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Abstract: Sleep disorders are a common affliction for many people even though sleep is one of the
most important factors in maintaining good physiological and emotional health. Numerous researchers
have proposed various approaches to monitor sleep, such as polysomnography and actigraphy.
However, such approaches are costly and often require overnight treatment in clinics. With this in
mind, the research presented here has emerged from the question: “Can data be easily collected and
analyzed without causing discomfort to patients?” Therefore, the aim of this study is to provide
a novel monitoring system for quantifying sleep quality. The data acquisition system is equipped
with multimodal sensors, including a three-axis accelerometer and a pressure sensor. To identify sleep
quality based on measured data, a novel algorithm, which uses numerous physiological parameters,
was proposed. Such parameters include non-REM sleep time, the number of apneic episodes,
and sleep durations for dominant poses. To assess the effectiveness of the proposed system, three
participants were enrolled in this experimental study for a duration of 20 days. From the experimental
results, it can be seen that the proposed monitoring system is effective for quantifying sleep quality.

Keywords: health care; sleep monitoring; sleep apnea; pressure sensor; heart rate variability; breathing;
sleeping pose; polysomnography

1. Introduction

Sleep quality is necessary for a healthy life; sleep comprises approximately one-quarter of the
human life span, and plays an important role in resting the brain. Several indicators can be used to
describe sleep disturbances or sleep disorders, including: sleep latency; the number and duration of
nocturnal awakenings; the total sleep time; changes in the number and rhythms of particular sleep
stages, such as rapid eye movement (REM) state and non-rapid eye movement (non-REM) state; and
recurring nights of sleep disruption, over one week or one month. These indicators can be measured
by monitoring different physiological parameters during sleep. It is very important to monitor these
parameters daily in a given individual while they sleep [1,2]. Respiration, heart rate (HR), temperature,
body movements, and blood pressure are the main physiological parameters that indicate sleep quality.
HR and respiration are known to vary greatly during sleep [3] and have a close relationship with
each sleep stage [4] since the autonomic nerve system significantly affects HR and respiration. In
particular, respiration is considered the most important parameter of physiological data because it
clearly indicates sleep disorders such as snoring and sleep apnea.

In addition, body movement is also linked to sleep level, such as non-REM and REM sleep [5].
Such sleep levels can be estimated by monitoring body movements during sleeping [6]. Rechtschaffen
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and Kales [7] proposed a sleep scoring standard. Sleep states consist of two general stages: REM and
non-REM sleep. Non-REM sleep can be divided into a further four stages [8]. Typically, physical
wellbeing is rejuvenated in REM sleep, followed by additional rest in non-REM sleep. When one of
these two sleep phases is not achieved, a person may feel like they have had poor sleep. It is generally
very difficult to avoid poor sleep quality when one of the following three requirements is absent:
suitable sleep duration, a deep sleep, and a periodical sleep cycle of REM and non-REM sleep. Sleep
quality [9] should be estimated using effective methods to evaluate these three requirements.

Various studies have been conducted regarding how to measure sleep states based on
physiological information. In practice, self-rated questionnaires and sleep diaries are routinely used
for the assessment of sleep quality. Among the questionnaires, the Pittsburgh Sleep Quality Index
(PSQI) [5] has been widely used as a diagnostic instrument. The PSQI contains 19 self-rated questions
which form seven component scores. Each component score ranges from 0 to 3. The sum of the
subscale scores yields a global score of sleep disturbance between 0 and 21. Higher scores indicate
more severe sleep disturbance. However, retrospective assessment of sleep quality is subjective to the
individual, thus leading to a less reliable result.

