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Abstract: Electroencephalograms (EEGs) measure a brain signal that contains abundant information
about the human brain function and health. For this reason, recent clinical brain research and brain
computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise
in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG
analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many
trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus
or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose
two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to
compensate the uncertain delays which may be different in each trial. We evaluate the performance
for different types of signals such as random, deterministic, and real EEG signals. The results show
that the proposed schemes provide better performance than other conventional schemes employing
averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10˝.

Keywords: EEG; ERP; maximum likelihood (ML); time delay estimation (TDE); synchronization

1. Introduction

Electroencephalograms (EEGs) measure electrical brain activity using various EEG sensors, i.e.,
dry type electrodes [1,2] and hydrogel based electrodes [3]. EEG data contains functional brain
information, so EEG analysis has recently been utilized for many applications such as brain computer
interface (BCI) [4–6], human cognition studies [7–9], diagnosis of diseases such as seizures and
epilepsy detection [10–12]. EEG signals usually contain significant noise caused by background brain
activity and system noise. This is far more significant in non-invasive interface EEG measurements.
Therefore, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG
analysis. A typical method to enhance the SNR is by measuring many trials of event-related potential
(ERP) signals that represent a brain’s response to a particular stimulus or a task and then averaging
the trials to obtain ERP data with less noise. Averaging trials reduces noise power, thus enabling
enhancement of the ERP signal SNR. This is based on the fact that ERP has the same signal waveform
in the trials if there is no delay error in them, but the background brain activities that are not related to
the event are independent in each of the trials. However, the averaging does not always enhance the
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SNR when the time delay in trials is uncertain. It has to be correctly estimated and shifted to correct
the misalignment that is caused by variable time delays in the measured signal. This is because of
the biological nature of the underlying processes or systematic measurement system timing errors.
That is, even though many trials are averaged, the result does not show clear ERP features such as P3
under time uncertainty conditions [13]. The uncertain time delay has been reported as latency jitter.
Recently, it is noticed that the ERP waveform and signal quality are influenced by latency jitter [14,15],
and an EEG analysis method which applies a realigning method to average the trials with reduced time
latency jitter has been studied for better results [16]. These studies report that the latency jitter is not
only one of observations to understand brain responses to stimuli but also a problem that contaminates
the averaged ERP signal. This paper considers this latency jitter as a time delay error of the ERP signal
in each trial and proposes algorithms that can obtain more accurate latency jitter and compensate the
time delay to enhance EEG signal quality.

The time delay estimation (TDE) technique involves estimating variable time delays in multiple
signal sources. TDE has been studied not only in the biomedical engineering field, but also other fields
such as sound signal processing. In sound signal processing the TDE method tries to estimate receiving
sound delays from multiple microphones (Mics). The TDE result can provide relative distance between
multiple Mics and the sound source. In [17] cross-correlation based TDE algorithm was applied,
and in [18] a mutual information based algorithm was applied to localize and track a speech signal.
Note that, since the relative distance of Mics is known for TDE in sound signal processing, the time
delays of multiple Mics are linked, thus the TDE error can be compensated.

Several studies have been conducted for TDE in the biomedical engineering field. Note that in this
case the situation is different from TDE for sound signal processing since the time delays in repetitive
biomedical signal are independent, while TDE in sound signal processing assumes that the delays
are relative due to the relative distance between multiple Mics. The TDE studies in the biomedical
field focus on searching for each independent time delay based on the estimation of a common signal
waveform that is called a template. Woody’s method [19] iteratively calculates the cross-correlation
between each trial signal and a template or a reference signal where the template signal is obtained
by averaging the trial signals whose delay is shifted by the delay estimated in the previous iteration.
Based on the template estimation, the authors of [19] estimate each single trial time delay individually.
Pham et al. [20] proposed a variable delay estimation method based on maximum likelihood (ML) in
the frequency domain where an iterative Fisher-scoring method is applied to solve the ML problem
to estimate the phase shift that is equivalent to the time delay in a time domain. These schemes can
search the time delays for many trials quickly in an iterative way. Since ERP differs for people and is
unclear, especially for signals measured from non-invasive interfaces [21,22], it is hard to know the ERP
signal information in advance. Thus, these two schemes [19,20] estimate the ERP signal waveform to
compute the time delay instead of taking prior information such as ERP signal information. In [19] the
template is calculated, which is the same as ERP signal estimation, at each iteration by averaging each
trial, and in [20] the signal spectrum is estimated by averaging trial spectra and spectrum variance.
In addition, [23] presented a method, named the improved Woody scheme, that calculates the template
more frequently than Woody’s method by averaging each trial after every cross correlation execution.

