
sensors

Article

An IMU Evaluation Method Using a Signal
Grafting Scheme

Xiaoji Niu 1, Qiang Wang 1, You Li 1,2, Quan Zhang 1,3 and Peng Jiang 1,*
1 GNSS Research Center, Wuhan University, No.129, Luoyu Road, Wuhan 430079, China;

xjniu@whu.edu.cn (X.N.); wang_qiang@whu.edu.cn (Q.W.); liyou331@gmail.com (Y.L.);
zhangquan@whu.edu.cn (Q.Z.)

2 Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N1N4, Canada
3 Collaborative Innovation Center for Geospatial Information Technology, Wuhan University, No.129,

Luoyu Road, Wuhan 430079, China
* Correspondence: jiangp@whu.edu.cn; Tel.: +86-27-6877-8971

Academic Editor: Jörg Wagner
Received: 16 March 2016; Accepted: 3 June 2016; Published: 10 June 2016

Abstract: As various inertial measurement units (IMUs) from different manufacturers appear every
year, it is not affordable to evaluate every IMU through tests. Therefore, this paper presents an IMU
evaluation method by grafting data from the tested IMU to the reference data from a higher-grade
IMU. The signal grafting (SG) method has several benefits: (a) only one set of field tests with a
higher-grade IMU is needed, and can be used to evaluate numerous IMUs. Thus, SG is effective and
economic because all data from the tested IMU is collected in the lab; (b) it is a general approach to
compare navigation performances of various IMUs by using the same reference data; and, finally,
(c) through SG, one can first evaluate an IMU in the lab, and then decide whether to further test it.
Moreover, this paper verified the validity of SG to both medium- and low-grade IMUs, and presents
and compared two SG strategies, i.e., the basic-error strategy and the full-error strategy. SG provided
results similar to field tests, with a difference of under 5% and 19.4%–26.7% for tested tactical-grade
and MEMS IMUs. Meanwhile, it was found that dynamic IMU errors were essential to guarantee the
effect of the SG method.

Keywords: signal grafting; performance evaluation; Inertial Measurement Units; hybrid simulation;
navigation; field testing

1. Introduction

The complementary features of Global Navigation Satellite Systems (GNSS) and Inertial
Navigation System (INS) have been investigated and exploited during the past decades [1]. GNSS
can provide positioning solutions with long-term stability using the line-of-sight signals from GNSS
satellites to the receiver. However, GNSS suffers from interruptions and degradations caused by various
kinds of disturbances on the satellite signals [2,3]. On the contrary, INS is a self-contained system that
ensures consistent availability of navigation information from an initial status, but has increasing errors
in the long term, although in-field calibration can improve the navigation performance [4,5]. Therefore,
GNSS and INS are often combined (especially when using low-cost systems) as an integrated
navigation system. Due to the complementary characteristics of GNSS and INS, such an integrated
system requires less accurate INS for general navigation applications and, thus, can minimize the
limitations due to price, availability, and access restrictions of high-grade (e.g., navigation-grade)
inertial measurement units (IMUs). Furthermore, advances in micro-electro-mechanical systems
(MEMS) technology combined with the miniaturization of electronics have made it possible to produce
chip-based inertial sensors for measuring angular rates and accelerations. These MEMS chips are
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small and lightweight, consume very little power, and are extremely low-cost. Therefore, several
applications, such as motion tracking, outdoor/indoor navigation, and virtual reality, have been
directed towards using MEMS sensors. Currently, various MEMS inertial sensors and IMUs developed
by different manufacturers have emerged to market. For navigation applications of these sensors or
IMUs, evaluating the corresponding navigation performance is important [6–9].

Common methods for IMU evaluation include lab calibration, INS simulation, and field
testing [10,11]. These methods are developed for different purposes. Specifically, lab calibration is
an efficient way to obtain the characteristics of IMUs; INS simulation is suitable for evaluating the
impact of one single error source; and field testing is a totally realistic approach. In addition to
these approaches, there is another type of method, theoretical analysis. Such analysis can provide a
theoretical guide to the problem, for example, uncompensated gyro biases bg and accelerometer biases
ba result in position errors (1/6)bggt3 and (1/2)bat2 for 2-D navigation, respectively, where t is the
time and g is the local gravity value. However, this is an approximate calculation based on a linear
motion assumption. Abbott and Powell showed an indication of the achievable performance that can
be expected from an in-car GNSS/odometer/gyro system, but it is also based on the assumption of
uniform linear motion [12]. There is literature focused on analysis of the system performance through
the use of observability analysis [13]. However, these theoretical methods are limited in simple vehicle
motion conditions. In practical uses, the complexity of realistic navigation conditions makes the
propagation of errors complex in the navigation algorithm, which is difficult to analyze.

This paper is mainly on practical methods; thus, the theoretical analysis approaches are not
included. The characteristics of lab calibration, simulation, and field testing are described as followings:

(1) Lab Calibration

The inertial sensor errors can be divided into two types: deterministic (systematic) errors and
stochastic errors. Deterministic errors consist of biases, scale factors, inertial axis misalignments,
etc., while stochastic errors include noise, bias instabilities, etc. Biases and scale factor errors are the
dominant deterministic error sources during the INS standalone navigation process. Approximately,
for 2D navigation, gyro biases result in position errors proportional to the time cubed. Meanwhile,
accelerometer biases and the sensor scale factors introduce position errors proportional to the time
squared [14]. Calibration is particularly useful to remove biases and scale factor errors, and provide
IMU parameters including bias instabilities, noise densities, non-linearities, temperature sensitivities,
etc. In order to obtain deterministic and stochastic inertial sensor errors, different calibration methods
can be chosen according to application requirements.

Various calibration methods for deterministic errors have been presented. The most widely used
type is the approaches based on a turntable [15]. With the references from the turntable, each sensitive
axis of every accelerometer can point alternately up and down precisely, and the IMU can be rotated
around each gyro axis, both clockwise and counter-clockwise, with accurately-known angles. When
a turntable it is not available, scholars have proposed the multi-position method, the basic idea of
which can be stated as: the norms of the measured outputs of the accelerometer and gyro clusters are
equal to the magnitude of the given specific force (i.e., gravity) and rotation (i.e., the Earth’s rotational
rate) inputs [16]. For MEMS IMUs, the main drawback in using the multi-position method is that the
Earth’s rotational rate is too weak (15 deg/h) which results in observability problems. For stochastic
errors, the commonly used method for determine their models and parameters include autocorrelation
analysis, power spectral density (PSD), and the variance techniques (e.g., Allan variance). Refer to [17]
for details about stochastic sensor errors and their modeling.

However, lab calibration cannot provide the actual navigation performance precisely [18], as
navigation performance can only be deduced by conducting field testing or analyzing the steady
state of a Kalman filter and error propagation in the INS mechanization, rather than being evaluated
by lab calibration directly [19]. In this situation, only errors that are modeled by the Kalman filter
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(e.g., biases and scale factors) can be investigated, while the other errors cannot. To evaluate the
navigation performance, INS simulation and field testing are two possible approaches.