Polysomnography (PSG) [10] is usually conducted at specialized centers or in hospitals, and is
a standard approach for sleep monitoring and objective measurement of sleep quality. PSG involves
recording multiple physiologic variables, including electro-encephalogram (EEG), electro-cardiogram
(ECG), electro-myogram (EMG), and electro-oculogram (EOG) [11]. Such PSG data are scored by
human examiners based on standardized criteria. The PSG recordings provide an accurate assessment
of sleep architecture and quality. However, the high cost of PSG makes it impractical to implement it
within a long-term sleep monitoring system. In addition, attaching many sensors to a subject’s body
is considered intrusive, and may in turn disturb sleep. Consequently, the measured data may not
accurately represent the sleep behavior of subjects. In addition, to confirm the diagnosis, PSG needs to
be conducted using a large, complex system with support from doctors and other experts.

Another widely-adopted objective measuring device is the actigraph [1], which is a watch-like
device containing motion accelerometers to measure limb movements. Actigraphy has been used
for many medical research applications, typically for monitoring motion-related sleep disorders.
Actigraphy has been used to study sleep–wake patterns for at least 30 years; i.e., since Kupfer et al. [12]
reported a significant correlation between wrist activity, EEG signals, and wakefulness in 1972.
Sadeh et al. [13] concluded that normal subjects showed more than 90% correlation when comparing
actigraphy data with PSG. By 1995, sufficient experimentation had been carried out to finally enable
the Standards of Practice Committee of the American Sleep Disorders Association to support the use
of actigraphy in evaluating certain aspects of sleep disorders, such as insomnia, circadian sleep–wake
disturbances, and periodic limb movements.

Although only one physiological variable is measured, the advantage of actigraphy over PSG
is that sleep and wakefulness can be recorded continuously over a period of weeks, or even longer.
In other words, actigraphy provides a convenient way for long-term sleep-monitoring. However,
the device is still considered intrusive in that some people may feel uncomfortable when they wear
a wrist-watch type device during sleep. Additionally, actigraphy is not as effective when detecting
certain sleep disorders that do not involve limb motion, but in which extensive pre- and post-signal
processing are required. The portability of this system allows the patient to move freely. However,
sometimes the patient can unconsciously remove the sensors during sleep, and attachment of sensors
via a pressure sensor sheet imposes a physical and mental burden on the patient.

Static charge sensitive beds (SCSB) [14] can be also used to monitor patient respiration and HR
during sleep. An unrestrained sleep monitoring system, using cameras, has been proposed to monitor
these parameters. However, the procedure may still be considered as an invasion of privacy by some
users, in whom its use would therefore not be suitable. For a non-invasive analysis of physiological
signals (NAPS) [15], a sleep monitoring system that monitors patient respiration and body movements
during sleep, via a pressure sensor, is proposed. In these systems, patient respiration and body
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movements can be monitored freely using sensors attached to the periphery of the bed. However,
because it is not typically an easy task for people to exchange beds, effective installation of these
systems at home can be challenging.

A nasal pressure recording technique presents a very promising tool for medical research,
constituting a noninvasive method and permitting a better understanding of the underlying
pathophysiologic abnormalities associated with sleep-disordered breathing. Aittokallio et al. [16] tried
to obtain information on upper airways behavior of patients and health subjects. The apnea and
hypopnea index are more relevant with diagnosis of obstructive sleep apnea syndrome (OSAS).
Several kinds of airflow sensors are used to monitor respiratory airflow, such as a pressure sensor [17],
hot-wire and hot-film sensors, an infrared thermography [18], and an ultrasonic flow meter [19]. Recently,
fiber optic sensors have been proposed for monitoring of breathing rate, heart rate and body movement
in [20–22]. Fiber Bragg grating (FBG) based sensors have been used for the simultaneous measurement
of breathing rate and heart rate. However, its wavelength detection technology is too complex and
expensive for sensor fabrication and instrumentation.