These three techniques [19,20,23] use an iterative method to estimate variable time delays in
trials individually. However, the templates in [19,23], and the estimated signal spectrum in [20] may
cause TDE performance degradation. This is because the time delay estimation and the estimation
of other parameters such as the template estimation are intertwined, and thus time delay estimation
performance is affected by the estimation accuracy of the other parameters. This means that if the ERP
signal is known, these conventional schemes provide the optimum solution, but without a perfectly
known ERP signal, i.e., if an accurate template is not available, they cannot avoid performance
degradation. In addition, these conventional schemes estimate the time delay sequentially. At each
step, they estimate a single delay for a trial signal, and then they sequentially estimate all the individual
delays separately. The delays for all the trials are applied to generate the new template for the
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next iteration. Hence, the conventional TDE cannot estimate the time delay for all the trial signals
simultaneously since each trial delay is estimated sequentially, using the template estimated at the
previous iteration. Even though they iteratively estimate the time delay until the estimated delays
converge, the performance may not reach the optimum solution. On the other hand, there is another
study that simultaneously estimates time delays using a multiple correlation method [24]. Since the
multi-trial time delays are estimated at the same time, the multiple correlation method [24] does not
require ERP signal information as a template. However, since the method is derived in an intuitive
manner, there may be performance degradation compared to the optimum scheme.

In order to prevent the performance degradation due to these problems, we propose two TDE
schemes based on a joint ML criterion that estimates time delays of all the trial signals simultaneously
without ERP signal estimation, applying a time delay set that is a vector composed of all time delays.
In this paper, we first derive an optimum joint ML solution based on the joint probability density
function (pdf) of the entire discrete-time signal. The optimum joint ML estimation, however, has much
higher complexity than the iterative single delay estimation in [19,20,23] since it requires large scale
matrix operation whose computation load is proportional to the data size and the number of possible
candidates for the delay vectors, which increases exponentially as the number of trials increases.
Thus, we also propose a lower-complexity sub-optimum joint ML scheme by taking an approximation
of the most complicated operation in the optimum joint ML scheme. Although the sub-optimum
scheme experiences a slight performance degradation over the optimum joint ML scheme, it can be
implemented with significantly less complexity.

In short, these proposed schemes can provide optimum or near optimum performance without
estimating an ERP or a template signal. Since the proposed TDE schemes perform in a joint manner
that estimates all-trial delays simultaneously, they do not need additional parameter estimation such
as the template to estimate one single trial delay based on the other trial delays. The optimum TDE
requires only an autocorrelation function of the ERP signal which contains the ERP signal covariance
information in multiple trials instead of the ERP signal itself, and the sub-optimum TDE can be applied
without any ERP signal information such as mean and variance. They can obtain this by estimating
delay vectors for all trials instead of a single trial time delay estimation. The previous studies [19,20,23]
estimated single trial delays in a sequence, while our proposed TDE schemes estimate the delay vector
composed of all-trial time delays that provides the best relative trial delays from a joint ML point of
view, enabling better performance.

This paper addresses the proposed schemes in the following steps: Section 2 introduces the
signal model and conventional TDE schemes, while Section 3 describes the proposed optimum and
sub-optimum TDE schemes. The performance is compared in Section 4 through computer simulation
for various signal waveforms and ERP analysis. Finally, conclusions are drawn in Section 5.

2. Signal Model and Conventional TDE Schemes

A measured electrical EEG signal at discrete-time sample n = [1, 2, 3, . . . , N] of the i-th trial
i = [1, 2, 3, . . . , I] can be represented as:

yipnq “ xpn´ diq ` zipnq (1)

where x(n) is an ERP signal having an average power of pµ2
x ` σ2

xq with mean µx and variance σ2
x , di is

the time delay of the i-th trial, and zi(n) is noise such as background brain activities; this is assumed to
be zero mean white Gaussian noise with variance σ2

z [19,20]. In order to generalize the problem, we
treat signals as real value variables in this paper since an EEG signal is measured in real values.

