
ż

pS,kpζq fk|k´1px|ζqvk´1pζqdζ` γkpxq (1)

vkpxq “ r1´ pD,kpxqsvk|k´1pxq `
ÿ

zPZk

pD,kpxqgkpz|xqvk|k´1pxq
κkpzq `

r
pD,kpζqgkpz|ζqvk|k´1pζqdζ

(2)

here vkp¨q is the posterior intensity associated with the multi-target state at time k, γkp¨q is the intensity
of newborn targets, pS,kpζq is the probability that a target will survive at time k given the state ζ at
the previous time step. fk|k´1p¨|ζq is the transition probability density of a single target, pD,kpxq is the
probability of detection for a target with state x, gkpz|¨q is the measurement likelihood of individual
targets, and κkpzq is the intensity of clutter. The integral of the PHD over the state space is the expected
number of targets and the peaks of the PHD can be used to generate target state estimates [7].

2.2. Review of the SMC-PHD Filter

Although the PHD filter alleviates the computational complexity of the multi-target Bayes filter to
a great extent, it can be seen from Equations (1) and (2) that the PHD recursion still involves multiple
integrals. The implementation of the PHD filter generally resorts to some approximate methods, and
we focus on the SMC implementation proposed in [7], henceforth referred to as the SMC-PHD filter.

Suppose that at time k “ 0, L0 particles txpiq0 u
L0

i“1 are drawn for the prior PHD and their weights are

assigned as twpiq0 u
L0

i“1, where xpiq0 is the ith state particle and wpiq0 is the associated weight. The main
steps of the SMC-PHD filter at time k ą 0 are briefly summarized as follows:

Step 1 Prediction:

‚ For i “ 1, ..., Lk´1 , sample rxpiqk from a proposal density qkp¨|x
piq
k´1, Zkq for persistent targets and

compute the predicted weights:

rwpiqk|k´1 “
φk|k´1prx

piq
k , xpiqk´1qw

piq
k´1

qkprx
piq
k |x

piq
k´1, Zkq

(3)

where φk|k´1prx
piq
k , xpiqk´1q “ pS,kpx

piq
k´1q fk|k´1prx

piq
k |x

piq
k´1q.

‚ For i “ Lk´1 ` 1, ..., Lk´1 ` Jk, sample rxpiqk from a proposal density pkp¨|Zkq for newborn targets
and compute the corresponding weights:

rwpiqk|k´1 “
γkprx

piq
k q

Jk pkprx
piq
k |Zkq

(4)
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where Jk is the number of particles for newborn targets.

Step 2 Update:

‚ For each z P Zk, compute:

Ckpzq “
Lk´1`Jk
ÿ

j“1

ψk,zprx
pjq
k q rw

pjq
k|k´1 (5)

where ψk,zprx
pjq
k q “ pD,kprx

pjq
k qgkpz|rx

pjq
k q and gkpz|rx

pjq
k q is the likelihood of a measurement z resulting

from a particle rxpjqk .
‚ For i “ 1, ..., Lk´1 ` Jk, update weights:

rwpiqk “

»

–p1´ pD,kprx
piq
k qq `

ÿ

zPZk

ψk,zprx
piq
k q

κkpzq ` Ckpzq

fi

fl

rwpiqk|k´1 (6)

Step 3 Resampling:

‚ Compute the total mass N̂k|k “
řLk´1`Jk

i“1 rwpiqk and then resample t rwpiqk {N̂k|k, rxpiqk u
Lk´1`Jk

i“1
to get

twpiqk {N̂k|k, xpiqk u
Lk

i“1
.

‚ Rescale the weights by N̂k|k to obtain twpiqk , xpiqk u
Lk

i“1.

Step 4 Multi-Target Parameter Estimation:

‚ Estimate the number of targets Nk (by rounding N̂k|k).

‚ Extract the target state set X̂k “ tx̂p1qk , ..., x̂pNkq
k u from the particles that represent the posterior

intensity, where x̂p1qk , ..., x̂pNkq
k denote the estimated multi-target state.

