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Abstract: In order to improve the tracking accuracy, model estimation accuracy and quick response
of multiple model maneuvering target tracking, the interacting multiple models five degree cubature
Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting
multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously
enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter
(5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature
rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm.
Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth
switching when disposing different maneuver models, and it also performs better than the interacting
multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman
filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

Keywords: target tracking; cubature Kalman filter; unscented Kalman filter; interacting
multiple models

1. Introduction

Bayes filtering algorithms have been broadly used in target tracking systems [1–4], while a large
number of Gaussian approximation filters and Monte Carlo filters have been introduced to solve target
tracking problems [5]. Although the particle filter (PF) can deal with non-linear and non-Gaussian
systems, the computational complexity always makes its use prohibitive [6]. Gaussian approximation
filtering algorithms are more efficient. Among the Gaussian approximation filters, the extended
Kalman filter (EKF) has been widely used in nonlinear systems [7,8]. It uses first order Taylor series
expansion, which can induce deviations when the systems have higher order and complex non-linear
character. In order to reduce the system linearization errors, the unscented Kalman filter (UKF) was
introduced to deal with nonlinear systems and it outperforms EKF [9]. Recently, Arasaratnam and
Haykin presented the cubature Kalman filter (CKF) based on the spherical-radial cubature rule [10,11].
The CKF has a rigid mathematical proof that is different from the UKF, and both UKF and CKF can
approximate the model of the system using specially chosen points. It has been proved that when the
dimension of the system is three, the CKF has the same performance as the UKF [12].

Blom and Shalom have proposed the interacting multiple model (IMM) algorithm based on a
generalized pseudo-random algorithm to decrease the error of single model algorithm, which will
improve the quick response and accuracy of target tracking [13]. The IMM algorithm processes all the
models simultaneously and changes different models by checking their weights. It has been proved that
the IMM algorithm performs better than any single model algorithm in complex tracking problems [14].
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Many filters have been integrated with the IMM algorithm to enhance the accuracy and quick response
of nonlinear target tracking [14–16]. The performance of interacting multiple models unscented Kalman
filter (IMMUKF) is compared with the interacting multiple models extended Kalman filter (IMMEKF),
and the results show that IMMUKF performs better than IMMEKF in bearings-only maneuvering
tracking problems [15]. However, when the dimension of the system is more than three, the weights
of UKF are negative which will cause the divergence of the filter [12,17]. Then the CKF is introduced
in IMM to overcome the issue, and the new algorithm can reduce the computational complexity
and improve the accuracy of the filter [17,18]. Lee, Motai and Choi have proposed the multichannel
interacting multiple model estimator (MC-IMME) to improve the overall performance of the traditional
particle filter, ensemble KF and IMME [19]. The multiple delta quaternion extended Kalman filter
is proposed in [20] for head orientation prediction. The proposed multiple model delta quaternion
(DQ) (MMDQ) filters integrate constant velocity (CV) and constant acceleration (CA) DQ filters in an
IMME framework, and the experimental results show that the new filter performs better than DQ-EKF
albeit with increased computation. In [21], the authors proposed a sensor fusion algorithm which
introduces dynamic noise covariance matrix into interacting multiple models. The proposed filter is
more accurate than the Kalman filter when there are abrupt changes in the path of the vehicle. In order
to improve the accuracy of the traditional IMM algorithm, the optimal mode transition matrix IMM
(OMTM-IMM) algorithm was proposed in [22]. The OMTM-IMM utilizes the linear minimum variance
theory to minimize the error of the initial state and the simulation results show that it outperforms the
traditional IMM when the sojourn times of the system are not known.

In this paper, the interacting multiple models five degree cubature Kalman filter (IMM5CKF)
based on a five degree cubature Kalman filter and IMM algorithm is proposed to improve the
tracking accuracy, model estimation accuracy and quick response of target tracking algorithms.
The negative weights of 5CKF go to 0 when the system dimensions go to8, so 5CKF is more stable
than UKF [23]. The simulation results show that the IMM5CKF exhibits better accuracy and switching
sensitivity performance than IMMCKF, IMMUKF, 5CKF and OMTM-IMM. The remainder of the
paper is organized as follows: the high degree of cubature Kalman filter is analyzed in Section 2.
In Section 3, IMM5CKF is derived. The performance of the target tracking algorithms are compared in
a benchmarked target tracking problem in Section 4. Conclusions are given in Section 5.