The previous studies [19,23] estimate the time delay based on this model. They first estimate the
ERP signal x(n), called template p(n), and utilize the cross-correlation between the template p(n) and
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the trials. In those studies, the time delay for the i-th trial signal is estimated by searching for the delay
that has the maximum correlation coefficient, as:

d̂q
i “ arg max

d
q
i

1
N

N
ÿ

n“1

yipn` d
q
i qp

qpnq (2)

where d̂q
i is the estimated delay of the i-th trial signal at the q-th iteration. The template, which

represents the averaged trials as pqpnq “ 1
I

I
ř

i“1
yipn` d̂q´1

i q, gets closer to the ERP signal hidden

in the measured signal, i.e., p(n) « x(n), by performing this process iteratively until the estimated
delays converge. It should be noted that these schemes search for the solution in an iterative way.
Their computation is sufficiently fast, even if there are many trials, i.e., the Woody scheme [19] updates
the template with the estimated time delay once in each iteration. As shown in Equation (2), only
a single time delay d̂q

i can be estimated by a single cross-correlation calculation. Therefore, the delays
for all-trial are estimated step by step individually, and the delay estimation process is done at the
end of an iteration. It should be noted that the estimated all-trial delays d̂q

i , i = 1, 2, 3, . . . , I, are
updated to renew the template at the end of iteration q, so that the template estimation, which is the
ERP signal estimation, is affected by the estimated delays in the previous iteration (q ´ 1). Hence, the
template estimation and single delay estimation are intertwined. The improved Woody scheme [23]
updates the template more frequently after each correlation operation, i.e., every i and q, and this
can make the template depend on the current time delays of the other trials that have been already
estimated. However, the improved Woody scheme still has this intertwined problem since the i-th
cross correlation in an iteration uses its template updated with the (i ´ 1) delays currently estimated.

Even TDE methods in the spectrum domain experience the same problem. The authors of [20,25]
estimate the signal spectrum in a frequency domain by averaging the signal spectrum of each trial
signal, however the time domain representation of the averaged signal spectrum yields the same result
as the time domain averaging, which is the same as the template estimation. Thus, these methods
suffer from the same problem because they have to perform signal spectrum estimation and delay
estimation recursively for each trial.

According to these previous studies, the other variable estimation such as ERP signal estimation
cannot be separated from TDE. Hence, estimation of time delay and of the template, treated as the
reference signal, are intertwined and thus time delay estimation performance is affected by the accuracy
of the template estimation. In addition, they estimate the delay of each trial individually without
considering other delays d̂q

i , i ‰ j. On the other hand, there is another study that estimates time
delay simultaneously by applying the multiple correlation method [24]. The correlation matrix can be
reformed by multiple trial delays applied simultaneously, and the summation of the elements in the
correlation matrix is calculated to search for the maximum correlation delay set, enabling TDE without
additional parameter estimation. However, the algorithm has performance limitations since it is not
derived from a statistical and mathematical approach. In addition, the performance may be further
degraded using a differential evolution method which can reduce the computation speed.

In order to achieve optimum performance by searching for the best delay set without another
parameter estimation, in the next section, we derive an optimum scheme based on statistical criteria
called joint ML which simultaneously searches for the optimum delay set.

3. Proposed Optimum and Sub-Optimum TDE Scheme

In this section, the two proposed TDE schemes are introduced. We first derive the optimum
scheme by taking joint ML for TDE. In this section, in order to put forth the mathematical concept
simply and easily, the explanations are based on the assumption that the noise signal z(n) is
a random signal and independent identically distributed in trials which follows normal distributions.
However, the optimum TDE complexity is quite large, and thus, to reduce complexity, we also propose
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a sub-optimum TDE, which is a simplified version of the optimum TDE assuming that x(n) is a random
signal but common in each measurement trial. The two schemes only estimate time delay in trials, so
that they may avoid the intertwined problem that the other conventional schemes have.

3.1. Proposed Optimum TDE Scheme

The proposed TDE scheme, by taking the joint ML, aims to find the most probable point of
the time delay vector that consists of the all-trial time delays. The delay vector can be obtained by
maximization of the joint pdf of delays as:

d̂ “ arg max
d

fypy
ˇ

ˇ

ˇ
d q

“ arg max
d

1
b

p2πqIN
|
ř

d|
exp

´

´ 1
2 py´ µxq

Tř´1
d
py´ µxq

¯ (3)

where y = [y1, y2, . . . , yI]T, yi = [yi(1), yi(2), . . . , yi(N)], d = [d1, d2, ¨ ¨ ¨ , dI] is a delay vector, yT is the
transpose of y, d̂ is the estimated delay vector of d, and

ř

d “ Etpy´ µxqpy´ µxq
T
u is the covariance

matrix which differs according to d. Note that the previous studies for TDE calculate a cost function
for each trial delay, but the cost function of the proposed scheme is based on overall trials, i.e., the
delay vector. This means that the proposed scheme focuses on relative delays in trials instead of best
delays in each trial.