More details on the mathematical derivation and analysis can be found in [7]. Note that in
standard SMC-PHD filter, the process of state estimation is not a necessary step and has no influence
on the filter recursion itself, but for the purpose of MTT where the number and instantaneous positions
of all targets need to be estimated, we consider this process as Step 4 in the original algorithm. The
main contribution of our study is the techniques for Step 4 of the SMC-PHD filter and more specifically
on the extraction of individual target states.

3. The Proposed Multi-Target State Extraction Method

According to the definition of PHD [4], its peaks in the state space indicate the points with
the largest expected target density. The SMC-PHD filter propagates a set of weighted particles
to approximate the posterior intensity associated with the multi-target density, and the weights
of different particles characterize the intensities at exactly the locations of the corresponding state
particles [7]. During the filtering iteration, all measurements in Zk including both target-originated
measurements and clutter are used to update the weights of particles. Besides, some targets may
not be detected due to detection uncertainty. Therefore, it is preferable to identify the measurements
and particles that are closely related and decide whether they are related to the existing targets in a
principled manner, which in turn can be exploited to provide accurate and reliable state estimation.

3.1. Particles and Measurements Classification

Since no explicit associations between measurements and targets are required in the SMC-PHD
filter, all measurements are used to update the weight of each particle. A close inspection of Equation (6)
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reveals that the updated weight rwpiqk can be decomposed into a series of individual weight components
corresponding to zk,m P Zk pm “ 1, 2, ..., mkq, which can be written as:

wi
kpzk,mq “

$

’

&

’

%

p1´ pD,kprx
piq
k qq rw

piq
k|k´1 zk,m “ ∅

ψk,zk,m
prxpiqk q

κkpzk,mq`Ckpzk,mq
wpiqk|k´1 zk,m P Zk

(7)

where zk,m “ ∅ represents the term caused by missed detection, and:

rwpiqk “
ÿ

zPt∅,Zku

wi
kpzq (8)

According to the representation in Equation (7), for a detected target represented by particle rxpiqk ,
the weight component wi

kpzk,mq measures the contribution degree that zk,m makes to the updated

weight of rxpiqk , which is essentially established by the likelihood of the particle with respect to
the underlying measurement. Based on this fact, the particles’ normalized likelihood distribution
corresponding to measurement zk,m can be defined as:

pm,i
k “

gkpzk,m|rx
piq
k q

κkpzk,mq `
řLk´1`Jk

i“1 gkpzk,m|rx
piq
k q

, i “ 1, ..., Lk´1 ` Jk (9)

where κkpzk,mq is introduced to suppress the influence of clutter. Otherwise, when zk,m is a clutter
measurement that results in non-zero likelihoods for some particles, no matter how small these
values are, there will be some large pm,i

k after the likelihood normalization processes. It is clear that
0 ď pm,i

k ď 1. To identify the particles of detected targets, the following criterion is defined under the
premise that there must be true measurements among Zk.

Criterion 1: The particles matching with a certain measurement in terms of significant likelihoods
are more likely to represent detected targets.

Thus, given the measurement set Zk , the particle rxpiqk that satisfies:

mk
ÿ

m“1

Logicppm,i
k ě γgq ą 0 (10)

is selected as a candidate particle for detected targets, where Logicp¨q is defined as a logic operation with
Logicp1q “ 1 and Logicp0q “ 0, γg is a preset threshold. An intuitive interpretation of Equation (10) is
that the particle associated with at least one measurement with significant normalized likelihood is
regarded as a candidate particle for detected targets. Note that when two or more measurements are
closely spaced, the one-to-many relationship may occur. Repeating the process of Equation (10) for all

trxpiqk u
Lk´1`Jk

i“1 , and then all the resulting candidate particles are collected to construct a new weighted
particle set:

XC,k “ tw
pi1q
k|k´1, rxpi

1q

k u
Nc

i1“1
(11)

where Nc is the total number of the candidate particles and i1 is the new index of the particle in XC,k.
As a result, the potential particles for undetected targets are given by:

Xk “ tw
piq
k|k´1, rxpiqk u

Lk´1`Jk

i“1
´ twpi

1q

k|k´1, rxpi
1q

k u
Nc

i1“1
(12)

On the other hand, Equation (8) further reveals that although all measurements are considered to
update the particle weight, only the true measurement for the particle will generate a large weight



Sensors 2016, 16, 901 6 of 15

component that represents a potential target in the state space. Thus, another validation technique is
proposed to determine whether a measurement zk,m P Zk is effective by:

Nc
ÿ

i1“1

Logicppm,i1
k ě γgq ě τn (13)

where τn denotes a threshold of the acceptable number of particles associated with a potential
true measurement. The implication is that Equation (13) confirms the effectiveness of different
measurements based on the candidate particles in XC,k, which is mutually complementary with
Equation (10). Therefore, it is straightforward to obtain the effective measurement set:

ZE,k “
 

zk,m1
(Me

m1“1 (14)

where Me is the number of effective measurements. According to the principle of the SMC-PHD
filter, the particles in XC,k can effectively capture the regions where the PHD peaks may appear after
filtering update. Furthermore, ZE,k limits the size of the measurement set which originates from true
targets with high probability and also, to a certain extent, obviates unnecessary computation caused
by partitioning particles corresponding to clutter measurements.

3.2. Multi-Target State Extraction

For detected targets, following the basic idea behind the measurement-oriented methods, the
measurements in ZE,k can be used to divide particles into different clusters; each one represents
a possible peak in the particle approximation of the posterior intensity. It is worth emphasizing
that although the idea has been adopted previously [20,21,24], the implementation presented here
has significant differences. Firstly, we introduce a validation mechanism before this process,
only the resulting measurement set ZE,k and particle set XC,k are considered. Secondly, the
particle-to-measurement associations are established in a principled probabilistic manner, where

the association probability distribution over the elements of ZE,k for each particle rxpi
1q

k P XC,k is
formulated by:

Pkpm1, i1q “
pm1,i1

k
řMe

m1“1 pm1,i1
k

m1 “ 1, ..., Me (15)

Then, a maximum a posterior (MAP) rule is exploited to determine the label of a particle:

lprxpi
1q

k q “ arg max
m1“1,...,Me

Pkpm1, i1q (16)

Obviously, lprxpi
1q

k q is specified by one of the index m1 of a measurement in ZE,k. In addition, the

weight of each particle rxpi
1q

k is given by:

wi1
k pzk,li1 q “

ψk,zk,li1
prxpi

1q

k q

κkpzk,li1 q ` Ckpzk,li1 q
wpi

1q

k|k´1 (17)

where the abbreviation li1
abbr
“ lprxpi

1q

k q is used for notational convenience.
Based on the results of Equations (16) and (17), the main steps of the proposed method are

described in Algorithm 1. First, the process of partitioning particles (in lines 1 to 3 of Algorithm 1)
into different clusters determines which particle belongs to which measurement, and each cluster
corresponds to a potential target. Sequentially, we extract individual target states from the Nk clusters
with the largest total weights. It can be expected that the clusters restricted by the candidate particles
together with effective measurements will be more effective and accurate to capture the peaks in the
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PHD. Finally, the weighted mean of state particles in each cluster is taken as the estimated location.
Besides, given a state estimate x̂ptqk for a cluster C t

k, its covariance estimate P̂ptqk can be approximated by:

P̂ptqk “

|C t
k|

ÿ

q“1

wq,t
k prx

pqq
k ´ x̂ptqk qprx

pqq
k ´ x̂ptqk q

T
(18)

where |C t
k| denotes the number of elements in C t

k, rxpqqk and wq,t
k denotes the particle and its associated

weight with index q in C t
k.

Algorithm 1. Multi-target state extraction for detected targets.

Given: The estimated target number Nk, ZE,k and XC,k.

