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Abstract: An all-in-one prism-free infrared sensor based on graphene surface plasmons is proposed
for nanofluidic analysis. A conformal graphene-decorated nanofluidic sensor is employed to mimic
the functions of a prism, sensing plate, and fluidic channel in the tradition setup. Simulation results
show that the redshift of the resonant wavelength results in the improvement of sensitivity up
to 4525 nm/RIU. To reshape the broadened spectral lines induced by the redshift of the resonant
wavelength to be narrower and deeper, a reflection-type configuration is further introduced. By
tuning the distance between the graphene and reflective layers, the figure of merit (FOM) of the
device can be significantly improved and reaches a maximum value of 37.69 RIU´1, which is 2.6
times that of the former transmission-type configuration. Furthermore, the optimized sensor exhibits
superior angle-insensitive property. Such a conformal graphene-decorated nanofluidic sensor offers
a novel approach for graphene-based on-chip fluidic biosensing.
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1. Introduction

Lab-on-chip systems combined with surface plasmon resonance (SPR) sensors provide a powerful
technique to perform label-free biomolecular interaction measurements with high sensitivity [1–3]. A
typical lab-on-chip system consists of a SPR excitation setup, a sensing plate, and a fluidic channel. In
the traditional Kretschmann configuration [4], the prism used as the excitation setup is isolated from
the sensing plate and the fluidic channel [5]. This means that the system needs to be attached and
detached in each independent experiment, which largely decreases the efficiency and the usability.
Furthermore, the prism needs to be angled appropriately to ensure the optimum output of incident
light, hence making the system more complicated and less portable. To overcome these issues,
a prism-free all-in-one setup is proposed, combining the SPR excitation item, sensing plate and
flow channel in a single setup. For instance, Yang Hyun Joo et al. [6] demonstrated a long-range
surface plasmon-polariton waveguide sensor employing an asymmetric double-electrode waveguide
configuration. This consists of a microfluidic channel and a Bragg grating layer, which can effectively
measure the refractive index of the inserted analyte. Ken-Ichi Nomura et al. [7] introduced a V-shaped
trench-sensing system that minimizes the system and is unnecessary to adjust optical alignment, which
contributes to the improvement of the detection efficiency. The above all-in-one setups extremely
simplify the sensing system and reduce the sample volumes, promoting the development of the

Sensors 2016, 16, 899; doi:10.3390/s16060899 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 899 2 of 10

nanofluidic chip. However, these structures are based on the SPR in noble metals, of which the
working wavelength is mainly located at the visible frequencies. While at mid-IR frequencies, these
structures exhibit extremely large ohmic loss due to the low carrier mobility and increasingly large
permittivity in magnitude [8]. Additionally, the metals cannot adsorb the biomolecules effectively
because of the high surface inertness and intrinsic hydrophobicity [9]. Further extension of SPR sensors
from visible and near-IR frequencies to mid-IR frequencies remains a significant challenge.

In contrast to the metals, graphene [10] that emerged as a unique two-dimensional carbon atoms
possesses a high surface-to-volume ratio and strong π-π stacking interaction with the carbon-based
ring structures in biomolecules [11]. Thereby, it can effectively adsorb the biomolecules on its surface.
Particularly, graphene supports propagating surface plasmons with smaller loss, stronger confinement,
and gate-tunability at the mid- and far-infrared frequencies [12,13]. These superior features render
graphene a promising candidate for engineering infrared SPR sensors. Up to now, graphene-based
SPR sensors have mainly employed the localized plasmons in patterned graphene [14,15] or surface
plasmons in continuous graphene [16,17]. In these devices, the sample solution (fluidic biomolecules
or liquid chemical reagent) would be dropped on the sensor surface for detection. As a consequence,
the thickness of the sample solution cannot be effectively controlled, which introduces uncertainties
in the measurement results. To alleviate this problem, an extra flow channel is added to contain the
sample solution in order to accurately control the sample volume, as reported in [9]. However, this
makes the system more complicated and hence lacks stability. Recently, a new type of sensor that
integrates nanofluidic channel with a flat graphene sheet is reported [18]. In such a configuration,
the nanofluidic channel can not only contain the sample solution, but also directly excite graphene
surface plasmons (GSPs) without the need of an extra optical component, which significantly reduces
the complexity of the device. However, the sensitivity of the sensor is limited (1920 nm/RIU with an
optimal device) due to the small contact area between the sample solution and graphene.