ř

d is composed of sub-matrices as in:

ÿ

d
“

¨

˚

˚

˝

r1,1
d

¨ ¨ ¨ r1,I
d

...
. . .

...
rI,1

d
¨ ¨ ¨ rI,I

d

˛

‹

‹

‚

(4)

where ri,j
d
“ Etpyi ´ µxqpyi ´ µxq

T
u is the covariance sub-matrix for the i-th and the j-th trial signals.

The sub-matrix can be expressed as:

ri,j
d
“

¨

˚

˝

Covpyip1q, yjp1qq ¨ ¨ ¨ Covpyip1q, yjpNqq
...

. . .
...

CovpyipNq, yjp1qq ¨ ¨ ¨ CovpyipNq, yjpNqq

˛

‹

‚

(5)

where Cov(yi(n), yj(k)), which is the covariance of the n-th sample in the i-th trial and the k-th sample
in the j-th trial, can be determined by the statistical property of x(n) and (di ´ dj). This shows that
the optimum TDE can be applied just with the statistical information of the ERP signals, and does
not require much information about the instantaneous ERP signal, i.e., autocorrelation of the ERP
signal instead of ERP signal estimation. Note that the autocovariance function of the ERP signal
can be estimated based on the measured signal. For example, the autocovariance functions of each
trial signal and their average will provide an estimated autocorrelation. Since the autocorrelation
and autocovariance function are based on how fast the ERP changes, they are easier to estimate
than the signals themselves which need to obtain the template signal in the conventional schemes.
In addition, the time delay vector d contains the delays of all the trials. The joint ML cost function in
Equation (3) shows that it is maximum where the overall time delays are well estimated, resulting in
better performance than other conventional methods employing estimation of individual trials like
Equation (2).

3.2. Proposed Sub-Optimum TDE Scheme

The optimum scheme performs the best from the joint ML point of view. However, it involves
great complexity because of the calculation of

ř´1
d

and
ˇ

ˇ

ř

d

ˇ

ˇ in Equation (3). Hence, we propose
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a sub-optimal TDE with a lower computational burden assuming that x(n) is a random signal but
common in each measurement trials.

The exponential term in Equation (3) plays a key role for the joint ML calculation. Taking logarithm
can make the Equation (3) approximately simplified as:

d̂ « arg max
d

„

´
1
2
py´ µxq

T
ÿ´1

d
py´ µxq



(6)

For further simplification,
ř´1

d
is simplified by taking only major elements in the matrix.

The following example explains the simplification.
For intuitive understanding of the covariance matrix simplification, we consider a simple case

where x(n) is a white Gaussian random signal with variance σ2
x , and noise zi(n) is zero mean white

Gaussian noise with variance σ2
z . In the case of the white random signal x(n), ri,j

d
has a non-zero

value at the upper or lower diagonal elements determined by (di ´ dj). The main diagonal elements
have non-zero value pσ2

x ` σ2
z q for i = j, and the shifted sub-diagonal elements have σ2

x for i ‰ j.
The non-zero elements in the shifted diagonal represent the relative delay between the i-th and the
j-th trial. For example, when there are three trial data sequences each three points long for each trial
(I = N = 3), σ2

x = 1, σ2
z = 0.1, the covariance matrix of a delay set d = [0, 0, 1] is a 9 ˆ 9 matrix and

represented as:

ÿ

d
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1.1 0 0
0 1.1 0
0 0 1.1

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
0 0 0

1 0 0
0 1 0
0 0 1

1.1 0 0
0 1.1 0
0 0 1.1

0 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 0

0 0 0
1 0 0
0 1 0

1.1 0 0
0 1.1 0
0 0 1.1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7)

The main diagonal elements in Equation (7) have pσ2
x ` σ2

z q = 1.1, and the sub-matrix ri,j
d

where
i ‰ j has a non-zero element according to the delay set. For example:

r1,2
d
“

´

r2,1
d

¯T
“

»

—

–

1 0 0
0 1 0
0 0 1

fi

ffi

fl

(8)

and this matrix has σ2
x = 1 in the diagonal elements since the 1st and 2nd trial delays in d are the

same. However, the non-zero terms in r1,3
d

are shifted from the main diagonal entries due to the delay
difference (di ´ dj), i.e., they are shifted by 1 with (d1 ´ d3) = ´1 as:

r1,3
d
“

´

r3,1
d

¯T
“

»

—

–

0 1 0
0 0 1
0 0 0

fi

ffi

fl

(9)

