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Abstract: Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure
and apply in daily life. However, motion noise in the measured signal is the major problem of
non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R
peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method
utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located
adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise
cancellation technique and the motion information are used to reduce motion noise. To verify the
proposed method, ECG was measured indoors and during driving, and the accuracy of the detected
R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity
increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed
that the motion noise was reduced and that more reliable R peak positions could be obtained by the
proposed method. The robustness of the new ECG measurement method will elicit benefits to various
health care systems that require noninvasive heart rate or heart rate variability measurements.

Keywords: electrocardiogram; R peak; heart rate; motion noise; active noise cancellation; adaptive
filter; non contact measurement

1. Introduction

The electrocardiogram (ECG) is a set of voltage signals that is generated by heart activity [1].
The R wave of ECG can be used to calculate the heart rate (HR) and its variability (HRV), which contain
important information on the body’s physiological condition. This data can be used to diagnose
diseases like multiple sclerosis, stroke, ischemic heart disease, and myocardial infarction, or can also
be used to provide information on the autonomic nervous function [2,3]. Therefore, measuring HR
or HRV in daily life can be beneficial to humans, because it can serve as a regular check of cardiac
electrical activity. In addition, if an ECG system can measure the HR or HRV of a human in a vehicle
during his driving route, it can detect abrupt possible cardiac abnormalities or physical changes in
the driver, such as fatigue, drowsiness, and stress [4,5]. This can make driving safer and provide
comfort to drivers by making it possible to take proper action in advance or by providing the necessary
information when an abnormal condition is detected. However, the conventional ECG measurement
method is not practical for use in daily life. It requires Ag-AgCl electrodes that must be attached to the
body of the tested subjects directly. This method is rather uncomfortable and disturbs daily activities
or driving.
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Recently, based on advances in sensor technology and an increase in public interest in health
care, a method measuring the ECG using non-intrusive electrodes was developed. This method uses
capacitive ECG sensors (cECGs) as the electrodes for non-intrusive ECG measurements. The cECG
measures ECG by sensing subtle changes in voltage using capacitive couplings near the human body.
Therefore, this method does not require direct contact or resistive coupling with the skin. Many
research projects that have applied the cECG in daily life have been conducted [6-9]. In addition, there
have been some trials that used the cECG to measure ECG during driving [10,11]. The non-intrusive
measurement method does not restrict a subject, so it is easy to measure the ECG and can be proven to
be advantageous for long-term measurements [12]. The fact that there is no skin irritation is also one
of its advantages [13]. However, the non-intrusive measurement method is very sensitive to the noise
from motion. Much noise can be generated by the motion of a subject or by the swinging patterns of a
vehicle when the measurement is conducted during driving. In addition to noise from motion, there
can be many other noise sources in a measured ECG: baseline wander noise from respiration, power
line noise, and electromyography noise from muscular movement. Among these, however, motion
noise is the most difficult noise to remove because it occurs randomly and its amplitude is significant
when compared with the original ECG.