(2) INS Simulation

INS simulation is one common choice for navigation performance evaluation. It can simulate the
ideal navigation information (e.g., reference IMU signals, and reference vehicle moving trajectories),
and add sensors errors (obtained from sensor specifications or lab calibration) to the reference signals
to generate pseudo-IMU signals. Compared with lab calibration, the simulation method is closer
to the evaluation of navigation performance because one can process the simulated signals and
evaluate the navigation results. Meanwhile, compared with field tests, simulation has three advantages:
(a) simulation is more flexible. Users can design vehicle moving trajectories and IMU data according
to requirements [20,21]; (b) through simulation, one can evaluate the impact of one certain factor
(e.g., one type of sensor error or vehicle motion condition) [22]; and (c) simulation is cost-effective, as it
can be implemented without any hardware cost. However, both vehicle motions and sensor errors are
simulated, which may be different from those in actual situation. Even though it is straightforward to
simulate the IMU errors, for some types of errors (e.g., temperature variations, long-term drifts, and the
stochastic errors), it is difficult to ensure that the simulated values are the same as the corresponding
actual sensor errors in practice. Some high-grade MEMS sensors have an embedded temperature drift
compensation; however, many low-cost MEMS sensors do not have such a mechanism. In addition,
the GNSS signals are artificial, as well.

(3) Field Testing

GNSS/INS field testing is the most realistic and accurate approach to evaluate the performance
of IMUs [23,24]. In a field test, IMU errors, GNSS signals, and vehicle motions are all real.
However, it takes significant expenses and time to conduct field tests. Furthermore, to cover different
trajectories and road conditions, a group of tests is required, which will be even more expensive and
time-consuming. Therefore, it is not practical to test every new IMU, especially a low-cost MEMS IMU,
through field testing.

To fill the gap among the methods mentioned above, we present a time- and cost-effective way
to evaluate the navigation performance of a new IMU. The proposed method is named as “Signal
Grafting (SG)”. The SG method is essentially a hybrid simulation and testing method that generates
IMU data through signal grafting (i.e., by adding real signals from the tested IMU to signals from a
reference IMU). The basic idea behind this implementation is that sensor errors and their stabilities
of a higher-grade IMU are several times lower than those of a lower-grade IMU (Table 1 shows the
specifications of various grades of IMUs). Therefore, signals from a higher-grade IMU (that has been
calibrated in lab to mitigate the majority of deterministic errors) can be regarded as “reference” outputs
that do not have sensor errors when compared with signals from a lower-grade IMU.

Table 1. Specifications of the tested IMUs.

Sensor Characteristic
IMU

MP-POS830 MP-POS310 MP-POS1100

Grade Navigation Tactical MEMS

Gyro
Bias instability (deg/h) 0.005 0.5 <10

White noise (ARW, deg/sqrt (h)) 0.0022 0.05 0.15
Scale Factor (ppm) 10 300 1000

Accel.
Bias instability (mg) 0.025 0.5 <1

White noise (VRW, m/s/sqrt (h)) 0.00075 0.1 0.06
Scale Factor (ppm) 10 300 1000
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Compared to the lab calibration method, the SG method is implemented at the navigation
performance level, instead of the sensor error level. Compared to the INS simulation method, the SG
method uses real signals. Both the real vehicle motions and GNSS signals can be provided during
the SG process. Meanwhile, the sensor errors extracted from the IMU data are real, instead of being
simulated by using sensor error models. Compared to the field testing method, the SG method is much
more efficient and economic.

The main contributions of this research are that it presents a novel SG method, and makes a
comprehensive verification on the SG method, including its validity to both medium- and low-grade
IMUs. The proposed SG method has several benefits:

(1) It can not only improve the efficiency and flexibility of the experiment, but also save the
cost of evaluation. In the SG method, only one set of typical field tests with a higher-grade
(e.g., navigation-grade) IMU is needed, and the collected data can be used as reference data to
evaluate various IMUs in future. For the IMUs to be tested, only data collected in lab are needed,
as such data can be grafted to the reference data to generate the SG IMU data (i.e., IMU signals
that are generated by using the SG method and can be used in the same way as those collected in
real field tests).

(2) The SG method provides an extra evaluation approach before the implementation of real field
tests. This is important because various types of IMUs from different manufacturers come to
the market every year. Thus, it is not time- and cost-affordable for a researcher to develop the
data-collection hardware platform and algorithm for every IMU, and evaluate them through
real tests. However, through the use of the SG method, one can first evaluate an IMU by simply
grafting its signals to the reference data, and can decide whether to buy the development kit and
test the IMU or not.

(3) It provides a general evaluation process for various IMUs. Specifically, with this method, it
is feasible to compare the navigation performances (e.g., the attitude and position results) of
different IMUs directly when the signals from these IMUs are grafted to the same set of reference
trajectory. In this case, it is similar to the case that different types of IMU were installed on the
same point on the same vehicle that moved with the same motion conditions, and in the same
navigation environment.

(4) To use the SG method, only one set of real test trajectories (i.e., the reference trajectory) is needed.
Thus, one can focus on designing and optimizing this trajectory. Once the reference trajectory
has been well-designed (e.g., it covers various types of vehicle motions and experiences different
kinds of navigation environments such as open sky, urban canyon, forest, and underground for
land-based navigation applications), this trajectory is valuable for the other researchers. The
peers can also graft their IMU signals to the reference signal and implement the SG method to
evaluate their IMUs.

(5) The SG method can generate datasets under some extreme conditions (e.g., in the condition of
extreme temperature or quick temperature variation), which cannot be achieved through real
field tests.

Form the point (2) mentioned above, it is notable that the purpose of our research is to provide
an extra evaluation approach to guide the choose of a new IMU, instead of totally replacing the field
testing method by the proposed method, although the test results in this research indicated that the
proposed SG method provided similar results as real field tests.

Additionally, this paper presents and evaluates two strategies for generating the SG data:

(1) Basic-error strategy: grafting the extracted basic sensor errors to the reference data to generate
the SG #1 IMU data, and

(2) Full-error strategy: using the real-time function graft the full set of IMU errors (i.e., basic sensor
errors + dynamic sensor errors) to the reference data to generate the SG #2 IMU data, and
comparing their results.
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In this paper, the basic errors are the sensor errors that always exist when the sensor is working,
no matter whether the device is moving or not. Examples of the basic errors are biases and noise.
On the other hand, the dynamic errors are the sensor errors which show an impact only when the
device is moving. Examples of the dynamic errors are scale factor errors and cross-axis sensitivities
(i.e., non-orthogonalities).

The outline of this paper is as follows: Section 2 covers a brief description of the SG method.
Section 3 describes the experimental setup and data processing results to verify this method. Finally,
the summary and conclusions of this study are provided in Section 4.

2. Methodology

The proposed SG method is a hybrid simulation and testing method that generates IMU data
through signal grafting (i.e., adding real signals from the tested IMU to signals from a higher-grade
reference IMU). The main steps for the implementation and verification of the method can be described
as follows (also shown in Figure 1).
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#3; light blue: Step #4).

Step #1: collect reference signals (i.e., design the reference trajectory, and conduct field tests with a
higher-grade IMU).

Step #2: obtain in-lab basic errors signals and real-time function from the IMU to be tested.
Step #3: implement signal grafting.
Step #4: process navigation data, and evaluate the solution.
The proposed SG method is effective because Step #1 is the only in-field step, while the other

steps are conducted in lab. Furthermore, the SG method is economic because the Step #1 is needed to
be implemented only once to obtain the signals from the higher-grade IMU used and the navigation
solution provided through the integration of this IMU and GNSS. For the evaluation of every IMU to
be tested, one just needs the outcomes from Step #1, instead of implementing Step #1 every time. The
four steps are described separately in this section.