In this paper, a non-intrusive system for monitoring sleep quality is proposed to limit the concerns
over privacy associated with video sensors. The proposed system was developed as a multimodality
sensor fusion framework using a variety of sensors. Based on a pressure sensor and an accelerometer,
data on motion, respiration, body activity, and HR can be extracted. The multimodal sensors directly
extract features from the embedded mobile device, which sends physiological data to either home
servers or a remote clinical monitoring center via an internet connection to determine sleep state. It has
been shown in experimental studies that this proposed system is effective in detecting sleeping and
waking states. The contributions of this paper are as follows: (1) a novel system is proposed involving
integration of low-cost multimodality sensors and several methods for sleep condition monitoring
and sleep quality measurements; (2) the proposed system effectively extracts key features from the
sensing data and fuses information from different sensors for detection of waking from sleep. It is
expected that the proposed system can replace existing standard methods (e.g., PSG or actigraphy) to
measure sleep. Our system also constitutes an alternative approach, which has the potential to monitor
sleep quality. It should be noted that the proposed system does not require the collection of video data,
which is typically required by existing approaches. Furthermore, the proposed system does not require
any input or analysis from trained experts to manually assign inference rules; and (3) the design is
expandable and can be used with the proposed multimodality sensor fusion framework, allowing
additional monitoring capabilities with other types of non-intrusive sensors.

The rest of the paper is organized as follows. In Section 2, the proposed system and its
associated methodology are presented. The performance of the proposed system is evaluated using
a 20-day field test in Section 3. The experiment includes sleep stage detection in different sleep cases.
In Section 4, directions for future work are identified and the performance deterioration is discussed
due to body motion artifacts. Finally, concluding remarks and the future directions of current research
are given in Section 5.

2. Sleep Quality Monitoring System

2.1. System Architecture

The process flow for sleep quality measurement is illustrated in Figure 1. Sensing data were
collected from two different sensors and then transmitted via a ZigBee wireless connection to
an external assistive recording mobile device and PC platform. Sleep pose and activity are determined
by sensing data obtained from a three-axis accelerometer sensor. Heart rate and respiratory rate are
estimated by sensing data obtained from a pressure sensor. Sleep stage is classified by activity and
heart rate. Finally, sleep quality is calculated by using sleeping pose, sleep apnea, and sleep time.
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Figure 1. Process flow for sleep quality monitoring.

2.2. Feature Extraction and Data Analysis

Spectral analysis for analyzing HR has been applied to various medical problems [23–25]. In this
study, the raw data measured by the proposed system were grouped into two epochs and analyzed
using an automated algorithm. After analyzing one group, the data were pre-processed using
a bi-directional recursive filter to ensure a phase shift is not introduced. Once the data are smoothed,
the peaks and troughs of each waveform can be found. The first involved simple derivative and
threshold peak detection, while the second looked for changes in the direction of relative trough
positions. By using this technique, HR was determined in a similar manner to that used for measuring
the length of consecutive cardiac periods (R-R intervals) of ECG.

The variability of HR and respiratory signals, both derived from ambulatory ECG recordings,
can be analyzed using power spectral analysis. Based on the average amplitude obtained from a sensor,
a one-minute window of breathing data was normalized as a post-processing method. The average
amplitude of the breathing data was then used to determine the expected amplitude for breathing,
and then a threshold for variable amplitudes was determined to detect breaths. In cases where there
were signals from slight movement artifacts, or changes in breathing patterns, the signal amplitude
was analyzed to clarify what was considered as a full breath. The clinical and research definitions
of breathing events during sleep are used to provide a physiological base from which to determine
the experimental criteria for defining apneaic episodes and arousals. As a possible classification of
arousal, an amplitude over 140%, of a signal containing a minimum amount of postural movement,
was considered. As a possible classification of apnea, an amplitude under 75%, with gaps in the
signal and minimal postural movements, was considered. Sleeping pose was defined according to
unconscious motions during sleep, such as rotational body movements. A change in sleeping pose was
defined as a series of trunk motions from a static state to a new static state due to rotational motions
during sleep. Movement of the limbs alone was not regarded as a change in sleeping pose. The body
positions were grouped into four categories: front, back, left, and right, as shown in Figure 2.