1. Compute the label lprxpi
1q

k q for each particle rxpi
1q

k using (16);
2. Compute the weight of each particle using (17);

3. Partition the new weighted particle set twi1
k pzk,li1 q, rx

pi1q
k u

Nc

i1“1
into Me clusters according to the

label of each particle;
4. Compute the weight summation Wk,j for each nonempty cluster with index j P p1, 2, ..., Meq,

otherwise Wk,j “ 0;

5. Choose Nk clusters, denoted as
 

C t
k
(Nk

t“1, with the largest total weights as the valid clusters;
6. Extract the estimated state set X̂k by the following two steps:

‚ Compute the normalized particle weights in each cluster;
‚ The estimated locations are obtained by taking the weighted mean of the particle states

from
 

C t
k
(Nk

t“1.

Theoretically, the SMC-PHD filter handles missed detection with a special term
p1 ´ pD,kprx

piq
k qq rw

piq
k|k´1, and thus preserves the information of undetected targets. However, in reality,

when missed detection occurs, the SMC-PHD filter tends to give an incorrect estimation of the target
numbers [26]. In this case, it is impossible to extract the estimates of the undetected targets based
on measurements.

Benefiting from the particles classification method in Section 3.1, this problem can be solved by
the proposed Algorithm 2. The core idea behind this method is to identify the particles corresponding
to undetected targets and then extract corresponding target states. Recall that the set Xk contains all the
particles that have no closely related measurements, which in turn can be interpreted as the particles
corresponding to potentially undetected targets. In view of the fact that the particle distribution
in the state space consists of different particle clusters which indicate the positions of persistent
targets, once the set X̂k “ tx̂

p1q
k , ..., x̂pNkq

k u of estimated target states is obtained, all particles near the
regions of the estimated target locations are more likely to have the identical sources. Therefore, the
Mahalanobis distance is introduced to form validation gates to eliminate such particles in Xk (lines 2 to
5 of Algorithm 2), and λ is a gating threshold which is used to determine the size of the validation
region for each estimated target state. Based on the dimension of the state vector and an expected
gate probability pg, λ can be obtained from the formulas in [27] (p. 337). In general, to compensate the

possible statistical error in P̂piqk , a large gate probability which is very close to 1 is suggested to ensure
overall effectiveness. Besides, the particles corresponding to newborn targets at current time should be
removed (line 6 of Algorithm 2). Finally, Uk is taken as the particle set of undetected targets.
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Let twpp
1q

k|k´1, rxpp
1q

k u
|Uk|

p1“1
represent the weighted particles in Uk, in order to extract the estimates of

the undetected targets, we first guess the number of undetected targets by:

NU,k “ round

¨

˝

|Uk|
ÿ

p1“1

rwpp
1q

k|k´1

˛

‚ (19)

The nonzero value of NU,k indicates that the particles in Uk are sufficient to represent potential
targets. Since no measurements are available to generate reliable weights for these particles at this
stage, we suggest using the particles’ spatial distribution characteristic to extract potential target states.
Thus the commonly used k-means clustering method [15] can be used to obtain the state estimate set
X̂U,k. As a result, the modified estimation results are given by:

X̂k,mod “ X̂k Y X̂U,k (20)

Nk,mod “ Nk ` NU,k (21)

Algorithm 2. Methods for state estimation of undetected targets.

Given: Xk and X̂k
1. Set Uk “ Xk, I “ ∅
2. for i “ 1, ..., Nk do

3. I “ trxppqk P Uk|prx
ppq
k ´ x̂piqk qrP̂

piq
k s

´1
prxppqk ´ x̂piqk q

T
ď λu

4. Uk “ UkzI
5. end for

6. Uk “ UkzpUk X trx
piq
k u

Lk´1`Jk

i“Lk´1`1q.

7. Compute NU,k according to (19)
8. if NU,k ě 1
9. State extraction using clustering method
10. end

Remark: The proposed Algorithm 1 itself is sufficient to serve as a multi-target state extraction
method for the SMC-PHD filter. However, just as the existing measurement-oriented methods, it is
limited by the fact that no estimates for undetected targets will be reported. Then Algorithm 2 is
proposed to compensate this disadvantage, which is an alternative technique particularly regarding the
estimation of undetected targets. It can be combined with Algorithm 1 to further improve the estimation
performance in the presence of detection uncertainty. This beneficial result comes with a slight increase
in the amount of calculations arising from getting Uk and the clustering method. Fortunately, the
clustering method operates only when the missed detections are confirmed by Equation (19). Moreover,
the number of particles in Uk is much less than that in the original particle set, which will simplify
the clustering process. In terms of computational complexity, the proposed Algorithm 1 has the same
complexity of O(TN) as the methods in [20,21], where T is the number of targets and N is the number
of particles, while the most popular k-means clustering method has a computational complexity of
O(τTN), where τ is the number of iterations in the clustering procedure.