2.1. Step #1: Reference Signals Generation

It is preferred that the reference trajectory covers various vehicle motion conditions and navigation
environments. The higher-grade IMU can provide two types of references: (a) after in-lab calibration,
the outputs from the higher-grade IMU can be regarded as “reference” IMU signals that do not have
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sensor errors when compared to the signals from a lower-grade IMU; moreover, (b) the “reference”
navigation solution obtained through the integration of the information from the higher-grade IMU
and GNSS. A Kalman filter is used for GNSS/INS integration, and a backward smoothing can be used
enhance the integrated navigation solution.

To ensure the reliability of the reference IMU signals and reference trajectory, lab calibration is
particularly useful to mitigate the majority of the deterministic errors, including biases, scale factor
errors, and non-orthogonalities of the higher-grade IMU [18]. Therefore, in this section, we first
introduce the sensor error models and the lab calibration method.

2.1.1. Sensor Error Models

The output of accelerometers and gyros can be written as [14]:

f̂ “ rI` Sa `Nas f` ba `wa (1)

ω̂ “
“

I` Sg `Ng
‰

ω` bg `wg (2)

where f̂ and ω̂ are the error vectors of the accelerometer-derived specific forces and the gyro-derived
angular rates, f and ω are the reference specific forces and the reference angular rates, I is the
identity matrix, Sa and Sg are the diagonal matrices containing the scale factor errors, ba and bg are
the accelerometer and the gyro biases, Na and Ng are the skew-symmetric matrices containing the
non-orthogonalities, and wa and wg represent accelerometer and gyro noise.

2.1.2. Lab Calibration

Among many of the calibration methods, the six-position static and rate tests method is most
commonly used due to its reliability and simplicity of implementation [14]. This method can be used
to get a full set of deterministic sensor errors (i.e., biases, scale factor errors and non-orthogonalities).

To estimate a full set of accelerometer errors, the output of a triad of accelerometers is represented
in matrix form by:

»

—

–

f̂x

f̂y

f̂z

fi

ffi

fl

“

»

—

–

1` Sx Nyx Nzx

Nxy 1` Sy Nzy

Nxz Nyz 1` Sz

bax
bay
baz

fi

ffi

fl

looooooooooooooooooooooooomooooooooooooooooooooooooon

M

»

—

—

—

–

fx

fy

fz

1

fi

ffi

ffi

ffi

fl

(3)

where the diagonal S elements are the scale factors, the off diagonal m elements represent the
non-orthogonalities and the b components are the biases, fx, fy, and fz are the x-, y-, and z- axis
components of f in formula (1), respectively, and f̂x, f̂y, and f̂z are the components of f̂. In the calibration
scheme, successively, the axis of each accelerometer is kept pointing upwards and downwards for a
period of time and the ideal acceleration can be represented as follows:

f11 “

»

—

–

g
0
0

fi

ffi

fl

f12 “

»

—

–

´g
0
0

fi

ffi

fl

f13 “

»

—

–

0
g
0

fi

ffi

fl

f14 “

»

—

–

0
´g
0

fi

ffi

fl

f15 “

»

—

–

0
0
g

fi

ffi

fl

f16 “

»

—

–

0
0
´g

fi

ffi

fl

(4)

Then, the design matrix can be denoted by A and the measured acceleration of the accelerometer
is denoted by U.

A “

«

f11
1

f12
1

f13
1

f14
1

f15
1

f16
1

ff

(5)

U “

”

u1 u2 u3 u4 u5 u6

ı

(6)
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In this case, the column vector of the U matrix should be:

u1 “

»

—

–

f̂x

f̂y

f̂z

fi

ffi

fl

X´upwards

u2 “

»

—

–

f̂x

f̂y

f̂z

fi

ffi

fl

X´downwards

(7)

u3, u4, u5, and u6 are similar with u1 and u2. Then, the M matrix can be estimated by the
least-square method:

M “ U ¨AT
´

A ¨AT
¯´1

(8)

Different from the calculation of the accelerometer errors, it is better to estimate the gyro errors
through a two-step method, instead of using the least-square method directly. The first step is
to calculate the biases using static data. The other step is to calculate the scale factor errors and
non-orthogonalities with dynamic data.

The bias of the i-axis (i = x, y, z) gyro can be calculated by:

bgi “
li´upwards ` li´downwards

2
(9)

where li´upwards and li´downwards are the gyro outputs when the axis points upwards and downwards,
respectively.

The scale factors of the i-axis gyro can be estimated using the same idea as the six-position method:

Sgi “
Li´clockwise ´ Li´antilockwise

2Lref
´ 1 (10)

where Sgi is gyro scale factor of the i-axis gyro, Li´clockwise and Li´antilockwise represent the angle
derived by the integration of the i-axis gyro output when the IMU is rotated around this axis by Lref
clockwise and counter-clockwise, respectively.

The non-orthogonalities between i-axis and j-axis can be estimated by the output of the j-axis
when the IMU is rotated around i-axis in both clockwise and counter-clockwise direction:

nij “
Lj´clockwise ´ Lj´antilockwise

2Lref
(11)

where nij are the non-orthogonalities of i-axis to j-axis, Lj´clockwise and Lj´antilockwise are the
output of the j-axis when the IMU is rotated around the i-axis by Lref in the clockwise or
counter-clockwise direction.

2.2. Step #2: Obtain IMU Basic Error Signals and Real-Time Fitting Functions in-Lab

Two types of IMU data. i.e., the static data and the dynamic data, can be collected in this step. The
static data of the tested IMU is used to extract the basic error signals of the IMU, while the dynamic
data of the tested IMU is collected to get the real-time fitting function of the IMU.

(a) Basic errors signals

In this step, we collect IMU outputs under static conditions for a time period. During static
periods, the effect of noises can be reduced through averaging the sensor outputs. For static data, the
effect of noise can be reduced through averaging the sensor outputs. The level of sensor errors caused
by noise [25], can be calculated by:

Daccuracy_b “
σRW
?

tstatic
(12)
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where σRW is the angular random walk (ARW) coefficient for gyros or velocity random walk (VRW)
coefficient for accelerometers, Daccuracy_b is the level of gyro or accelerometer errors, and tstatic is the
static time.

To extract the basic error signals of the tested IMU, the influences of the gravity and the Earth rate
should be removed from the static IMU data by:

fbasic´error “
rf´ fb (13)

ωbasic´error “ rω´ωb
ie (14)

where fbasic´error and ωbasic´error are the basic error signals of accelerometers and gyros. The basic
errors are comprised of sensor biases, noises, and other sensor errors exist when the IMU is static.
As shown in Table 1, biases are one main component in the basic errors. rf and rω are the actual outputs
of accelerometers and gyros, and fb andωb

ie are the theoretical outputs of accelerometers and gyros.
The generation of the basic error signals can be described as follows (also shown in Figure 2).
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To transform the IMU outputs from the body frame (i.e., b-frame) to the navigation frame
(i.e., n-frame), the direction cosine matrix (DCM) is calculated by:

Cn
b “

¨

˚

˝

cosθcosψ ´cosφsinψ` sinφsinθcosψ sinφsinψ` cosφsinθcosψ
cosθsinψ cosφcosψ` sinφsinθsinψ ´sinφcosψ` cosφsinθsinψ
´sinθ sinφcosθ cosφcosθ

˛

‹

‚

(15)

Cb
n “ pC

n
bq

T (16)

where Cn
b is the DCM from the b-frame to the n-frame. The sign pqT represents the transposition of a

matrix. φ, θ, and ψ are the roll, pitch, and heading angles, respectively.

fb “ Cb
nfn (17)

fn “

¨

˚

˝

0
0
g

˛

‹

‚

(18)

fb is the specific force in the b-frame (i.e., the theoretical output of accelerometers), fn is the specific
force in the n-frame, and g is the normal gravity on the local position.