Numerous studies have been conducted in order to study ways to reduce motion noise [14-22].
The simplest way is the application of a band-pass filter (BPF). However, the conventional BPF is not
effective in reducing motion noise, because the noise has a frequency spectrum that overlaps with
the ECG spectrum [14]. Wavelet transform-based methods can be used to reduce the noise in the
ECG [15]. However, this transform also has a limitation owing to the large amplitude and irregular
characteristics of motion noise. When several sensors are available, sensor fusion and independent
component analysis (ICA)-based methods can be used [16,17]. The sensor fusion selects a sensor
signal having the highest quality. However, the sensor fusion can not remove the noise itself. In case
of ICA, high computational complexity is the shortcoming. Therefore, it is difficult to use ICA in a
near-real-time system. Recently, the method using an injection signal was introduced [20]. It estimates
the artifacts using the injection signal and the model of the capacitive system, but more investigation
on real-life data seems to be needed. The extended Kalman filter (EKF) uses a nonlinear model of ECG
signal and tries to apply the model to the Kalman filter that is modified to deal with nonlinear relations.
EKF was studied to reduce the noise of conventional contact ECG in other papers, and it was also used
for non-intrusive ECG [21,22]. Although it was useful for many cases, it can not be effective to reduce
motion noise in non-intrusive ECG because of the model-based approach of EKE. In addition, some
prior publications reported on the use of active noise cancellation (ANC), including adaptive filters,
to reduce motion noise [18,19]. The adaptive filter can change its filter characteristics using feedback
loops [23]. Therefore, it is suitable for dealing with motion noise that has time-variant characteristics.
However, to reduce the noise effectively, the ANC needs a reference signal that is highly correlated
with the noise and uncorrelated with the original ECG. A prior research used accelerometer data as
the reference signal for the ANC, but the result was not effective [24]. The accelerometer data did not
satisfy the condition needed in terms of the reference signal, whereby the correlation between the
accelerometer data and the noise was not high.

A new method is proposed in this paper to overcome this problem and in an effort to obtain
reliable R peak positions. The proposed method places additional cECGs adjacent to the cECGs
used for ECG measurement. Then, the difference between the signals by the additional cECGs and
the signals by the cECGs to measure ECG is used to construct a reference signal for ANC. For the
weight updating algorithm of the adaptive filter in the ANC, affine projection algorithm (APA) is
used. Post-processing is added to correct errors that can be caused by ANC in exceptional situations.
In addition, the relationship of the proposed reference signal and motion noise is analyzed in the
discussion section. To verify the effectiveness of the proposed method, the ECG is tested based on
indoor measurements and measurements during driving. The R peak detecting rates of the ECGs
before and after the application of the proposed method are then compared. The results will show
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that the R peaks can be detected in a more stable manner using the proposed method. Furthermore,
because its computational complexity is not high, the near-real-time monitoring of HR or HRV by the
detected R peaks is possible using this method.

2. Materials and Method

2.1. Measurement System

In conventional works, two or more cECGs were used as electrodes, and they were attached to a
chair or a driver’s seat to measure the ECG during daily life activities or driving [25,26]. Furthermore,
conductive fabric or an additional cECG was placed on the bottom of the seat for the reduction of the
common noise component of the measured signals using a driven-right-leg circuit (DRL) [27].

Our measurement system is designed based on these prior designs. It has two cECGs attached
to a seat without any covers, and the conductive fabric is placed on the bottom of the seat for the
DRL. However, in our system, an additional cECG is added near the each cECG used to sense ECG as
shown in Figure 1. This is to measure the motion information around the cECG for ECG measurement
and to obtain a reference signal for ANC. In the figure, R and L are the right and left sensors for
ECG measurement, and aR and aL are additional right and left sensors to get the motion information.
The signals measured by the four cECGs are filtered using a low-pass filter with a 40 Hz cutoff
frequency to remove high-frequency noise. They are then sampled to digital signals at 360 Hz through
an NI 9205 from National Instruments using 16 bits for analog-digital conversion. Let the signal
measured by cECG i be sig;. The measured ECG (ECGy;,) is obtained using the limb lead 1 method as

ECG,, = BPF[sig — sigR] 1)

where BPF means the use of a BPF with a 0.05-35 Hz cutoff frequency [28]. In addition to these two
signals, r; and rR are calculated as

Ty = sigr — SigaL (2)
TR = SIgR — SIgaR 3)

They are used to construct the reference signal for ANC, and its detailed description will be presented
in Section 2.3, which discusses the ANC using the reference signal.

cECG

lcmlcm 1lcm

> Conductive
Fabric

Figure 1. Schematic diagram of ECG measurement system placed in a seat.
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2.2. Data Acquisition

Both indoor and outdoor experiments were conducted for data acquisition. In indoor experiment,
our measurement system was installed in a chair where subjects sat to measure the ECG. The subjects
were one 29-year-old, two 25-year-old, and one 28-year-old healthy males with no heart-related
medical history. All subjects wore short sleeved t-shirts made of 100% cotton during the experiments.
Five-minute ECG recordings were acquired, three times per subject. The subjects randomly moved
their bodies to make a significant amount of artificial motion noise during the experiment. The reason
for this motion noise is to verify the performance of our system in a severe environment. In addition
to our measurement system, conventional contact electrodes were also used to obtain the true R
peak position.