For all the sub-matrices, the element in the a-th row and b-th column, of ri,j
d

can be expressed as:

ri,j
d
pa, bq “ σ2

x δpa` di ´ b´ djq ` σ2
z δpa´ bqδpi´ jq (10)
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where δpnq is the Dirac delta function. Then
ř´1

d
is presented as:

ÿ´1

d
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

6.8 0 0
0 6.8 0
0 0 5.2

´3.2 0 0
0 ´3.2 0
0 0 ´4.8

0 ´3.2 0
0 0 ´3.2
0 0 0

´3.2 0 0
0 ´3.2 0
0 0 ´4.8

6.8 0 0
0 6.8 0
0 0 5.2

0 ´3.2 0
0 0 ´3.2
0 0 0

0 0 0
´3.2 0 0

0 ´3.2 0

0 0 0
´3.2 0 0

0 ´3.2 0

0.9 0 0
0 6.8 0
0 0 6.8

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(11)

From Equation (11), we observe that
ř´1

d
has non-zero elements at the same position as

ř

d

has. As Equation (11) shows,
ř´1

d
preserves the location of the sub-diagonal shift using the delay

set, and this determines how (y ´ µx)T,
ř´1

d
, and (y ´ µx) are multiplied. For example, the metric in

Equation (6) can be obtained by taking the approximation of
ř´1

d
as:

ÿ´1

d
«

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0
0 1 0
0 0 1

´1 0 0
0 ´1 0
0 0 ´1

0 ´1 0
0 0 ´1
0 0 0

´1 0 0
0 ´1 0
0 0 ´1

1 0 0
0 1 0
0 0 1

0 ´1 0
0 0 ´1
0 0 0

0 0 0
´1 0 0
0 ´1 0

0 0 0
´1 0 0
0 ´1 0

1 0 0
0 1 0
0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(12)

The zero value elements in
ř´1

d
do not need to be calculated since the multiplication result is zero,

enabling computation complexity reduction. Furthermore, if we set the non-zero elements in
ř´1

d
at

a constant number (i.e., ´1 as in Equation (12)), multiplication is required only for the corresponding
delay values for Equation (6). In addition, the main diagonal in Equation (12) can be disregarded in
the computation of Equation (6) since it is common irrespective of d. Finally, the sub-optimum scheme
can be represented as:

d̂ « arg max
d

»

–

ÿ

j

ÿ

i‰j

ÿ

n
pyipnq ´ µyqpyjpn´ pdj ´ diqq ´ µyq

fi

fl (13)

In the sub-optimal scheme, as shown in Equation (14), d̂ is obtained using only the correlation of
the measured signal y. An exhaustive search or a stochastic optimization can be applied for searching
d̂. Hence the optimum and sub-optimum joint ML solutions choose the best relative trial delay vector
satisfying Equation (3) and a close to the best relative trial delay vector, respectively, from a ML point
of view, among the relative delay vectors of all the trials.
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Figure 1. (a,b) show the covariance matrix of colored random signal and real EEG signal respectively;
and (c,d) are their inverse covariance matrix, respectively.

In Equation (11), the values of the non-zero elements are different, e.g., 6.8 ‰ 5.2 ‰ 0.9 and
–3.2 ‰ –4.8, but as the matrix size increases, with larger N and I, this difference decreases, resulting
in smaller variance among the non-zero elements. Figure 1 shows 3D color display of covariance
matrix

ř

d and inverse covariance matrix
ř´1

d
of signals of N = 100 and I = 3. Figure 1a,b show

ř

d of a colored random signal and a real EEG signal, respectively, and Figure 1c,d are their
ř´1

d
,

respectively. As seen in Figure 1c, the main diagonal and sub-diagonal values are similar, meaning
that

ř´1
d

can be approximated to have constant non-zero terms as in Equation (12). A similar tendency
can be observed for real EEG signals which are not white random signals as seen in Figure 1b,d.
This implies that the sub-optimal scheme can be applied for EEG signals that contain ERP signals
although the scheme is derived based on a white random signal assumption. In addition, if x(n)
is a white random signal, Equations (3) and (13) will return almost the same result. On the other
hand, the performance of the sub-optimal scheme will be worse than that of the optimum scheme if
the ERP signal does not follow white random signal characteristics due to the larger approximation
error of

ř´1
d

. Since the sub-optimum scheme does not require complicated operations such as matrix
inversion, the computational complexity is reduced dramatically. The computation complexity of
the sub-optimum scheme is O(RII2R), which is far smaller than that of the optimum scheme, which
is O(RI(IR)2.373), where R (R ď N) is the searching range of the delay candidates. Hence, for faster
execution, the sub-optimal scheme can be applied.