ωb
ie “ Cb

nω
n
ie (19)



Sensors 2016, 16, 854 9 of 21

ωn
ie “

¨

˚

˝

ωecosϕ
0

´ωesinϕ

˛

‹

‚

(20)

ωb
ie is the angular rate of the Earth frame (i.e., e-frame) relative to the inertial frame (i.e., i-frame)

in the b-frame,ωn
ie is the angular rate of the e-frame relative to the i-frame in the n-frame,ωe is the

angular rate of the Earth, and ϕ is the latitude.

(b) Real-time fitting function

In this step, we collect the accelerometer outputs under motion conditions that have different
accelerations, and collect the gyro outputs under motion conditions that have various angular rates.
The motion conditions with various accelerations or angular rates can be provided through the use
of a turntable. To provide such motions, a common way is to control the turntable to make the IMU
experience various attitudes to ensure the accelerometer axes sense different specific forces, and control
the turntable to bring in rotations with various angular rates around each gyro axis. Additionally, the
time length of the specific dynamic condition should be long enough to ensure that the influence of
sensor biases is more significant than that of the noise.

Once the dynamic data is obtained, a fitting function is used to add the full set of error signals
from the tested IMU to higher-end reference IMU signals. The fitting function is obtained with the
aid of MATLAB® Curve Fitting ToolboxTM from the MathWorks TM Inc. Equation (21) is a function
command using the Curve Fitting Toolbox:

p “ polyfitpx, y, nq (21)

where x is the theoretical output vector of accelerometers or gyros, y is the actual output vector of
accelerometers or gyros. n and p are the highest power and coefficient vector of the polynomial,
respectively.

2.3. Step #3: Signal Grafting (SG)

This step grafts the extracted sensor errors from Step #2 to the reference data by following the
strategies described at the end of the introduction, specifically, the basic-error strategy which grafts
the basic errors extracted from static IMU data, and the full-error strategy which uses the full set of
errors that includes both the basic errors and the dynamic errors generated from the fitting function.
The corresponding generated IMU data are denoted as SG #1 and SG #2 IMU data, respectively. The
implementation of SG is shown in Figure 3.
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ψ

ψ
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where, 
cr , 

c v  and 
ψ

 are the time derivative of position errors, velocity errors and attitude 

errors, respectively; 
cg  is the gravity error projected to the c-frame; 

c

ieω  is the angular rate of the 

e-frame relative to the i-frame, projected to the c-frame; 
c

ecω
 is the angular rate of the c-frame 

relative to the e-frame, projected to the c-frame; 
b

ib
 and 

b f  are the gyro and accelerometer 

output errors; and 
p

bC
 is the DCM from the b-frame to the platform frame (i.e., p-frame). 
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The performance of two strategies were compared to show the impact of both the basic and
dynamic errors on the SG method. In principle, the basic-error strategy can only reflect the impact
of basic IMU errors, which may have major impact on the performance of navigation applications
that have low or medium vehicle dynamics. For high dynamic applications, dynamic IMU errors may
become dominant and the full-error strategy may become appropriate. Dynamics refer to the scenarios
with correlation motion variations; here, taking the speed for an example, in the low dynamic, the
vehicle speed range is 0 to 20 km/h and in the medium dynamic, the vehicle speed range is 20 to
40 km/h.

2.4. Step #4: Data Processing and Performance Evaluation

This step processes the SG IMU datasets generated by the SG method, and evaluates the navigation
performance by comparing the result with the reference trajectory obtained by using the integration of
a higher-grade IMU and GNSS. Meanwhile, in this research, we design another performance evaluation
approach by collecting the real field data of the tested IMU together with the higher-grade IMU data
in Step #1, processing the real tested IMU data with the same navigation algorithm, and comparing
the result with that obtained by using the SG IMU data.

This section describes the data processing algorithm, and gives a structure of the loosely-coupled
method for fusing GNSS and INS information. In such integration, the GNSS-derived position
information is updating the MEMS sensors through a Kalman filter while the IMU is used to provide
the navigation information during GNSS signal outages. Refer to [26] for details about the loosely
coupled GNSS/INS integration Kalman filter algorithm.

(a) Kalman Filter Dynamic Models

The INS error models with respect to the computer frame (i.e., c-frame, locally level frame at the
computed position) are used as the Kalman filter dynamic models. The used error model is called the
ψ-angle error model since the attitude errors are expressed in terms of the ψ-angle [27,28].

δ
.
rc
“ ´ωc

ec ˆ δrc ` δvc

δ
.
vc
“ δgc ´ p2ωc

ie `ω
c
ecq ˆ δvc ` fc ˆψ`Cp

bδf
b

.
ψ “ ´pωc

ie `ω
c
ecq ˆψ´Cp

bδω
b
ib

(22)

where, δ
.
rc, δ

.
vc and

.
ψ are the time derivative of position errors, velocity errors and attitude errors,

respectively; δgc is the gravity error projected to the c-frame; ωc
ie is the angular rate of the e-frame

relative to the i-frame, projected to the c-frame;ωc
ec is the angular rate of the c-frame relative to the

e-frame, projected to the c-frame; δωb
ib and δfb are the gyro and accelerometer output errors; and Cp

b is
the DCM from the b-frame to the platform frame (i.e., p-frame).

(b) Kalman Filter Measurement Models

GNSS position and/or velocity can be used as the Kalman filter measurement updates in the
data processing algorithm. The concrete measurements vectors of the Kalman filter are the difference
between the INS-derived position and/or velocity and the GNSS information, i.e.,

z “

˜

rINS ´ rGNSS

vINS ´ vGNSS

¸

(23)

The information fusion is realized through the loosely-coupled and closed-loop implementation
of GNSS/INS integration, as shown in Figure 4. Here, the estimated IMU errors are fed back to correct
the INS. Refer to [26] for details about correlation of INS errors.
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Essentially, the proposed SG method can be regarded as a balance between the INS simulation
and field testing methods. The SG method has unique advantages over the three conventional IMU
evaluation methods mentioned in Section 1:

� Compared to the lab calibration method, the SG method can implement the evaluation at the
navigation performance level, instead of the sensor error level.

� Compared to the INS simulation method, the SG method uses real signals. First, the vehicle
motion types and parameters, navigation scenarios, and GNSS signals are all real. Meanwhile,
sensor errors are extracted from the real data of the tested IMU, instead of being simulated by
using sensor error models.