Herein, we propose a novel infrared sensor based on graphene surface plasmons by decorating a
conformal graphene [19–21] on a nanofluidic channel. Such a configuration allows for the detection
of biological molecules in an aqueous environment. Besides, the conformal graphene can preserve
the excellent electronic property of graphene and enlarge the contact area between graphene and
biomolecules. A physical model was built employing the finite element method to improve the
sensitivity of the sensor by optimizing the structure parameters of nanofluidic channels and Fermi
level of graphene. Furthermore, a reflection-type configuration is proposed to improve the FOM while
maintaining the high sensitivity.

2. Structure and Principles

The structure of the proposed conformal graphene-decorated nanofluidic channel (CGDNC)
infrared sensor is schematically illustrated in Figure 1a. A conformal graphene is decorated on an open
nanofluidic channel array etched on a SiO2 substrate. In this case, the conformal graphene becomes
hydrophilic due to the short-range chemical forces bonding between graphene and water [22]. Then,
the sample fluidic can flow into the nanochannels for detection. The nanofluidic channels contain the
following structural parameters: the period Λ, the width W, and the height H. A normally incident light
with transverse magnetic polarization is used to excite the surface plasmon mode, and the transmitted
light is detected as the signal of the change of the refractive index in the channels, as sketched in the
cross section in Figure 1b.

Since the proposed open nanofluidic channels are periodic arrays, it also can be regarded as
an optical gating. When the light irradiates from the top of the channel arrays, it will be scattered
into evanescent waves with various diffraction orders due to the introduced periodic modulation
originating from different regions of the channel [23]. Once the wave vector of an evanescence wave
matches the dispersion relation of a GSP mode, the incident photons couple with the electrons on
the surface of graphene, and a GSP wave can be excited [24]. Then, the incident light is absorbed
strongly due to the excitation of the GSP wave, and a resonant dip is observed in the transmission
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spectrum. This resonant dip is very sensitive to the refractive index change in the channel induced by
the adsorption of biomolecules at the graphene interface. The change in refractive index, δnd, can be
measured by detecting the wavelength shift, δλGSP. The sensitivity S of a SPR sensor can be defined as
the ratio of the wavelength shift to the change in refractive index

S “ δλGSP{δnd (1)

Equation (1) indicates that the sensitivity is decided by the resonant wavelength, and a large
wavelength shift is highly desired, as it allows for the detection of a small refractive index change.
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where e is the elementary charge, Ef is the Fermi level in graphene, τ is the relaxation time of charge 
carriers, ω is the angular frequency of incident light, and ħ is the reduced Planck’s constant. 
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in Figure 1c. It is seen that the excitation of GSP exhibits a strong ability to couple the incident-free 
space light into the GSP wave and concentrate optical energy into sub-wavelength spots with a 
near-field |Ex| peak intensity of ~7.5 × 106 V/m on the graphene surface. In addition, the optical 

Figure 1. (a) Schematic of the conformal graphene-decorated nanofluidic channel (CGDNC) infrared
sensor. (b) The cross section of the CGDNC. (c) The mode profiles of graphene plasmonics.
(d) Transmission spectra when the refractive index of sensing medium is 1.37, 1.41, 1.45, 1.46, and 1.53,
respectively (refractive indices of some typical molecules are in this range, such as double-stranded
DNA [9]).

To obtain the resonant spectra of the sensor, a physical model is built based on the finite element
method employing Comsol mutiphysics. In the model, the dielectric constant of the channel is 2.1 [25].
Graphene is modeled as a monolayer with a thickness of 0.34 nm. For the consider infrared frequency
region where the photon energy h̄ω is much smaller than 2Ef, the interband absorption of graphene
is Pauli blocked and the surface conductivity of graphene can be simply characterized by the Drude
model accounting only for intraband transition [26]:

σintra pωq «
e2E f

π}2
i

ω` iτ´1 (2)

where e is the elementary charge, Ef is the Fermi level in graphene, τ is the relaxation time of charge
carriers,ω is the angular frequency of incident light, and h̄ is the reduced Planck’s constant.