4. Performance Evaluation

4.1. Simulation Setup

4.1.1. Signal Selection

We have derived the proposed TDE schemes by taking the joint ML criterion, considering the
ERP signal as a Gaussian random signal. The sub-optimal scheme is obtained by approximation
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of the optimum scheme, so that there may be performance degradation due to this approximation.
In order to evaluate the performance of the proposed schemes, we first compare the performance of
the optimal and the sub-optimal schemes for white (w1) and colored (w2) random signals. Then, in
order to evaluate the performance with more realistic ERP signals, deterministic signal and EEG signal
simulation are also presented.

The colored random signal is generated using autoregressive (AR) modeling as:

xpnq “ αxpn´ 1q `
a

1´ α2wpnq (14)

where w(n) is a random signal that follows time independent Gaussian distribution. We set α = 0 for
the white random signal (w1) and α = 0.5 for the colored signal (w2). Second, we test the performance
of the proposed schemes using a deterministic signal (w3). The deterministic signal is generated by
combining multiple sinusoidal waves with frequencies chosen randomly from range 4–16 Hz [26].
Finally, we apply a EEG signal (w4) simulation that uses a measured real EEG signal which is a five-box
task result [27] to confirm how the schemes perform on real data. Figure 2 shows the four signal
waveform shapes used for random (w1, w2), deterministic (w3), and EEG signal simulation (w4).
The real ERP signal data that is measured by EEG recordings includes an inherent noise term whose
power is predetermined. In order to obtain performance results with different SNR, we apply the EEG
simulation that was introduced in [25,28,29], where the SNR is made to be controllable, and the signal
morphology and noise structure are preserved close to those of the real ERP signal [25]. The EEG
signal simulation averages I trial signals to obtain ERP signal

"
x pnq as:

"
x pnq “

1
I

I
ÿ

i

yipnq (15)

and the residual signal is regarded as the noise
"
n ipnq as:

"
n ipnq “ yipnq ´

"
x pnq (16)

The reconstructed i-th trial data
"
y ipnq is composed of

"
x pnqwith different delay and

"
n ipnq as:

"
y ipnq “ φ

"
n ipnq `

"
x pn´ diq (17)

where φ is a control factor determining the SNR. We fix the signal power and adjust the noise power
by controlling φ to obtain different SNR as in [25]. Note that

"
x pnq is the common ERP signal, which is

w4 signal in Figure 2d regarded to have no time delay error, and the time delay of
"
y ipnq in each trial is

controlled by di as in Equation (17). In EEG signal simulation based on Equation (17), we use the EEG
data set obtained by Makeig et al. [27] for 15 health controls. The EEG is recorded while the subjects are
doing a five-box task. In the experiment, there are five empty boxes in a monitor, and one of the boxes
is selected as the target box. During the experiment, subjects are asked to watch the target box and
press a button as soon as possible when the target box is filled with a disk. The disk is displayed for
117 ms and the disk appears on the five empty boxes in a random manner with inter-stimulus intervals
of 250 to 1000 ms. The EEG recordings are collected from 29 scalp electrodes based on a modified
international 10–20 system. The data is sampled at 128 Hz. For simulation performance evaluation,
five sets of trial data (i.e., yi(n), i = 1, 2, . . . , I = 5) are used, and for more practical analysis in ERP
analysis part, 100 trial data (i.e., yi(n), i = 1, 2, . . . , I = 100) located at Pz are chosen from the task when
the subjects respond to the target. The trials are filtered with a 50 Hz low pass filter.



Sensors 2016, 16, 891 10 of 17
Sensors 2016, 16, 891 10 of 17 

 

 
Figure 2. Signal waveforms for simulations. (a) White random signal; (b) colored random signal;  
(c) deterministic signal; and (d) EEG signal. 