� Compared to the field testing method, the SG method is much more efficient and economic. In the
SG method, only one set of typical field tests with a higher-grade IMU is needed and can be used
to evaluate various IMUs in future. Only data collected in the lab are needed from the tested
IMUs; this implementation saves the hardware cost and time for the both the standalone INS and
hardware integration with GNSS. Moreover, the SG method can provide datasets collected under
some extreme conditions (e.g., under the condition of extreme temperature or quick temperature
variation), which cannot be achieved through real field tests.

3. Experimental Verification

3.1. Test Nomenclature

Before introducing the tests, it is necessary to explain the terms used, including:

(a) IMU_SG#1: IMU data generated by using the basic-error strategy that considers basic IMU errors.
(b) IMU_SG#2: IMU data generated by using the full-error strategy that considers the full set of

IMU errors.
(c) IMU_REAL: real outputs of the tested IMU.
(d) IMU_REF: real outputs of the higher-grade IMU.
(e) SOL_1: generating navigation solutions through the integration of the IMU_SG#1 and real

GNSS data.
(f) SOL_2: generating navigation solutions through the integration of the IMU_SG#2 and real

GNSS data.
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(g) SOL_REAL: generating navigation solutions through the integration of the real outputs of the
tested IMU and real GNSS data.

(h) SOL_REF: generating navigation solutions through the integration of the real outputs of the
higher-grade IMU and real GNSS data.

(i) ERR _1: absolute differences between SOL_1 and SOL_REF solutions.
(j) ERR_2: absolute differences between SOL_2 and SOL_REF solutions.

(k) ERR_REAL: absolute differences between SOL_REAL and SOL_REF solutions.
(l) DIFF _1: result of ERR_1 divided by ERR_REAL.

(m) DIFF _2: result of ERR_2 divided by ERR_REAL. DIFF _2 is an external indicator, which is used to
reflect the performance of the proposed SG method by comparing its results with those from field
testing. The difference between DIFF_2 and DIFF_1 indicate the internal differences between
results when using the same SG method but following two SG strategies:

DIFF_1 “ |SOL_1´ SOL _REAL| ˚
1

ERR_REAL
(24)

DIFF_2 “ |SOL_2´ SOL _REAL| ˚
1

ERR_REAL
(25)

3.2. Test Description

SOL_REAL is not needed for the purpose of implementing the SG method; it is simply used as
a reference for evaluating whether the SG method can provide similar results as real field testing.
SOL_REF is utilized to provide a reference navigation trajectory.

To evaluate the results, we first obtained the navigation errors of SOL_1, SOL_2 and SOL_REAL
by comparing their navigation results with that of SOL_REF. Then, we compared the SOL_1 and
SOL_2 errors with the SOL_REAL errors to illustrate whether the SG results match the real one.
Meanwhile, we made a comparison between the SOL_1 and SOL_2 results to show whether it is
necessary to conduct the full-error strategy, because the implementation of the full-error strategy is
more time-consuming, and requires a turntable.

Data processing and result evaluation of the SG can be described as follows (also shown in
Figure 5):

To verify the validity of the SG method, three land-based field tests that lasted for 60~75 min were
carried out in an open-sky environment with optimum GNSS signals. In Figure 6, three subfigures on
the right illustrate Trajectories #1, #2, and #3, respectively, while the sub-figure on the left shows the
area of these tests in the same map.

In each test, the vehicle was equipped with a GNSS receiver, a navigation-grade IMU, and
two different IMUs provided by Whhan MAP Space Time Navigation Technology Inc. [29]. The
navigation-grade IMU was a MP-POS830 with a gyro bias of under 0.01 deg/h. Two IMUs to be tested
included a tactical-grade IMU (MP-POS310) and a MEMS IMU (MP-POS1100). Table 1 shows the
specifications of each IMU.

The GNSS/INS data processing software, Cinertial 1.0, developed by the Navigation Group of
the GNSS Research Center at Wuhan University [30], was used to process the raw IMU data with
carrier-phase differential GNSS (DGNSS) solutions in a loosely-coupled architecture. The position,
velocity and attitude estimation results were obtained by integrating the IMU_SG#1, IMU_SG#2 and
IMU_REAL data with DGNSS. Meanwhile, the post-processed integration result of the POS830 IMU
and DGNSS was used to provide the reference position, velocity, and attitude, so as to calculate the
errors of SOL_1, SOL_2, and SOL_REAL. Furthermore, in order to compare the essential performance
of each IMU by itself, a set of GNSS outages of 60 s were artificially added in the data processing
process [31]. The position drifts during these GNSS outage periods were checked.
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3.3. Results and Analysis

For each tested IMU, the SG results were compared with the corresponding real field test results
by plotting the position, velocity, and attitude errors in one representative sample test. Furthermore,
the statistical results of their differences were summarized in the following tables [32,33].

3.3.1. Tactical-grade IMU: MP-POS310

The parameter setting of the system noise matrix (Q) and measurement noise matrix (R) for the
integration of POS310 and DGNSS are shown in Equations (26) and (27), respectively.

Q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 diag
!

pARWq2
)

03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 diag
!

pVRWq2
)

03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 diag
"

2σgb
2

Tgb

*

03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 diag
!

2σab
2

Tab

)

03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 diag
"

2σgs
2

Tgs

*

03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 diag
!

2σas
2

Tas

)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(26)

R “

«

pGNSS_Pstdq23ˆ3 03ˆ3

03ˆ3 pGNSS_Vstdq23ˆ3

ff

(27)

where ARW are the angle random walk of gyros, VRW are the velocity random walk of accelerometers,
σgb and σab are the gyro and accelerometer bias instabilities, σgs and σas are the gyro and accelerometer
scale factor errors, Tgb, Tab, Tgs, and Tas are the correlation time of the random processes, GNSS_Pstd
and GNSS_Vstd are the GNSS position and velocity measurement errors, and 03ˆ3 represents a 3ˆ 3
zero matrix.

The elements in the matrix Q (i.e., initial values of sensor output uncertainties) are set according
to the corresponding specifications of the exploited sensors. The elements in the R matrix should be
determined according to the actual measurement precision of GNSS.

As mentioned in Section 3.1, GNSS outages (60 s) were added in the data processing to evaluate
the performance of a standalone IMU [31]. Figures 7–9 show the POS310 position, velocity, and attitude
errors when integrated with GNSS, but had GNSS outages by using ERR_1, ERR_2, and ERR_REAL,
respectively. The cyan dots indicate the periods of GNSS outages. The significant drifts during the
outages reflected the performance of the standalone POS310 IMU when using the IMU_SG#1 and
IMU_SG#2 signals and real outputs. Specifically, for results of ERR_1, ERR_2, and ERR_REAL, the
maximum values were all approximately 10 m for position errors and 0.4 m/s for velocity errors. The
magnitudes and features of the ERR_1 and ERR_2 navigation errors generally matched with that of
ERR_REAL. These outcomes indicated the validity of the proposed SG method for the evaluation of a
tactical-grade IMU.