3.3. Notes on Implementation

From an implementation perspective, the proposed Algorithm 1 is potentially engineer-friendly
as compared with the popular clustering or clustering-based techniques [15,16,19], where no iterative
calculation is involved. Besides, taking advantages of the inherent information in the filtering stage,
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the variables originally computed in Step 1 and Step 2 are exploited to design our method, which makes
the method more suitable for the SMC-PHD filter framework.

There are two empirical parameters, i.e., γg in Equation (10) and τn in Equation (13), which require
to be determined when applying the proposed methods. The parameter γg is important for eliminating
the particles that have negligible normalized likelihood with respect to the collected measurements.
At each iteration of the SMC-PHD filter, a specified number of particles per target (denoted by β) will
be allocated to guarantee a reasonable number of weighted particles for approximating the PHD of
individual targets [7], and the updated weight of each particle contributes a certain proportion to the
PHD of the underlying target. The normalized likelihood distribution in our method has a similar
characteristic with respect to individual particles. It can be interpreted that γg is used to select the
particles that make certain contributions to the whole distribution in Equation (9) as well as result
in non-zero likelihoods corresponding to a given measurement. In general, the particle classification
process is sensitive to γg. The smaller the γg, the more valid particles will be selected for detected
targets. Accordingly, some of these particles tend to have negligible updated weights. However, this
result will not have an obvious effect on the estimation accuracy for the reason that the weighted
mean of the state particles in Algorithm 1 highlights the contributions of the particles with significant
weights in each cluster. On the other hand, given an observation model, the value of γg highly depends
on the β value used in the filter because all the particles of a target may generate non-zero likelihoods,
which hence influence the results of Equation (9). Considering the spatial distribution characteristics of
the particles and possible observation uncertainties in practical applications, we choose to use γg = 1/β

as the threshold, which is consistent with the average contribution value of each particle. Equivalently,
the contribution degree 1/β is acceptable for the valid particles.

In addition, the parameter τn in Equation (13) is introduced to give a high confidence level to the
measurements which associate with a significant number of particles. Such measurements are referred
to as effective measurements and will be useful for state extraction. Like γg, τn directly determines the
number of effective measurements, a proper τn can help to eliminate clutter measurements, which
in turn allows a high computational efficiency of the proposed method by obviating unnecessary
computation due to partitioning particles corresponding to clutter measurements. There is a trade-off
between including true measurements and eliminating clutter measurements. When the observation
accuracy is high, a relatively large τn can be adopted, and vice versa. Empirically, 0.1β „ 0.5β

is suggested.

4. Simulation

To evaluate the performance of the proposed methods, a two-dimensional tracking scenario with
an unknown and time-varying number of targets is considered, where the target dynamic model is
exactly the same as that in [7,24]. The position of the sensor platform is assumed to be known at
coordinate origin, and the observation equations are given by:

θk “ arctan

¨

˝

”

0 0 1 0
ı

xk ´ ys
”

1 0 0 0
ı

xk ´ xs

˛

‚` εk,1 (22)

rk “ ||

«

1 0 0 0
0 0 1 0

ff

xk ´

«

xs

ys

ff

||` εk,2 (23)

where εk,1 and εk,1 are the zero-mean Gaussian white noise with respective standard deviations π/180˝

and 2 m. Assuming that the survival probability of each target is independent of its state and the
value is set to be pS,k = 0.98 during the simulations. Clutter is uniformly distributed over the region
[0, π/2](rad) ˆ [0,700] (m), and the number of clutter measurements per scan is Poisson distributed
with a specified mean value r. β = 500 is used in the SMC-PHD filter, and thus the number of particles
varies according to the estimated number of targets. The parameters γg = 1/β , τn = 100 and λ= 25
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(corresponding to pg = 0.9999) are used for the proposed Algorithms 1 and 2. Besides, the OSPA
metric [22] is adopted to evaluate the estimation performance of different methods. The intensity of
newborn targets is modelled as [7,15,24]:

γkpxq “ 0.1
3
ÿ

j“1

N px; mj
γ,k, Pj

γ,kq (24)

where N(x;m,P) denotes a normal distribution with mean m and covariance P, and the values of mj
γ,k

and Pj
γ,k are configured as m1

γ,k “ r50, 7, 150, 7sT , m2
γ,k “ r355, 0, 50, 7sT , m3

γ,k “ r350, ´7, 450, ´7sT

and P1
γ,k “ P2

γ,k “ P3
γ,k “ diagpr25, 10, 25, 10sq. We compare the performance of the proposed

methods with that of the k-means method [15], grouping method [20] and MEAP method [24] via
Monte Carlo (MC) simulations.

In the surveillance region, we design a relatively complex multi-target environment with crossing
tracks and paralleling motion in close range. More specifically, target 1 exists in the surveillance region
from time step 1 to 30. Target 2 and target 5 appear at time step 20 from different positions and their
track crossing happens at time step 45. Target 3 and target 4 appear at time step 15 simultaneously and
they keep parallel motion until time step 50. Figure 1 shows the true tracks of 5 targets in this scenario.
To capture the localization errors of different state extraction methods, the parameters p = 2 and c = 20
are chosen to generate OSPA metric value.
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Figure 1. True target tracks in xy-plane, the start points for each track are denoted by ‚.

To verify the effectiveness of the proposed Algorithms 1 and 2 in an intuitive manner, we present
a typical example of the filter output at time step 35 (missed detection occurs). The probability of
detection and clutter rate are set to be pD = 0.90 and r = 10 in the simulation, respectively. There exist
four true targets during this iteration, while the estimated number of targets is N35 = 3. Figure 2 gives
the global distribution of the predicted particles corresponding to persistent targets at this time step.
Besides, the true locations of targets and the extracted locations using Algorithm 1 are also displayed in
the same figure. It is clear that the proposed Algorithm 1 provides accurate estimation of the existing
three targets based on the estimated number of targets, although the particles of the target 3 and target
4 exhibit significant overlap due to the parallel motion in close space. Besides, target 2 is an undetected
target and the existing measurement-oriented methods cannot extract its state in this case, including
the proposed Algorithm 1.
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Figure 2. The output of the SMC-PHD filter at time step 35.

Subsequently, the proposed Algorithm 2 is performed. Figure 3 shows the particles (in Uk)
corresponding to undetected targets at this time step, as well as the extracted target state from these
particles. The results demonstrate that the proposed Algorithm 2 can effectively identify the potential
particles of undetected target and then extract the state estimate. As shown in Figure 3, there are a few
spurious particles around the birth regions. This phenomenon is caused by the resampling process
in the previous iteration, where the filter needs to draw particles from the birth intensity to exploit
potential new targets at each scan.
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Figure 3. The modified estimate result and selected particles corresponding to undetected target.

To compare the average performance, 200 MC runs are performed for the SMC-PHD filter with
different state extraction methods. The target tracks are fixed but clutter and measurements are
independently generated for each trial. Note that the effectiveness of the proposed Algorithm 2 is
examined by combining its estimated results with that of the Algorithm 1, namely, the modified results
in Equations (20) and (21), in subsequent simulations. Figure 4 shows the statistical results of the
estimated number of targets and mean OSPA distances of five methods at each time step. The true
number of targets and the estimated results from SMC-PHD filter are shown in Figure 4a. Based on
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the extracted multi-target state using different methods, the corresponding mean OSPA distances are
shown in Figure 4b.Sensors 2016, 16, 901 12 of 15 
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Figure 4. Target number estimate and mean OSPA distance versus time (r “ 10): (a) Target number
estimate versus time; (b) Mean OSPA distance versus time.