The excited GSP mode when Λ = 200 nm, W = 100 nm, H = 100 nm, and Ef = 0.3 eV is presented in
Figure 1c. It is seen that the excitation of GSP exhibits a strong ability to couple the incident-free space
light into the GSP wave and concentrate optical energy into sub-wavelength spots with a near-field
|Ex| peak intensity of ~7.5 ˆ 106 V/m on the graphene surface. In addition, the optical energy of GSP
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wave is dissipated while propagating along the graphene due to the ohmic loss. Then, a dip can be
observed in the transmission spectra at the resonant wavelength, λGSP, as shown in Figure 1d. One
can see that the resonant wavelength redshifts from 10.613 µm to 11.204 µm as the refractive index
increases from 1.37 to 1.53, corresponding to a sensitivity of S = 3694 nm/RIU. To further improve the
sensitivity, the structure parameters of the channel and the property of graphene are optimized in the
following context.

3. Improvement of the Sensitivity

3.1. Effect of the Structure Parameters of CGDNC on the Sensitivity

Simulation results show that the spectral characteristics and the performance of the sensor can be
modulated by tuning the period Λ and height H of the CGDNC. The transmission spectra with varying
Λ when H = W = 0.5Λ is illustrated in Figure 2a. One can see that the resonant wavelength redshifts
from 7.535 µm to 12.935 µm as Λ increases from 100 nm to 300 nm. To evaluate the sensing performance
of the sensor, the resonant wavelength shift as a function of refractive index is plotted in Figure 2b.
The linear fitting results indicate that the sensitivity of the sensor is significantly improved by 63.3%
from 2668 nm/RIU to 4356 nm/RIU. Figure 2c presents transmission spectra with varying H when
Λ = 200 nm and W = 100 nm. It shows that the resonant wavelength redshifts from 8.134 µm to
10.773 µm as H increases from 20 nm to 100 nm. Additionally, as plotted in Figure 2d, the corresponding
sensitivity improves from 3075 nm/RIU to 3693 nm/RIU. This is attributed to the redshift of the
resonant wavelength and, partly, the immense increase of the contact area between graphene and
biomolecules. Therefore, the sensitivity of the sensor can be improved by increasing the period and
height of the CGDNC in the initial design.
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Figure 2. (a) Transmission spectra with varying Λ when H = 100 nm and W = 100 nm. (b) The calculated
sensitivity when Λ = 100 nm, 150 nm, 200 nm, 250 nm, and 300 nm, respectively. (c) Transmission
spectra with varying H when Λ = 200 nm and W = 100 nm. (d) The calculated sensitivity when
H = 20 nm, 40 nm, 60 nm, 80 nm, and 100 nm, respectively. The lines in (b) and (d) are linear fittings to
the data.
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3.2. Effect of the Coupling of GSP Modes on the Sensitivity

Further investigation indicates that the GSP modes propagating along the inner sides of
the channel strongly couple together as the width W of the channel decreases, resulting in the
significant improvement of the sensitivity. The corresponding GSP mode profiles in two periods
when W = 100 nm, 60 nm and 20 nm are shown in the Figure 3a,b,c, respectively. As expected, when
W = 100 nm (Figure 3a), the GSP modes propagating along the inner sides of the channel are isolated
from each other. Then, the adjacent GSP modes in the channel couple with each other when W
decreases to 60 nm (Figure 3b). As W further decreases to 20 nm, the GSP modes completely overlap
and couple strongly, forming a hybrid coupled mode at the bottom and the ridge edges of the channel
(Figure 3c). The strong coupling of GSP modes significantly enhance the peak intensity of the localized
electric field by 39.7% in the channel and results in the redshift of the resonant wavelength by 24.1%
from 10.613 µm to 13.171 µm, as shown in Figure 3d. Such behavior extremely enhances the interaction
between the fluidic biomolecules and the incident light and makes it more sensitive to the change in
the refractive index, which contributes to the improvement of sensitivity. As indicated in Figure 3e, the
sensitivity increases by 63.1% from 3695 nm/RIU up to 6025 nm/RIU as W decreases from 100 nm to
20 nm. Thus, in order to gain a higher sensitivity of the sensor, a narrower channel should be designed
to ensure the strong coupling of GSP modes along the inner sides of the channel. Considering the
processing craft of the nanofluidic channel and the incorporation of the channel with graphene, a
width of 40 nm was chosen for the following analyses.
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(d) Transmission spectra with decreasing W from 100 nm to 20 nm when Λ = 200 nm and H = 100 nm.
(e) The calculated sensitivity when W = 100 nm, 80 nm, 60 nm, 40 nm, and 20 nm, respectively. The
lines are linear fittings to the data.
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3.3. Effect of the FERMI Level of Graphene on the Sensitivity