4.1.2. TDE Performance Evaluation 

Two different evaluation methods are utilized for the TDE algorithm performance evaluation. 
The first method is the expected time delay error estimation with respect to SNR. The four signals, 
two random signals (w1 and w2), deterministic signal (w3), and the EEG signal (w4) are used for 
this performance evaluation. In this simulation, white Gaussian noise is added to the (w1–w3) 
signals at different power levels according to SNR and the signal length is 100 points long 
( 100)N  . For EEG signal (w4) simulation,   is controlled for different level of SNR. For each 
signal, five trials with a random delay di following a uniform distribution in [–5, 5] are used as 
Equation (17), and the four schemes are applied to estimate di . In order to evaluate the performance 
statistically, the simulation is repeated 1000 times. We set the search range as much as the random 
delay range. The performance is evaluated in terms of the expected of root-mean-square error 
(RMSE) of the estimated time delay ˆ

id  as: 

2

1

1 ˆ( )
I

est i i
i

E d d
I




 
   

 
  (18) 

The second method is ERP analysis such as peak amplitude and peak latency, and spectral 
perturbation analysis. An artificial random delay di following a uniform distribution in [−200 ms, 
+200 ms] are applied to the EEG signals from 15 subjects. In order to observe the effect of time delay 
realignment on the ERP waveform, realigning is applied as a preprocessing step to the EEG signals. 
There are six different ERP analysis results when obtaining the realigned and averaged signal 

Figure 2. Signal waveforms for simulations. (a) White random signal; (b) colored random signal;
(c) deterministic signal; and (d) EEG signal.

4.1.2. TDE Performance Evaluation

Two different evaluation methods are utilized for the TDE algorithm performance evaluation.
The first method is the expected time delay error estimation with respect to SNR. The four signals,
two random signals (w1 and w2), deterministic signal (w3), and the EEG signal (w4) are used for this
performance evaluation. In this simulation, white Gaussian noise is added to the (w1–w3) signals at
different power levels according to SNR and the signal length is 100 points long pN “ 100q. For EEG
signal (w4) simulation, φ is controlled for different level of SNR. For each signal, five trials with
a random delay di following a uniform distribution in [–5, 5] are used as Equation (17), and the four
schemes are applied to estimate di . In order to evaluate the performance statistically, the simulation is
repeated 1000 times. We set the search range as much as the random delay range. The performance is
evaluated in terms of the expected of root-mean-square error (RMSE) of the estimated time delay d̂i as:

λest “ E

¨

˝

g

f

f

e

1
I

I
ÿ

i“1

pd̂i ´ diq
2

˛

‚ (18)

The second method is ERP analysis such as peak amplitude and peak latency, and spectral perturbation
analysis. An artificial random delay di following a uniform distribution in [´200 ms, +200 ms] are
applied to the EEG signals from 15 subjects. In order to observe the effect of time delay realignment
on the ERP waveform, realigning is applied as a preprocessing step to the EEG signals. There are six

different ERP analysis results when obtaining the realigned and averaged signal
!
y pnq “ 1

I

I
ř

i“1

"
y ipn` d̂iq
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averaged ERP result of the original ERP signal without timing errors (i.e., perfectly aligned ERP
corresponding to di = 0 in Equation (17)), the ERP signal without realignment (i.e., d̂i = 0(‰ di) without
timing correction), and realigned ERP by the four different algorithms (i.e., d̂i is different according
to the applied algorithms). After TDE realignment and averaging, the maximum positive peak
after 300 ms from the stimulus onset (P3) and its time delay are calculated as the peak amplitude
and peak latency, respectively. In order to explain the ERP analysis statistically, ERP analysis of
15 subjects is performed and their mean and standard deviation (SD) are calculated. Paired T-test is
applied to evaluate the performance difference between the proposed schemes and the conventional
schemes. The spectral perturbation is also performed after TDE realignment. Time-frequency domain
perturbation data is calculated using the EEGLAB toolbox [30] based on a short-time Fourier transform
(STFT) with window size of 0.5 s, sliding step of 15 ms, and the perturbation color maps are
limited by a ´10 dB to +10 dB scale. Thus, the time-frequency domain data is averaged in trials
for spectral perturbation.

4.2. Simulation Result

4.2.1. Random Signal

Two types of random signals are used for this random signal simulation. One of the random
signal simulations uses a white random signal (w1). In addition, a colored random signal is used to
analyze the performance difference from white random signal performance. Figures 3 and 4 plot λest

of the conventional and proposed schemes when the random signals are employed. Woody [19], and
improved Woody [23] schemes are compared as conventional schemes.
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Figure 3. TDE performance for white random signal (w1).

These figures show that the optimum TDE performs the best, followed by the sub-optimal scheme;
the proposed schemes provide significant gain over the conventional schemes, especially for the white
random signal case (w1). Note that the Woody scheme experiences saturation over a certain SNR.
This is because the signal estimation and the time delay estimation are intertwined. Unless time delay
errors in different trials are corrected simultaneously, the template cannot avoid the intertwining
problem. Therefore, there is higher possibility that the single delay estimation will have an erroneous
template. The improved Woody scheme can reduce the performance degradation, but it is still much
worse than those of the proposed schemes.
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As shown in Figure 4, a similar tendency can be observed except that the performance gap between
the proposed optimal and suboptimal schemes is larger for the colored random signal than it is for
the white random signal since the covariance matrix pattern is more different from the approximation
form of the covariance matrix Equation (12). However, the gains with the use of the proposed schemes
are still large, implying their benefit in use.