Figure 2. Sleeping postures.
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As shown in Figure 3, the system begins recording when the user goes to bed and stops recording
when they wake up. To evaluate our system, an Embletta portable diagnostic system (PDS, Medcare,
Reykjavik, Iceland) was used, as shown in Figure 3b. The Embletta portable diagnostic system is
widely used for sleep apnea screening in clinical practice. The system uses a digital three-channel
recording device to measure airflow through the nasal cannula, connected to a pressure transducer,
with oxygen saturation plus both respiratory and abdominal movements measured via built-in effort
and body position sensors. Thoracic and abdominal effort was measured using two belt sensors.
Saturated oxygen in arterial blood (SpO2) was recorded using digital pulse oximetry (sampling
frequency of 1 s). Respiratory event detection and oximetry analysis were performed manually.
The sleep quality was classified into REM SREM and non-REM Snon-REM sleep. REM sleep is the lightest
type of sleep, while non-REM sleep is the deepest type.

(a) (b)

Figure 3. Our test-bed environment, (a) test-bed; (b) Polysomnography.

Figure 4a shows the user interface (UI) of the sleep quality monitoring system. The developed
application provides data on weight, total sleep duration, the degree of tossing and turning,
sleep quality, sleep state, HR, respiratory rate, and breath test results. Figure 4b shows an example
of the signals obtained from the sleep quality monitoring system. It can be seen that, while the HR
ranged from 55 to 65 beats per minute (BPM), the respiratory rate ranged from seven to eight breaths
per minute during sleep.
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Figure 4. Screenshots of the user interfaces and examples of signals obtained from the sleep
quality monitoring system. Screenshots of user interfaces in the sleep quality monitoring system.
(a) screenshots of user interfaces in the sleep quality monitoring system; (b) example signals obtained
from the sleep quality monitoring system.
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Figure 5 shows an example of the signals obtained from the PSG, including respiratory signals,
with airflow through a nasal cannula connected to a pressure transducer, HR and SpO2, as well as and
body position.

Figure 5. Example of signals obtained from the PSG.

In [8,26], it has been shown that the heart rate variability (HRV) spectral parameters exhibit
significant differences between the different sleep stages and, in particular, they seem to discriminate
well between REM and non-REM sleep. In this paper, sleep stage is classified as REM or non-REM
sleep based on [27]. The sleep stage classification Sstage is as follows:

Sstage =

{
SNon-REM, if TAmin ≤ Ai ≤ TAmax and THmin ≤ Ai ≤ THmax,
SREM, otherwise,

(1)

where TAmin is the minimum activity threshold value, TAmax is the maximum activity threshold value,
Ai is the activity value, and Hi the HR value.

Sleep apnea Sapnea is shown by respiration amplitudes under 75% or gaps in the signal
accompanied by minimal postural movement, as follows:

Sapnea =

{
True, if Ri ≤ TR and Rti − Rti+1 ≤ TtR,
False, otherwise,

(2)

where TR is the respiration threshold value, Ri is the respiration value, Rti is the respiration i value,
and TtR is the threshold time.

Sleep quality Squality can then be calculated using Equation (3). The sleep quality is determined
from three parameters: non-REM sleep time, the number of apneaic episodes, and the total duration
of the subject’s dominant sleeping pose. Each parameter has a different impact factor, which is
empirically determined: α = 0.5, β = 0.3, and γ = 0.2, which did not seem optimal in the empirically
derived weights. We hope that other laboratories will be able to evaluate these parameter in a
diversity of samples. Furthermore, controlled comparisons between different approaches are needed
to assess where improvements are needed in electronic design and a sleep monitoring system. The
preferred sleeping pose is determined as the pose that was adopted for the longest duration, over
non-sleep time:

Squality = (
SD
ST

· α) + (100 − AN) · β + (PT · γ) (3)

where ST is the sleep duration, SD is the difference between the sleep time and REM sleep time, AN is
the number of apneaic episodes, PT is the duration of the preferred sleeping pose, and α, β, γ are
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impact factors. The sum of α, β, and γ is 1. In the experiments, the sleep state is classified into REM
and non-REM sleep states, based on the patients’ activities and HRs.