2. Five Degree Cubature Kalman Filter

The five degree cubature Kalman filter is proposed to improve the accuracy of the traditional
Cubature Kalman Filter [23]. It chooses deterministic odd points to transfer the nonlinear functions to
calculate the posterior mean and covariance of the system.

Supposing state variables x “ N px, Pq, where x is mathematical expectation of x, P is the
covariance of x. The five degree Cubature Kalman Filter includes two steps, time update and
measurement update.

2.1. Time Update

(1) Factorize

The Cholesky decomposition of Pk´1|k´1 is calculated as:

Pk´1|k´1 “ Sk´1|k´1ST
k´1|k´1 (1)

(2) Evaluate the cubature points:
X0i,k´1|k´1 “ x̂k´1|k´1 (2)

X1i,k´1|k´1 “
a

pn` 2qSk´1|k´1ei ` x̂k´1|k´1 (3)

X2i,k´1|k´1 “ ´
a

pn` 2qSk´1|k´1ei ` x̂k´1|k´1 (4)
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X3i,k´1|k´1 “
a

pn` 2qSk´1|k´1s`i ` x̂k´1|k´1 (5)

X4i,k´1|k´1 “ ´
a

pn` 2qSk´1|k´1s`i ` x̂k´1|k´1 (6)

X5i,k´1|k´1 “
a

pn` 2qSk´1|k´1s´i ` x̂k´1|k´1 (7)

X6i,k´1|k´1 “ ´
a

pn` 2qSk´1|k´1s´i ` x̂k´1|k´1 (8)

s`i “

#

c

1
2
`

ej ` el
˘

+

: j ă l, j, l “ 1, 2, ..., n (9)

s´i “

#

c

1
2
`

ej ´ el
˘

+

: j ă l, j, l “ 1, 2, ..., n (10)

w0 “
2

n` 2
(11)

w1 “
4´ n

2pn` 2q2
, i “ 1, 2, ¨ ¨ ¨ n (12)

w2 “
2

pn` 2q2
, i “ 1, 2, ..., npn´ 1q{2 (13)

where w0, w1 and w2 is the weights of the cubature points, ei is the unit vector.
(3) Evaluate the propagated cubature points

The sample points are obtained by propagating the cubature points through the state equation as:

X˚0i,k|k´1 “ f
´

X0i,k´1|k´1

¯

(14)

X˚1i,k|k´1 “ f
´

X1i,k´1|k´1

¯

(15)

X˚2i,k|k´1 “ f
´

X2i,k´1|k´1

¯

(16)

X˚3i,k|k´1 “ f
´

X3i,k´1|k´1

¯

(17)

X˚4i,k|k´1 “ f
´

X4i,k´1|k´1

¯

(18)

X˚5i,k|k´1 “ f
´

X5i,k´1|k´1

¯

(19)

X˚6i,k|k´1 “ f
´

X6i,k´1|k´1

¯

(20)

(4) Estimate the predicted points

State prediction x̂k|k´1 is then calculated by the weighted combination of sample points as:

x̂k|k´1 “ w0X˚0i,k|k´1 `w1X˚1 `w2X˚2 (21)

X˚1 “
n
ÿ

i“1

pX˚1i,k|k´1`X˚2i,k|k´1q (22)

X˚2 “
npn´1q{2

ÿ

i“1

pX˚3i,k|k´1`X˚4i,k|k´1 ` X˚5i,k|k´1 ` X˚6i,k|k´1q (23)

(5) Estimate the predicted error covariance:

Pk|k´1 “ w0X˚oi,k|k´1X˚T
oi,k|k´1 ` P1 ` P2 (24)
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P1 “ w1

n
ÿ

i“1

´

X˚1i,k|k´1X˚T
1i,k|k´1 ` X˚2i,k|k´1X˚T

2i,k|k´1

¯

(25)