4.2.2. Deterministic Signal

Figure 5 depicts the performance of the deterministic signals where a similar tendency toward
random signals can be observed. This implies that the proposed schemes, derived with the assumption
of random signals, can still provide a large performance gain even for deterministic signals since they
are based on maximization of autocorrelation of the signal of all the candidate delays.
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4.2.3. EEG Signal

Figure 6 shows that the two proposed schemes outperform the conventional schemes.
The proposed schemes provide the same performance of expected time error with less SNR.
The expected delay error performance λest = 100 is achieved with SNR = 4 dB and 5 dB for the proposed
optimal and the sub-optimal schemes, respectively, while the conventional schemes achieve with
SNR = 6 dB and 8 dB for the improved Woody and Woody methods, respectively. The Woody scheme
simulation results indicates a severe case of an intertwining problem, which causes saturation; the
improved Woody scheme performance shows partial performance degradation due to the intertwining
problem. The performance of the two proposed schemes is better since they can avoid the intertwining
problem due to the fact they do not need reference signal estimation.
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While the proposed schemes provide better performance, the proposed schemes have higher
computational complexity. However, this computation problem is less crucial for off-line signal
processing and will be less demanding as computation capability improves with hardware system
advances. Hence, the proposed scheme can be a reasonable solution for better TDE performance.

4.2.4. ERP Analysis

It can be expected that as the time delay error increases, ERP characteristics will differ in time
and frequency domain. In order to observe the time delay error effect and the compensated result by
TDE schemes, we perform ERP characteristic analysis in the time domain and spectral perturbation
for 15 subject data. Figure 7 shows a statistical analysis of P3 peak amplitude and latency. In the
peak amplitude result, the proposed schemes have less than 2 µV mean error while the result in
the conventional schemes have larger than 4 µV mean error. In addition, there is less than 30 ms
time latency error between the proposed schemes and the original signal, while the conventional and
non-aligned signal have more than 40 ms latency error with larger SD. The performance difference
between the proposed schemes and conventional schemes in peak amplitude and latency analysis
are significant (p < 0.05). Note that the proposed two schemes have less difference in the mean
amplitude as well as SD to the original than that of improved Woody and Woody schemes, and
non-aligned ERP. Therefore, the proposed TDE schemes can correct time delays more accurately than
conventional schemes.

Figure 8 shows an example of ERP analysis in time domain. It shows that the non-aligned ERP
signal that experiences random time delay error has the lowest P3 peak amplitude, and realigned
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ERP signal compensated by the improved Woody and Woody schemes in Figure 8c,d have smaller
peak amplitudes than the original ERP signal, while the realigned signal shapes with the use of the
proposed schemes in Figure 8a,b are more similar to the original ERP.
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Figure 9 shows a spectral perturbation result of the original ERP signal without timing errors,
the ERP signal without realignment, and realigned ERP by the four different schemes. All the results,
except non-aligned signal result, show similar synchronized activation on the delta (0–4 Hz), theta
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(4–7 Hz) and beta bands (13–30 Hz) shown in red and yellow color. However, the result of conventional
schemes shows weaker activation on the alpha band (7–13 Hz) compared to the proposed schemes.
Note that the TDE schemes provide much more similar results than the non-alignment result that
shows only blurred activation on the delta and theta bands. This means that we can obtain better
spectral perturbation images with the use of delay realignment employing the proposed TDE schemes.
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5. Conclusions

TDE is an effective technique for bio-signal analysis, especially for repetitive and evoked electrical
signals such as ERP. We have proposed a joint ML-based optimal and sub-optimal TDE that do
not require estimation of an ERP reference signal and estimate the delay vector in a joint manner.
According to the simulation results, compared with those of the conventional schemes, our proposed
optimal scheme can correct time errors much more accurately at a given SNR or can achieve much
less SNR, e.g., up to 4 dB at λest = 10˝, for the same performance of the expected time error, while it
needs a large number of computations. The proposed sub-optimal schemes can reduce this complexity
burden significantly at the cost of small performance degradation. Thus the proposed scheme can
be very effective when the estimation performance is critical, especially when the reference signal is
unknown or random.
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