Table 2 illustrates the following outcomes (when using the tactical-grade IMU POS310 during
GNSS outage periods lasted for 60 s):

� When navigating with a standalone, tactical-grade IMU for 60 s, the navigation accuracy was 5 m
for horizontal positions, 0.7 m for vertical position, 0.03 deg for horizontal attitudes, and 0.1 deg
for the heading. The navigation accuracy was described by the root mean square (RMS) values of
the navigation errors (i.e., differences between navigation results and the corresponding results
from the reference system). The RMS values are calculated by using the INS navigation errors
during multiple GNSS outage periods. Among 23 GNSS outage periods, the maximum values of
position drifts were 10.350 m, 6.827 m, and 0.897 m along the north, east, and down directions,
respectively. The maximum attitude drifts reached 0.053 deg, 0.043 deg, and 0.165 deg for roll,
pitch, and heading, respectively.
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� The difference between the ERR_2 and ERR_REAL solutions was below 5% for both position and
attitude errors. This outcome illustrated that when navigating this tactical-grade IMU by itself
over a periods of 60 s, the proposed SG method can achieve the similar performance to field tests
that utilized real IMU data.

� The difference between the ERR_1 and ERR_2 solutions were under 7% for horizontal attitude
errors, and nearly 20% for position errors and 28% for the heading error. This phenomenon
indicated that the differences between the basic-error strategy (i.e., considering only basic IMU
errors) and the full-error strategy (i.e., considering the full set of IMU errors) results were
significant for both position and heading in this case. When comparing results with and without
GNSS, it was found that the dynamic sensor errors had larger impact on the SG method when
there was no GNSS updates.
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Table 2. Statistical navigation errors of INS (POS310). 

 
Position Errors (RMS, m) Attitude Errors (RMS, deg) 

Horizontal * Vertical Roll Pitch Heading 

ERR_1 3.758 0.518 0.027 0.022 0.066 

ERR_2 4.857 0.651 0.029 0.025 0.093 

ERR_REAL 4.688 0.651 0.029 0.024 0.097 

DIFF_1 19.84% 20.43% 6.90% 8.33% 31.96% 

DIFF_2 3.60% 0.00% 0.00% 4.17% 4.12% 

* “Horizontal” = 2 2

N EP P , “Vertical” = 
DP . 

3.3.2. MEMS IMU: MP-POS1100 
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Figure 8. Navigation errors of GNSS/INS with frequent GNSS outages (POS310, ERR_2).



Sensors 2016, 16, 854 16 of 21

Sensors 2016, 16, 854 16 of 21 

 

 

Figure 8. Navigation errors of GNSS/INS with frequent GNSS outages (POS310, ERR_2). 

 

Figure 9. Navigation errors of GNSS/INS with frequent GNSS outages (POS310, ERR_REAL). 

Table 2. Statistical navigation errors of INS (POS310). 

 
Position Errors (RMS, m) Attitude Errors (RMS, deg) 

Horizontal * Vertical Roll Pitch Heading 

ERR_1 3.758 0.518 0.027 0.022 0.066 

ERR_2 4.857 0.651 0.029 0.025 0.093 

ERR_REAL 4.688 0.651 0.029 0.024 0.097 

DIFF_1 19.84% 20.43% 6.90% 8.33% 31.96% 

DIFF_2 3.60% 0.00% 0.00% 4.17% 4.12% 

* “Horizontal” = 2 2

N EP P , “Vertical” = 
DP . 

3.3.2. MEMS IMU: MP-POS1100 

4000 5000 6000 7000 8000 9000
-20

0

20

P
o

s
it

io
n

 E
rr

o
r 

(m
)

GPS Time - 440000 (sec)

 

 
P

N

P
E

P
D

GNSS gaps

4000 5000 6000 7000 8000 9000
-0.5

0

0.5

V
e
lo

c
it

y
 E

rr
o

r 
(m

/s
)

GPS Time - 440000 (sec)

 

 
V

N

V
E

V
D

4000 5000 6000 7000 8000 9000
-0.5

0

0.5

A
tt

it
u

d
e
 E

rr
o

r 
(d

e
g

)

GPS Time - 440000 (sec)

 

 
Roll

Pitch

Yaw

4000 5000 6000 7000 8000 9000
-10

0

10

P
o

s
it

io
n

 E
rr

o
r 

(m
)

GPS Time - 440000 (sec)

 

 
P

N

P
E

P
D

GNSS gaps

4000 5000 6000 7000 8000 9000
-0.5

0

0.5

V
e

lo
c

it
y

 E
rr

o
r 

(m
/s

)

GPS Time - 440000 (sec)

 

 
V

N

V
E

V
D

4000 5000 6000 7000 8000 9000
-0.2

0

0.2

A
tt

it
u

d
e

 E
rr

o
r 

(d
e

g
)

GPS Time - 440000 (sec)

 

 
Roll

Pitch

Yaw

Figure 9. Navigation errors of GNSS/INS with frequent GNSS outages (POS310, ERR_REAL).

Table 2. Statistical navigation errors of INS (POS310).

Position Errors (RMS, m) Attitude Errors (RMS, deg)

Horizontal * Vertical Roll Pitch Heading

ERR_1 3.758 0.518 0.027 0.022 0.066
ERR_2 4.857 0.651 0.029 0.025 0.093

ERR_REAL 4.688 0.651 0.029 0.024 0.097
DIFF_1 19.84% 20.43% 6.90% 8.33% 31.96%
DIFF_2 3.60% 0.00% 0.00% 4.17% 4.12%

* “Horizontal” =
b

P2
N ` P2

E, “Vertical” = PD .

3.3.2. MEMS IMU: MP-POS1100

Compared with POS310, the POS1100 data were processed with the same navigation algorithm
but with different parameter settings. The parameter setting of the system noise matrix (Q) according
to the corresponding specifications of the MP-POS1100.

Figures 10–12 illustrate the navigation drifts during GNSS outage periods, respectively.
Additionally, Table 3 shows the statistical results.

Table 3 illustrates the following outcomes (when using the MEMS IMU POS1100 during GNSS
outage periods lasted for 60 s):

� When navigating with this MEMS IMU for 60 s, the navigation accuracy (RMS) increased to 20 m
for horizontal positions, 8 m for vertical position, 0.12 deg for horizontal attitudes, and 0.5 deg
for the heading. Such values were much larger than the corresponding values in Table 2 (with a
tactical-grade IMU). These outcomes make sense when comparing the sensor errors of these two
IMUs. Among all GNSS outage periods, the maximum values of position drifts were 23.930 m,
25.858 m, and 5.072 m along the north, east, and down directions, respectively. The maximum
attitude drifts reached 0.152 deg, 0.142 deg, and 0.902 deg for roll, pitch, and heading, respectively.

� The differences between the ERR_2 and ERR_REAL solutions were below 20% for position and
horizontal attitude errors, and 30% for heading errors. These differences were larger than those in
Table 2, but not significant in general. When analyzing the trend of the heading errors, we found
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that the differences mainly occurred during the periods when the vehicle was moving straight
with a constant velocity. Thus, the reason for the occurrence of differences may be explained as
follows: GNSS/INS integrated navigation systems suffer from poor observability of the heading
angle when the vehicle moved with weak dynamics [13,33,34]. Such an observability issue may
cause large uncertainty of the heading estimation result.

� The largest difference between the ERR_1 and ERR_2 occurred in the vertical position errors (33%).
The difference in DIFF_1 and DIFF_2 results further supported the outcome that the dynamic
sensor errors may have significant impact on the SG method when there was no GNSS update.
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Figure 10. Navigation errors of GNSS/INS with frequent GNSS outages (POS1100, ERR_1).
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Figure 11. Navigation errors of GNSS/INS with frequent GNSS outages (POS1100, ERR_2).
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Figure 12. Navigation errors of GNSS/INS with frequent GNSS outages (POS1100, ERR_REAL).