P2 “ w2

npn´1q{2
ř

i“1

´

X˚3i,k|k´1X˚T
3i,k|k´1 ` X˚4i,k|k´1X˚T

4i,k|k´1 ` X˚5i,k|k´1X˚T
5i,k|k´1 ` X˚6i,k|k´1X˚T

6i,k|k´1

¯

(26)

2.2. Measurement Update

(1) Factorize:

Pk|k´1 “ Sk|k´1ST
k|k´1 (27)

(2) Evaluate the cubature points:
X0i,k|k´1 “ x̂k|k´1 (28)

X1i,k|k´1 “
a

pn` 2qSk|k´1ei ` x̂k|k´1 (29)

X2i,k|k´1 “ ´
a

pn` 2qSk|k´1ei ` x̂k|k´1 (30)

X3i,k|k´1 “
a

pn` 2qSk|k´1s`i ` x̂k|k´1 (31)

X4i,k|k´1 “ ´
a

pn` 2qSk|k´1s`i ` x̂k|k´1 (32)

X5i,k|k´1 “
a

pn` 2qSk|k´1s´i ` x̂k|k´1 (33)

X6i,k|k´1 “ ´
a

pn` 2qSk|k´1s´i ` x̂k|k´1 (34)

(3) Evaluate the propagated cubature points

The sample points are obtained by propagating the cubature points through the
observation equation:

Z0i,k|k´1 “ h
´

X0i,k|k´1

¯

(35)

Z1i,k|k´1 “ h
´

X1i,k|k´1

¯

(36)

Z2i,k|k´1 “ h
´

X2i,k|k´1

¯

(37)

Z3i,k|k´1 “ h
´

X3i,k|k´1

¯

(38)

Z4i,k|k´1 “ h
´

X4i,k|k´1

¯

(39)

Z5i,k|k´1 “ h
´

X5i,k|k´1

¯

(40)

Z6i,k|k´1 “ h
´

X6i,k|k´1

¯

(41)

(4) Estimate the predicted measurement:

ẑk|k´1 “ w.0Z0i,k|k´1 `w1Z1 `w2Z2 (42)

Z1 “

n
ÿ

i“1

´

Z1i,k|k´1 ` Z2i,k|k´1

¯

(43)

Z2 “

npn´1q{2
ÿ

i“1

´

Z3i,k|k´1 ` Z4i,k|k´1 ` Z5i,k|k´1 ` Z6i,k|k´1

¯

(44)
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(5) Estimate the innovation covariance matrix:

Pzz,k|k´1 “ w0Z0i,k|k´1ZT
0i,k|k´1 ` Pzz1 ` Pzz2 ´ ẑk|k´1ẑT

k|k´1 ` Rk (45)

Pzz1 “ w1

n
ÿ

i“1

´

Z1i,k|k´1ZT
1i,k|k´1 ` Z2i,k|k´1ZT

2i,k|k´1

¯

(46)

Pzz2 “ w2

npn´1q2
ř

i“1

´

Z3i,k|k´1ZT
3i,k|k´1 ` Z4i,k|k´1ZT

4i,k|k´1 ` Z5i,k|k´1ZT
5i,k|k´1 ` Z6i,k|k´1ZT

6i,k|k´1

¯

(47)

(6) Estimate the cross-covariance matrix:

Pxz,k|k´1 “ w0X0i,k|k´1ZT
0i,k|k´1 ` Pxz1 ` Pxz2 ´ x̂k|k´1ẑT

k|k´1 (48)

Pxz1 “ w1

n
ÿ

i“1

´

X1i,k|k´1ZT
1i,k|k´1 ` X2i,k|k´1ZT

2i,k|k´1

¯

(49)

Pxz2 “ w2

npn´1q{2
ř

i“1

´

X3i,k|k´1ZT
3i,k|k´1 ` X4i,k|k´1ZT

4i,k|k´1 ` X5i,k|k´1ZT
5i,k|k´1 ` X6i,k|k´1ZT

6i,k|k´1

¯

(50)

(7) Estimate the Kalman gain:
Wk “ Pxz,k|k´1P´1

zz,k|k´1 (51)

(8) Estimate the updated state:
x̂k|k “ x̂k|k´1 `Wk

´

zk ´ ẑk|k´1

¯

(52)

(9) Estimate the corresponding error covariance:

Pk|k “ Pk|k´1 ´WkPzz,k|k´1WT
k (53)

3. IMM High Degree Cubature Kalman Filter

In the paper, the proposed IMM5CKF includes the merits of the 5CKF algorithm and IMM
algorithm. The main character of IMM5CKF is that it calculates the state distribution and error
covariance matrix by choosing an odd number of special cubature points with equal weights, and
the negative weights go to 0 when the dimension of the system goes to8. This means that it is more
stable than UKF. The IMM-5CKF algorithm includes input integration, five degree cubature Kalman
filter, model probability update and output integration. The structure diagram is shown in Figure 1.
The filtering processes are shown in the following subsection.

3.1. Input Integration

ui{j
k´1|k´1 “

pijui
k´1

Cj
(54)

X̂0j
k´1|k´1 “

ÿ

X̂i
k´1|k´1ui{j

k´1|k´1 (55)

P0j
k´1|k´1 “

r
ÿ

i“1

ui{j
k´1|k´1

"

Pi
k´1|k´1 `

”

X̂i
k´1|k´1 ´ X̂0j

k´1|k´1

ı ”

X̂i
k´1|k´1 ´ X̂0j

k´1|k´1

ıT
*

(56)

where Cj “
r
ř

i“1
pijui

k´1, ui{j
k´1|k´1 is the conditional probability of model i at time k ´ 1, ui

k´1 is the

probability of model i at time k ´ 1, X̂0j
k´1|k´1 is the initial mean value of model j, P0j

k´1|k´1 is the
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initial error covariance, X̂i
k´1|k´1 is the estimated value of model i at time k ´ 1, Pi

k´1|k´1 is the
relative covariance.
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3.2. Five Degree Cubature Kalman Filtering

The mixed initial value and measure value (z) are the input of each filter at time k. Then the new
state vector X̂ j

k|k, error covariance Pj
k|k, predicted measure value zj

k|k´1 and residual vj
k can be got from

the 5CKF.
The likelihood value Lj

k is:

Lj
k “ N

´

z; zj
k|k´1, vj

k

¯

“
1

b

2πV j
k

¨ exp
ˆ

´
1
2

”

zk ´ ẑj
k|k´1

ıT ´

V j
k

¯´1 ”
zk ´ ẑj

k|k´1

ı

˙

(57)

where V j
k is the associated covariance of residual vj

k.

3.3. Model Probability Update

It has been known that if the filter model matches with the actual model, the filter residual is
zero and the variance v pkq is Gaussian White Noise. Then the model probability can be updated by
Equation (58):

uj
k “

Lj
kCj

nm
ř

j“1
Lj

kCj

(58)

3.4. Output Integration

The probabilities of the model are integrated with the estimated value of each filter based on the
given weights. The output of IMM-5CKF can be calculated as:

X̂k|k “

r
ÿ

j“1

X j
k|kuj

k (59)

Pk|k “

r
ÿ

j“1

uj
k

"

Pj
k|k `

”

X̂ j
k|k ´ X̂k|k

ı ”

X̂ j
k|k ´ X̂k|k

ıT
*

(60)
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4. Results and Discussion

In this section, the IMM-5CKF is compared with IMMCKF, IMMUKF, 5CKF and OMTM-IMM in
a benchmark target tracking scenario. The state variable at time k is Xk “ rx,

.
x, y,

.
ysT , where x and y

are the position variables,
.
x and

.
y are the velocity variables.

The coordinated turn model is:

F2 “

»

—

—

—

–

1 sinpωTq
ω 0 pcospωTq´1q

ω

0 cos pωTq 0 ´sin pωTq
0 p1´cospωTqq

ω 1 sinpωTq
ω

0 sin pωTq 0 cos pωTq

fi

ffi

ffi

ffi

fl

(61)

where ω is the turn rate and T is the sampling interval. The right turn rate is defined as ´3˝, and the
left turn rate is 3˝.