3. Experimental Results

3.1. Experimental Environments

To evaluate the sleep quality monitoring system, an accelerometer and a wearable sensing belt
were used to obtain continuous data on each participant’s sleeping pose, as shown in Table 1 and
Figure 6. A pressure sensor was used to obtain the user’s physiological data, including respiration,
HR, and activity rate. The pressure sensor was installed in a conventional bed. The sleep–wake cycle
was determined based on respiratory signals acquired through a pressure bed sensor.

Table 1. Specifications of sensors.

Sensor Specifications

three-axis accelerometer

Size: 5 cm, weight: 500 g, consumption
current: 0.6 mA, resolution: 60 Hz, MSP430
micro controller for a micro controller
(MCU): 16 bit reduced instruction set
computer (RISC)

pressure

Size: 40 cm × 40 cm, weight: 300 g, sensor
type: film, operating temp: from −40 ◦C to
+50 ◦C, sensitivity: 25–250 pc/n, operating
force range: >100 N/cm2

The subjects used for the experiments were 10 college/graduate student volunteers, ranging in
age from 20 to 30 years and including one female. The subject’s respiration, HR, activity, and sleep
poses were measured overnight using the system. In addition, a digital video camera recorded the
subject’s respiration, HR, activity, and sleeping poses for use as reference data. Figure 7 provides an
example of heart and respiration data for an entire night from one subject. From the figure, the signals
obtained from a pressure sensor have many noises. Although it is difficult to extract the QRS complex
features, the HR can be estimated by using detecting the R waves from the filtered data and measuring
the RR interval sequence in a fixed time window. HR is estimated by using a 3 s sliding window. In
the experiments, the HR is estimated every second and found 2–4 times errors in 1 min.

Figure 8 shows the Bland–Altman plot for the mean HR data from the pressure sensor and
the ECG. The Bland–Altman plot shows a mean difference of 0.076 and that most of the data are within
the 95% confidence intervals. An example sleeping pose and individual daily sleeping pose rate is
illustrated in Figure 9. The daily sleeping pose rate is used to determine the individual dominant
sleeping pose.
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Figure 6. Analog-to-digital converter (ADC) board. (a) ADC board; (b) architecture of ADC board.

	
  
(a)

Figure 7. Cont.



Sensors 2016, 16, 750 9 of 14

	
  
(b)

	
  
(c)

	
  
(d)

	
  
(e)

Figure 7. Heart rate variability and respiratory rate. (a) Raw data obtained from ADC (100 samples/s,
12-bit resolution); (b) Filtering data using an infinite impulse (IIR) filter for estimating the heart rate;
(c) Filtering data using an infinite impulse (IIR) filter for estimating the respiratory rate; (d) Heart peak
obtained from filtering data after noise reduction; (e) Selected heart peak.

Figure 8. Bland–Altman plot with a mean difference of 0.076 that shows the limit of agreement of 95%
(dashed lines are mean differences ± the limit of agreement) between the continuous heart rate (HR) of
pressure signal and its corresponding electro-cardiogram (ECG) signal.
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(a) (b)

Figure 9. Results of the sleeping pose rate and sleeping pose detection. (a) Sleeping pose rate;
(b) Sleeping pose detection.

3.2. Results

In the experiment to monitor sleep quality, Figure 10 illustrates an example of respiration signals
from midnight to 2:00 a.m. The red dotted line shows the threshold value for sleep apnea. The threshold
value is determined from the amplitude of the respiration signal (below 75%).

Figure 10. Sleep apnea detection.