Table 3. Statistical navigation errors of INS (POS1100).

Position Errors (RMS, m) Attitude Errors (RMS, deg)

Horizontal * Vertical Roll Pitch Heading

ERR_1 12.983 3.131 0.077 0.063 0.334
ERR_2 20.422 7.842 0.113 0.117 0.378

ERR_REAL 17.657 6.566 0.100 0.098 0.516
DIFF_1 26.47% 52.31% 23.00% 35.71% 35.27%
DIFF_2 15.66% 19.43% 13.00% 19.39% 26.74%

* “Horizontal” =
b

P2
N ` P2

E, “Vertical”=PD .

Comparing Tables 2 and 3, one obtains the following outcomes:

� For the tested tactical-grade IMU, the difference between the SG and field testing errors were
below 4.2% for all position and attitude errors when there were frequent GNSS outages (lasted
for 60 s). For the tested MEMS IMU, the maximum differences between the SG and field testing
errors was 19.4% for positions, 19.4% for horizontal attitudes, and 26.7% for heading, when there
were frequent GNSS outages (lasted for 60 s). The reason for the occurrence of differences is the
differences between the grafted signals and real signals. For the tested tactical-grade IMU, the
sensor error has good stability, the grafted signals can basically reflect real changes in the degree
and level. However, for the tested MEMS IMU, the stability of the sensor error is poorer; thus,
the result is susceptible to interference and change. (Table 1 shows the specifications of various
grades of IMUs).

According to the above results and analyses, the differences between the results of the SG method
and field testing were within an acceptable range for a rough evaluation of the performance of both
tactical-grade and low-cost MEMS IMUs. The performance of the SG method is even promising when
considering the fact that the SG method was implemented without any field tests by using the IMU to
be tested, and when considering that part of these differences might be caused by some uncontrollable
factors when implementing the field tests. Thus, the proposed SG method can be promoted for IMU
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performance evaluation because it can reflect the final navigation performance, be operated in a
convenient and efficient way, and reduce the expense and time of the field tests. Meanwhile, the
differences between ERR_1 and ERR_2 results indicated that it is necessary to take dynamic errors into
account to exploit the performance of the SG method.

4. Conclusions

This paper presents a time- and cost-effective IMU evaluation method (i.e., the SG method) and
makes comprehensive verifications and analyses on its performance. Three road tests involving two
grades of IMUs were conducted to verify the feasibility of the SG method. Furthermore, the SG results
were compared with real field testing results with frequent GNSS outages. For the tested tactical-grade
IMU, the difference between SG and field testing statistical errors were below 4.2% for all position
and attitude errors when there were frequent GNSS outages (lasting for 60 s). For the tested MEMS
IMU, the maximum differences between SG and field testing errors was 19.4% for positions, 19.4%
for horizontal attitudes, and 26.7% for heading when there were frequent GNSS outages. Therefore,
the differences between the results of the SG method and field testing were in an acceptable range
for a rough evaluation of the performance of both tactical-grade and low-cost MEMS IMUs. The
performance of the SG method is even promising when considering the fact that the SG method was
implemented without any field tests by using the IMU to be tested.

Therefore, this research provides an efficient and extremely low-cost approach to predict the
performance of the IMU in the lab before the implementation of real field tests. Furthermore, the SG
method is a general evaluation approach, which is feasible to compare the navigation performances of
different IMUs directly by grafting the signals from these IMUs to the same set of reference trajectories.
Thus, the well-designed reference data (which covers various types of vehicle motions and experiences
different kinds of navigation environments) from one researcher can be valuable for the peers, and be
useful to compare the solutions from different research groups.

This paper also compared the performance of two SG strategies and indicated that it is necessary
to take dynamic errors into account to exploit the performance of the SG method. Future works will
focus on improving the SG method by grafting more sensor errors, such as non-orthogonalities and
non-linearities, and evaluating the method with airborne and marine navigation data.

Acknowledgments: This work was supported in part by the National High Technology Research and Develop
Program of China (863 Program, 2015AA124002), the High Technology Open Research Fund of 54th Institute
(KX152600025), the China Postdoctoral Science Foundation (212-211000033). The colleagues of the authors, Lin Gao,
Yalong Ban, Jian Kuang, and Zhongping Guo are acknowledged for helping collect the field test datasets used in
this paper.

Author Contributions: X.N., Q.W., and P.J. conceived and designed the research; Q.W. and Y.L. performed the
research; X.N., P.J., Q.W., Y.L., and Q.Z. analyzed the data; P.J., X.N., and Q.Z. contributed materials; X.N., Q.W.
and Y.L. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sasani, S.; Asgari, J.; Amiri-Simkooei, A. Improving MEMS-IMU/GPS integrated systems for land vehicle
navigation applications. GPS Solut. 2016, 20, 89–100. [CrossRef]

2. Georgy, J.; Noureldin, A.; Goodall, C. Vehicle navigator using a mixture particle filter for inertial
sensors/odometer/map data/GPS integration. IEEE Trans. Consum. Electron. 2012, 58, 544–552. [CrossRef]

3. Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR Integrated Navigation System for Urban and
Indoor Environments Using Hybrid Scan Matching Algorithm. Sensors 2015, 15, 23286–23302. [CrossRef]
[PubMed]

4. Alvarez, J.C.; Alvarez, D.; López, A.; González, R.C. Pedestrian navigation based on a waist-worn inertial
sensor. Sensors 2012, 12, 10536–10549. [CrossRef] [PubMed]

5. Sun, W.; Gao, Y. Fiber-based rotary strapdown inertial navigation system. Opt. Eng. 2013, 52. [CrossRef]

http://dx.doi.org/10.1007/s10291-015-0471-3
http://dx.doi.org/10.1109/TCE.2012.6227459
http://dx.doi.org/10.3390/s150923286
http://www.ncbi.nlm.nih.gov/pubmed/26389906
http://dx.doi.org/10.3390/s120810536
http://www.ncbi.nlm.nih.gov/pubmed/23112614
http://dx.doi.org/10.1117/1.OE.52.7.076106


Sensors 2016, 16, 854 20 of 21

6. Martin, H.F.S.; Groves, P.D.; Newman, M.; Faragher, R. A new approach to better low-cost MEMS IMU
performance using sensor arrays. In Proceedings of the 26th International Technical Meeting of The Satellite
Division of the Institute of Navigation (ION GNSS 2013), Nashville, TN, USA, September 16–20 2013;
pp. 2125–2142.

7. Varavva, V.; Hutton, J.; Lambert, A. Development of mapping position and orientation systems with
commercial grade MEMS. In Proceedings of the 23th IEEE International Symposium on Inertial Sensors and
Systems, Karlsruhe, HI, USA, 22–23 September 2015; pp. 1–12.

8. Tawk, Y.; Tomé, P.; Botteron, C. Implementation and performance of a GPS/INS tightly coupled assisted PLL
architecture using MEMS inertial sensors. Sensors 2014, 14, 3768–3796. [CrossRef] [PubMed]

9. Ravani, B.; Sherrett, J.; Lasky, T. A Comparative Experimental Evaluation of IMU Designs. In Proceedings of
the ASME IDETC Conference, Boston, MA, USA, 2–5 August 2015.