Since the structure parameters of CGDNC can be only tuned during the fabrication, they cannot
be dynamically controlled after the fabrication of the sensor. Therefore, we further considered actively
improving the sensitivity by adjusting the Fermi level Ef of graphene. The evolution of the transmission
spectra with varying Ef is illustrated in Figure 4a. The figure indicates that the sensor can operate
within a wide range of infrared wavebands by applying an external gate voltage. The resonant
wavelength redshifts from 9.15 µm to 20.45 µm as Ef decreases from 0.5 eV to 0.1 eV. This results
in the improvement of the sensitivity from 3495 nm/RIU to 8004 nm/RIU, as shown in Figure 4b.
Consequently, the sensitivity of the sensor can be actively improved by gate-tuning the external voltage
to decrease the Fermi energy level of graphene after the fabrication of the device.
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Figure 4. (a) The transmission spectra with varying Ef when Λ = 200 nm, H = 100 nm, and W = 40 nm.
(b) The calculated sensitivity when Ef = 0.5 eV, 0.4 eV, 0.3 eV, 0.2 eV, and 0.1 eV, respectively. The lines
are linear fittings to the data.

4. Improvement of the FOM

The above analysis brings us to the conclusion that the redshift of the resonant wavelength
can significantly improve the sensitivity of the sensor by optimizing the structural parameters of
CGDNC and the Fermi level of graphene. However, the redshift of the resonant wavelength of such
a transmission-type sensor is always accompanied with the broadening of the resonant dip (shown
in Figure 2a,c, Figures 3d and 4a). This results in the decrease in detection accuracy (defined as the
reciprocal of the full width at half maximum (fwhm)). This means that a higher sensitivity is generally
at the cost of a lower detection accuracy and that there is a trade-off between sensitivity and detection
accuracy. To effectively evaluate the overall performance of sensor, the figure of merit (FOM) is defined
as in [27,28]:

FOM “ S
∆R

f whm
(3)

where ∆R is the resonance depth, and S is the sensitivity. Since the sensitivity is closely related to
the resonant wavelength, the key to improve the detection accuracy is to reshape the spectral line to
have a large resonance depth and a small fwhm while keeping the resonant wavelength unchanged.
To this end, we further propose a reflection-type sensor with an Au layer at the bottom of the SiO2

layer, as sketched in Figure 5a. A 5-nm Ti layer is sandwiched between the Au layer and the SiO2

layer in order to improve their adhesion. In such a configuration, an asymmetric Fabry–Perot (F–P)
cavity is formed between the graphene and reflective layers, which allows the incident light to make
two passes (forward and reflected) through the graphene sheet. The spectral line can be reshaped to
modulate the graphene–light interaction by adjusting the F–P cavity length. The optimized parameters
Λ = 200 nm, H = 100 nm, W = 40 nm, and Ef = 0.3 eV (corresponding to S = 4525 nm/RIU) are used in
the following analysis.
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Figure 5. (a) Schematic of the reflection-type CGDNC infrared sensor; (b) The reflection spectra with
varying spacer thickness T when Λ = 200 nm, H = 100 nm, W = 40 nm, and Ef = 0.3 eV; (c) The extracted
R0 and fwhm from the reflection spectra with varying spacer thickness; (d) The calculated FOM with
varying spacer thickness.