Figure 11 shows the sleep stage classified by the proposed method. The sleep stage is calculated
from the HR and the activity values. The red line shows the subject’s activity and the blue line
shows the HR signal from midnight to 2:00 a.m. Data collected over 20 days is used to validate the
effectiveness of the proposed system, with the remaining data randomly partitioned into training and
testing sets for each trial. Table 2 shows the experimental results regarding sleep quality. One-way
ANOVA was performed to compare our approach with PSG. Bonferroni t-test analysis was performed if
significant statistical differences were found. Values of p < 0.05 were considered statistically significant.

The average sleep time was approximately 7 h, where the duration of sleep of subject E was
the longest, and that of subject D was the shortest. It can also be inferred that subject E experienced
the highest quality sleep compared to the other subjects because, for this subject, other related factors
had a higher rating than did those for the other subjects. The number of apneaic episodes and total
time spent in the dominant sleeping pose are considered more important than the total sleep time.
Subject F had the lowest sleep quality because this subject also suffered from a major depressive disorder.
These results showed that the proposed sleep quality monitoring system has very high efficiency
and reliability.



Sensors 2016, 16, 750 11 of 14

Figure 11. Results of the sleep stage classification.

Table 2. Results of sleep quality.

Subject
Total Sleep

Time
(Hour)

The Number
of Sleep

Apnea (Ours)

The Number
of Sleep

Apnea (PSG)

The Number
of Sleep State
Change (Ours)

The Number
of Sleep State
Change (PSG)

Sleep
Quality

Dominant
Sleeping

Pose

A 7.1 16.3 16.6 5.6 5.8 75.77 Right
B 6.8 12.7 12.2 4.8 4.4 81.54 Front
C 7.6 13.6 13.2 5.2 5.6 77.57 Right
D 5.1 0 0 4 4 87.44 Right
E 10 0 0 3 3 120.3 Front
F 7 0 0 16 16 74.17 Back
G 7 5 5.2 6 6 77.66 Right
H 5.6 0 0 2 2 86.67 Front
I 7 2 2.2 3 3 104.75 Front
J 7 16 16.2 3 3 85.81 Front

4. Discussion

The parameters proposed in our sleep quality monitoring system have not been considered in
traditional research. In the future, the relationship between sleep quality and other physiological
signals will be studied to further improve the performance of the proposed sleep quality equation.
Furthermore, the system will be incorporated into a dynamically retainable system to improve
adaptability to the needs of individual users. It is expected that the improved robustness of the
proposed multimodal sensor fusion framework can be extended to other types of non-intrusive
sensing systems.

During sleep, every movement of the body will affect the signal. When a patient moves on a bed,
it is difficult to estimate HR and RR using signals obtained from only a pressure sensor. Figure 12
shows an example of the signals obtained from sensors in the presence of motion artifact. From the
figure, signals obtained from the PSG can be reconstructed for estimating HR and RR, signals obtained
from a pressure sensor cannot be reconstructed due to motion artifacts.
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(a)

(b)

Figure 12. Example of signals obtained from sensors in the presence of motion artifact. (a) Example of
signals obtained from the PSG in the presence of motion artifact; (b) Example of signals obtained from
an accelerometer sensor and a pressure sensor in the presence of motion artifacts.

5. Conclusions

In this paper, a sleep quality monitoring system has been proposed. The sleep quality monitoring
system determined the sleeping pose, sleep state, REM sleep stage and non-REM sleep stage cycle
using a three-axis accelerometer and a pressure sensor, without the need for a large system, such
as the PSG. In addition to such sleep stages, the proposed system can measure sleep quality by
estimating the depth of sleep, the number of apneaic episodes and the periodicity. The proposed
system also analytically calculates sleep quality and detects early symptoms of sleep-related disorders
and appropriate responses to treatment. The experimental results demonstrated that the proposed
system is effective in measuring the physiological factors of sleep quality. Furthermore, it was also
observed that the estimations used for the proposed sleep quality equation were significantly reliable.
This is because many physiological parameters are incorporated into the equation, including non-REM
sleep time, the number of apneaic episodes, and the total time spent in the dominant sleeping pose.
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