10. Niu, X.; Goodall, C.; Nassar, S.; El-Sheimy, N. An efficient method for evaluating the performance of MEMS
IMUs. In Proceedings of the IEEE/ION Position Location and Navigation Symposium, San Diego, CA, USA,
25–27 April 2006; pp. 1–6.

11. Troni, G.; Kinsey, J.; Yoerger, D.; Whitcomb, L. Field performance evaluation of new methods for in-situ
calibration of attitude and Doppler sensors for underwater vehicle navigation. In Proceedings of the Robotics
and Automation (ICRA 2012), St. Paul, MN, USA, 14–18 May 2012; pp. 5334–5339.

12. Abbott, E.; Powell, D. Land-vehicle navigation using GPS. Proc. IEEE 1999, 87, 145–162. [CrossRef]
13. Hong, S.; Lee, M.; Chun, H. Observability of error states in GPS/INS integration. IEEE Trans. Veh. Technol.

2005, 54, 731–743. [CrossRef]
14. Li, Y.; Niu, X.; Zhang, Q.; Zhang, H.; Shi, C. An in situ hand calibration method using a pseudo-observation

scheme for low-end inertial measurement units. Meas. Sci. Technol. 2012, 23, 105104. [CrossRef]
15. Chatfield, A.B.C. Fundamentals of High Accuracy Inertial Navigation, 3rd ed.; AIAA: Reston, VA, USA, 1997;

pp. 79–99.
16. Shin, E.; El-Sheimy, N. A new calibration method for strapdown inertial navigation systems. Z. Vermess.

2002, 127, 41–50.
17. Nassar, S. Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications.

Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, AB, Canada, 2006.
18. Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A standard testing and calibration procedure for low cost

MEMS inertial sensors and units. J. Navig. 2008, 61, 323–336. [CrossRef]
19. Grewal, M.S. Kalman Filtering; Springer Berlin Heidelberg: New York, NY, USA, 2011; pp. 705–717.
20. Liu, A.; Wu, H.; Dai, H. Modeling and simulation of the warship deformation estimation based on inertial

sensors. In Proceedings of the Guidance, Navigation and Control Conference (CGNCC 2014), Yantai, China,
8–10 August 2014; pp. 2596–2599.

21. Cheng, C.; Cheng, X.; Hao, X.; Zhao, M. Design and implementation of interactive strap-down inertial
navigation simulation system for UAV. In Proceedings of the Chinese Society for Optical Engineering
Conferences, Beijing, China, 12–15 November 2015; pp. 1–7.

22. Zampella, F.; Jiménez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Simulation of foot-mounted IMU signals for the
evaluation of PDR algorithms. In Proceedings of the International Conference on Indoor Positioning and
Indoor Navigation (IPIN 2011), Guimaraes, Portugal, 21–23 September 2011; pp. 1–7.

23. Chu, H.J.; Tsai, G.J.; Chiang, K.W.; Duong, T.T. GPS/MEMS INS data fusion and map matching in urban
areas. Sensors 2013, 13, 11280–11288. [CrossRef] [PubMed]

24. Adusumilli, S.; Bhatt, D.; Wang, H.; Bhattacharya, P.; Devabhaktuni, V. A low-cost INS/GPS integration
methodology based on random forest regression. Expert Syst. Appl. 2013, 40, 4653–4659. [CrossRef]

25. Zhu, K.; Zhang, C.; Song, N. Effection of Angle Random Walk of Fiber Optic Gyro (FOG) on INS. Piez. Acoust.
2007, 3, 292–294.

26. Shin, E.-H. Estimation Techniques for Low-Cost Inertial Navigation. Ph.D. Thesis, Department of Geomatics
Engineering, University of Calgary, Calgary, AB, Canada, 2006.

27. Groves, P. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; Artech House:
Boston, MA, USA, 2013; pp. 81–297.

28. Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology, 2nd ed.; IET: Herts, United Kingdom, 2004;
pp. 263–274.

http://dx.doi.org/10.3390/s140203768
http://www.ncbi.nlm.nih.gov/pubmed/24569773
http://dx.doi.org/10.1109/5.736347
http://dx.doi.org/10.1109/TVT.2004.841540
http://dx.doi.org/10.1088/0957-0233/23/10/105104
http://dx.doi.org/10.1017/S0373463307004560
http://dx.doi.org/10.3390/s130911280
http://www.ncbi.nlm.nih.gov/pubmed/23979480
http://dx.doi.org/10.1016/j.eswa.2013.02.002


Sensors 2016, 16, 854 21 of 21

29. Wuhan MAP Space Time Navigation Technology Inc. Available online: http://www.whmpst.com/en/
(accessed on 8 June 2016).

30. Niu, X.; Zhang, Q.; Gong, L.; Liu, C.; Zhang, H.; Shi, C.; Coleman, M. Development and evaluation of
GNSS/INS data processing software for position and orientation systems. Surv. Rev. 2015, 47, 87–98.
[CrossRef]

31. Niu, X.; Zhang, H.; Shi, C.; Chiang, K.; El-Sheimy, N. A Proposed Evaluation Standard for the Navigation
Results of MEMS INS/GPS Integrated Systems. In Proceedings of the International Symposium on
GPS/GNSS (2010), Taipei, Taiwan, 26–28 October 2010; pp. 1–5.

32. Mourcou, Q.; Fleury, A.; Franco, C.; Klopcic, F.; Vuillerme, N. Performance evaluation of smartphone inertial
sensors measurement for range of motion. Sensors 2015, 15, 23168–23187. [CrossRef] [PubMed]

33. Sessa, S.; Zecca, M.; Lin, Z.; Bartolomeo, L.; Ishii, H.; Takanishi, A. A methodology for the performance
evaluation of inertial measurement units. J. Intell. Robot. Syst. 2013, 71, 143–157. [CrossRef]

34. Wu, Z.; Yao, M.; Ma, H.; Jia, W. Improving accuracy of the vehicle attitude estimation for low-cost INS/GPS
integration aided by the GPS-measured course angle. IEEE Trans. Intell. Transp. Syst. 2013, 14, 553–564.
[CrossRef]

35. Dingjie, W.; Liang, Z.; Jie, W. On GNSS/MIMU integrated navigation system based on observability theory.
In Proceedings of the 33rd Chinese Control Conference (CCC 2014), Nanjing, China, 28–30 July 2014;
pp. 853–858.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.whmpst.com/en/
http://dx.doi.org/10.1179/1752270614Y.0000000099
http://dx.doi.org/10.3390/s150923168
http://www.ncbi.nlm.nih.gov/pubmed/26389900
http://dx.doi.org/10.1007/s10846-012-9772-8
http://dx.doi.org/10.1109/TITS.2012.2224343
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Methodology 
	Step #1: Reference Signals Generation 
	Sensor Error Models 
	Lab Calibration 

	Step #2: Obtain IMU Basic Error Signals and Real-Time Fitting Functions in-Lab 
	Step #3: Signal Grafting (SG) 
	Step #4: Data Processing and Performance Evaluation 

	Experimental Verification 
	Test Nomenclature 
	Test Description 
	Results and Analysis 
	Tactical-grade IMU: MP-POS310 
	MEMS IMU: MP-POS1100 


	Conclusions 