The measurement equation of the system is:

Z “

«

1 0 0 0
0 0 1 0

ff

` R (62)

where R is the measurement noise of the system.
The initial state X0 “ r1000 m, 200 m/s, 1000 m, 200 m/ssT , initial associate covariance is

P0 “ diag pr1000, 10, 1000, 10sq, process noise Q „ N p0, qq, q “ r10, 0; 0, 10s, process noise weight
matrix is G “

”

T2

2 , 0; T, 0; 0, T2

2 ; 0, T
ı

. The measure noise R „ N p0, rq, with r “ diag pr20, 0.1sq.
The simulation time simTime “ 100s, the step time T “ 1 s. The target turns right during

20 s „ 40 s, turns left during 60 s „ 80 s, and maintains uniform motion during the other time.
The model transition probability is:

pij “

»

—

–

0.9 0.05 0.05
0.1 0.8 0.1
0.05 0.15 0.8

fi

ffi

fl

(63)

The root-mean square error (RMSE) of position and velocity are used to contrast the performance
of the filtering algorithms. The RMSE defined in state vector X at k is:

RMSE “

g

f

f

f

e

n
ř

n“1

1
k

k
ř

k“1
pXk,n ´ X̂k,nq

2

n
(64)

Figure 2 shows the target trajectory after 100 Monte Carlo simulations, from which it can be
found that all the algorithms could track the trajectory of the target. Figures 3 and 4 show that the
estimated RMSEs in position and velocity of IMM5CKF, IMMCKF, IMMUKF, 5CKF and OMTM-IMM
respectively. From Figures 3 and 4, it can be found that all the algorithms exhibit stable characteristics,
and there are no error divergence during the simulation time. In addition, the results show that
the RMSEs of IMM5CKF are less than those of the other algorithms and the performance is more
stable. In Figures 3 and 4, the RMSEs of 5CKF is the largest, which means a single model algorithm
cannot adapt to changeable target tracking problems. In [21], authors had proved that OMTM-IMM
performs better than traditional IMM algorithm. In Figures 3 and 4, it can be seen that the accuracy
of OMTM-IMM is better than 5CKF, but worse than that of the other algorithms which are based on
improved nonlinear filters.
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The RMSEs of the IMM5CKF, IMMCKF, IMMUKF, 5CKF and OMTM-IMM are shown in Table 1.
The data shows that the tracking accuracy of IMM-5CKF is better than that of the other algorithms
with increasing computational load.
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Figure 4. RMSEs of (a) X-velocity and (b) Y-velocity.

Table 1. The RMSEs of the different target tracking algorithms.

RMSE IMM5CKF IMMCKF IMMUKF 5CKF OMTM-IMM

RMSE_X (m) 2.6675 2.4847 2.5392 27.4975 5.6211
RMSE_X_V (m/s) 1.1245 1.8306 1.8930 5.7001 3.2510

RMSE_Y (m) 2.5255 2.8534 3.0362 21.7947 6.0674
RMSE_Y_V (m/s) 1.4972 2.9201 2.8488 12.2331 4.9938

Time (s) 14.9726 7.2549 7.3785 5.3101 6.0314

Figures 5–7 show the model probabilities of IMM5CKF, IMMCKF, IMMUKF and OMTM-IMM.
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Figure 7. Model probabilities of model 3.

Figures 5–7 demonstrate that IMM5CKF, IMMCKF, IMMUKF and OMTM-IMM can effectively
track the model characteristics of a maneuvering target. It is also found that the IMM-5CKF can capture
the kinematics of maneuvering in time once the motion state changes at time t “ 20 s, t “ 40 s, t “ 60 s
and t “ 80 s. The simulation results show that IMM5CKF has an obvious advantage over the other
algorithms in target tracking problems.

5. Conclusions

In this paper, IMM5CKF is proposed to enhance the tracking accuracy, model estimation accuracy
and response sensitivity of nonlinear maneuvering target tracking problems. The algorithm introduces
a five degree cubature Kalman filter into interacting multiple models which simultaneously disposes of
all the models through a Markov Chain. A classical target tracking problem is utilized to demonstrate
that the IMM5CKF can indeed improve the quick response sensitivity of target tracking algorithm, and
it exhibits more accurate than IMMCKF, IMMUKF, CKF and OMTM-IMM. In our future research, the
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study may focus on multisensor navigation and positioning systems. The proposed algorithm should
be suitable for the complex real environments according to the analysis.
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