As shown in Figure 4a, the standard SMC-PHD filter gives a satisfactory performance on the
target number estimation in this scenario, while the modified estimate by Algorithm 2 follows the
true value more closely. In terms of state estimation, it can be seen from Figure 4b that the grouping
method shows a slight advantage over the k-means clustering method at most time steps but has a
large error when new targets appear. The reason is that the method only reports the estimates whose
total weights are above a certain threshold value (we adopt 0.8 as was done in [20]), which is not
favorable for the estimation of newborn targets. By contrast, the superiorities of the MEAP method
and the proposed methods are remarkable. It can be seen that the proposed Algorithm 1 exhibits a
better performance than that of the MEAP method. This can be attributed to the proposed mechanism
for selecting particles and measurements, where the contributions of particle likelihoods are evaluated
and the scopes of particles are restricted corresponding to effective measurements. Such kind of
particles can exactly capture the regions of PHD peaks for state extraction. Moreover, the combination
of Algorithms 1 and 2 achieves the best estimation accuracy as compared with all other methods in the
presence of detection uncertainty. Figure 4b also indicates that the estimation of undetected targets will
cause a short delay response (exhibits large error at time steps 31 and 51) when targets really disappear.
In reality, it is difficult to discriminate the two cases in a single iteration.

To present a more comprehensive evaluation, we also study algorithm performance against
different detection probabilities via MC simulations with fixed clutter rate r = 10. In addition, similar
simulations are performed against various clutter rates under the condition of a constant detection
probability pD = 0.90. We compute the time-averaged OSPA distance of each method during these
simulations. The results are presented in Figures 5 and 6, respectively.

As expected, all methods exhibit some performance degradation under the condition of low
signal-to-noise ratio. This is because the estimated number of targets given by the SMC-PHD filter
becomes increasingly unreliable with an increase of detection uncertainty or the amount of clutters,
which in turn has an influence on the state estimation. In addition, when the clutter rate increases,
the probability that some clutter measurements appear at the regions of true targets or the birth
intensities will increase correspondingly. It is possible that the contributions of these measurements are
significant as those of true measurements. Therefore, the measurement-oriented methods (grouping
method, MEAP method and Algorithm 1) are prone to be influenced by such clutter measurements.
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Obviously, the performance degradation of the grouping method is more apparent. Both the results
in Figures 5 and 6 demonstrate that the proposed methods yield the best performance in terms of
estimation accuracy and robustness. Meanwhile, the improvement of Algorithm 2 seems limited in the
case of lower detection uncertainty due to the following reasons: the SMC-PHD filter will lose tracking
of targets frequently in such cases, while the estimation of undetected targets is performed under the
premise that the corresponding particles exist in the state space. Thus, the improvement tends to be
weakened when considering the global effect via evaluating the time-average of the OSPA metric.
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Figure 5. Time-averaged OSPA distance versus detection probability (r “ 10).
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5. Conclusions

This paper proposes a more practical and effective solution to the problem of extracting
multi-target states from the SMC-PHD filter. Based on the proposed measurement and particle
validation mechanism, the estimates of detected targets and undetected targets are extracted separately
within the filter framework. For the detected targets, the estimation is achieved by partitioning
particles with respect to effective measurements according to their association probabilities, which is
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more computationally efficient than the traditional clustering-based algorithms. For the undetected
targets, we first identify the corresponding particles and then extract the estimates by exploiting
clustering method. Simulation results demonstrate that the proposed method outperforms the
state-of-the-art measurement-oriented methods and the popular k-means clustering method in terms of
both estimation accuracy and reliability in the presence of clutter and detection uncertainty. Moreover,
it is possible to extend the proposed methods to SMC implementation of the cardinalised PHD filter [12].
However, like most of the existing solutions, the proposed methods are also heuristic to some extent,
and there exist empirical parameters during the implementation of our methods. In the further work,
developing state extraction method with strong theoretical justification for the PHD-based filter is an
important topic.
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