Simulation results indicate that the FOM of the sensor can be modulated periodically by tuning
the F–P cavity length (spacer thickness T). The reflection spectra with several sets of spacer thickness
T are presented in Figure 5b. As expected, the notch broadens and becomes deeper as T increases
from 200 nm to 1000 nm. To quantitatively reveal the reshaping of the spectral line, the Ra and fwhm
are further extracted from the reflection spectra in a wide range of T from 100 nm to 4100 nm and
plotted in Figure 5c. This suggests that R0 and fwhm vary periodically with T, and this results in
the periodical variation of FOM with the same period of 4000 nm, as plotted in Figure 5d. The FOM
obtains two maximum value of 37.69 RIU´1 in a period. According to the F–P physical model, the
variation period of the FOM is determined by the resonant wavelength λ0 and refractive index n of the
spacer through T0 = λ0/2n, which is coincident with the results in Figure 5d. Therefore, the FOM can
achieve a maximum value periodically by fabricating a suitable F–P cavity length in the initial design.

To further quantitatively reveal the condition to obtain the maximum FOM, the sensor is modeled
as a resonator with a resonant frequency of ω0 and an intrinsic loss rate of γ0, which couples with
the incident TM wave with a leakage rate of γ1 (Figure 5a). According to the temporal coupled mode
equations [15,29], the reflectance of the resonator atω can be given by

R “
pω´ω0q

2
` pγ0 ´ γ1q

2

pω´ω0q
2
` pγ0 ` γ1q

2 (4)

This gives us two essential parameters (R0 and fwhm) of the spectral lines. The resonant reflectance
R0 atω =ω0 is represented as

R0 “
pγ0 ´ γ1q

2

pγ0 ` γ1q
2 (5)
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and the corresponding fwhm as
f whm “ 2pγ0 ` γ1q (6)

Equations (5) and (6) manifest that the intrinsic loss rate γ0 and the leakage rate γ1 are the key
physical parameters that dominate the shape of the spectral line. Here, the intrinsic loss rate γ0 is the
intrinsic property of graphene, which cannot be changed, while the leakage rate γ1 is determined by
the spacer thickness T. Considering these two equations, the FOM can be further written as

FOM “ 2S
γ0γ1

pγ0 ` γ1q
3 (7)

According to the first-order derivative of Equation (7), there is a solution for obtaining the
maximum FOM, i.e., γ1 = 2γ0 for a fixed γ0. By substituting this solution into Equation (5), we learn
that the FOM achieves the maximum value when reflectance R0 = 1/9, which agrees well with the
simulation results in Figure 5c,d. Hence, a maximum FOM can be achieved by adjusting the F–P cavity
length to satisfy the condition of R0 « 11% in the initial design.

Finally, it is found that the proposed sensor can work in a wide angle range of incident light.
The reflectance of the reflection-type sensor as a function of incident angles and wavelength when
T = 800 nm is mapped in Figure 6a. One noticeable feature is that the narrow bandwidth and large
resonance depth of the reflection spectrum are maintained until the incident angle is larger than
60˝. This indicates that the proposed sensor possesses excellent angle-insensitive property, which is
attributed to the deep sub-wavelength nature of graphene plasmons and the effects of Bragg scattering
at the Brillouin zone center [16]. Such a feature contributes to the superior sensing performance of
the device in a wide angle range, as plotted in Figure 6b. The FOM is maintained at a high level
and reaches a maximum value of 37.69 RIU´1. Furthermore, the FOM of the reflection-type sensor is
compared with that of the transmission-type in Figure 6b. As expected, the former one is 2.6 times
larger than the latter one, signifying that the reflection-type structure gains an advantage over the
transmission-type one from a practical point of view.
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5. Conclusions

As a summary, a novel CGDCN sensor based on GSP is proposed. It is observed that the redshift of
the resonant wavelength can significantly improve the sensitivity to a high sensitivity of 4525 nm/RIU
by optimizing the structure parameters of CGDNC and the Fermi level of graphene. A reflection-type
sensor is further proposed to improve the FOM of the sensor by reshaping the spectral line. A
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maximum FOM of 37.69 RIU´1 can be achieved by adjusting the F–P cavity length, which is 2.6 times
larger than that of the transmission-type sensor. Moreover, the proposed sensor can work at a broad
range of incident angles. Such a CGDNC sensor provides a green platform for on-chip biochemical
fluidic analysis and finds potential applications in fields such as pharmaceuticals, environmental
monitoring, and food safety.
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