For the outdoor experiment, our system was integrated in the driving seat of a vehicle, and the
ECG was measured for six people for a period of 15 min for each, during driving. The subjects were
healthy males aged 27-32. Among them, subject 1, a male aged 29, and subject 6, a male aged 28,
also participated in the indoor experiment as subject 1 and 4. The subjects wore same clothes used in
the indoor experiment. The driving course was a road network that surrounds Pohang University of
Science and Technology. Its total length is approximately 2 km, and it includes corners, an uphill grade
of 311 m, downhill roads of 120 m, and eight speed bumps, in addition to straight lines. The subjects
drove the course anticlockwise and repeatedly during the experiment at speeds lower than 50 km/h.
The ECG was also recorded independently using conventional contact electrodes. This was to get
the positions of the true R peaks, and detected peaks were inspected manually to correct any errors.
The true R peaks were used to evaluate the accuracy of the tested R peaks.

All R peaks were detected by the Pan and Tompkins (PT) algorithm because it is simple and its
performance has been well studied in many publications [29-31]. The PT algorithm uses a BPF of
5-15 Hz to remove unnecessary signal parts. Then, it applies derivative, squaring, and moving-average
operations to the filtered signal. The R peaks are detected by a threshold-based method for the filtered
and moving averaged signals at the algorithm.

2.3. ANC and Proposed Reference Signal

Figure 2 is the basic structure of ANC [32-34]. In this structure, ANC separates the noise signal n
from d, the sum of the original signal s and noise 7, using the adaptive filter and reference signal n'.
For this operation, it is assumed that 1’ is correlated with n but uncorrelated with s. The difference
between d and the output of the adaptive filter y can be expressed as the error signal e according to

e=d—y=s+n—y 4)
If s and n are uncorrelated and n’ satisfies the former assumption, the mean square of e is
as follows:
Efe?] = E[(s+n—y)’]
= E[s ]+ E[(n —y)*] + 2 E[s(n — )]
= E[s*] +El(n—y) 5)

The adaptive filter updates its filter weights to minimize the value of E[e 2]:

min{E[e %]} = min{E[s 2] + E[(n — v)?]}
= E[s*] + min{E[(n — y)*]} (6)

The filter output y approximates the noise 7, and the estimated s can be obtained from the value
of e. In our case, s, 1, and d represent the original ECG, motion noise, and ECGy,, respectively. For this
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ANC scheme, it is important to design the proper reference signal. It must have a low correlation value
with respect to the original ECG and a high correlation with motion noise.

d=5s+n + e

Adaptive
Filter

Figure 2. Structure of ANC used to reduce motion noise 7 in the measured ECG d.

To obtain the reference signal that has a high correlation with motion noise, r; and rg which are
constructed by the difference of adjacent cECG signals are used. This is because it is assumed that
there is little difference between the cECG signals when a subject is in a static condition, and that the
difference increases when the subject is in motion. The verification of its suitability as the reference
signal for ANC will be analyzed in Section 4.2. To use r; and rg in our method, the two signals are
combined as a reference signal n’. When the length of the weight vector or tap length for the adaptive
filteris 2 - L, L elements in r; and rg are used for n’, as shown in Figure 3. The tap length must be large
enough to model relation between 1 and n’, but too large tap length increases computational complexity.
In the adaptive filter, the APA is used as the weight-updating algorithm because it converges faster
than normalized least-mean-squares and it is less complex than the recursive-least-squares algorithm.
Its weight vector updating equation is as follows [23]:

ny = [rp(k—L+1) .. rp(k) rr(k—L+1) ... rr(k)]" )
Uy = [n, nf_q - n;(_P+1]T 8)
dp = [d(k) d(k—1) .. d(k—P+1)]" )
Wi t1 = Wi + U (eI + UWly) ™" [dy — Ugawy] (10)

where 7 is the step size, € is the regularization parameter, and I is a P X P unit matrix. # determines
the convergence speed of the adaptive filter. A large 7 increases the convergence speed, but it also
increases misalignment. € is set to a small constant. Then, eI becomes a diagonal matrix having € as
diagonal entries. It is used to prevent the case that the inverse of Uy UkT does not exist in Equation (10).
P is the projection order of APA, and it means the number of input vectors used to update the weight
vector. P decides the convergence speed and complexity of the algorithm. A larger P can increase the
convergence speed, but at the same time the complexity of the algorithm will be increased because the
dimension of Uy U] is increased. In our method, P is set to 2. wy is the weight vector of the adaptive
filter for the k th sample, and it is updated recursively. Then, the k th sample of y is calculated by wy
and reference signal ;. as follows:

y(k) = nj." - wy (1)
For data having M samples, the output of ANC (ECG4nc) can be obtained as e,

e(k) = d(k) - y(k), (12)
ECGanc =e=[e(1) e(2) ... e(M)] (13)

The effect of ANC can be seen in Figure 4. The figure represents a part of the data from subject 5
of our outdoor experiment. In the figure, motion noise occurred from 2.7 to 4 s of ECGy;,;, and the
incorrect R peak was detected at approximately 2.7 s owing to the noise. If v, and rr include the
motion information, the noise can be removed. In the example, rg was highly correlated with the
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motion noise. According to this, the noise could be reduced, and all R peaks could be detected well

after ANC, as seen in the second graph in the figure.

L Wk
[ ey [rdeL+n) ] | n | nke1) | o
N 3 W)
\ \ )T e
Ny
| I x
2L
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reed) [raetsy T ] b [ |
. . ) e

L

Figure 3. Reference signal 1}, and weight vector wj of the adaptive filter used to process the k th

sample of ECG.
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Figure 4. Effect of ANC, including noise reduction and the enhancement of R wave. Green circles are
the true R peak positions detected by the contact ECG, and red stars are detected R peaks in each signal.
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2.4. Post-Processing

Even though the proposed reference signal is effective in most cases of motion noise, exceptional
situations could happen under real circumstances. These phenomena mainly occur when the additional
sensor includes a noise component that does not appear in the ECGy,,. That is, if a measurement or
subtle motion noise occurs only at the additional sensors for the reference signal, the reference signal
will contain a noise component that is uncorrelated with noise components in the ECGy,. This could
cause an error when ANC is conducted because the assumption of high correlation between the
reference signal and a noise component in the ECG;, is not satisfied. Figure 5 shows an example.
In the figure, a noise that is not included in the ECG,; was measured by r; at 0.5 s. By this noise
component, a peak was wrongly detected after ANC, and the result became more erroneous than that
of the ECGy;,. Therefore, for a robust and practical algorithm, this phenomenon must be prevented,
and a post-processing is needed to correct the erroneous result. In our method, ECG4n¢c and ECGy,
are evaluated by two rules that are related to the change of peak interval and signal power. When
ECGanc is considered to be abnormal by the rules, ECG4nc is not used and is replaced by ECGy,.
This process can be considered as a selection process to decide whether ECG 4y is used or not.

ECG
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0.06- J| 1 ) )i :
0.04 7 : ,
0.02 - : 1 % " —
i fae)
0- [ 1 m‘//\‘ ' *
0.02 : [ | \ \ ¥/ L W
; 05 : 1 1.5 2 EcE 25 3 3.5 4 4.5
|
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Figure 5. Example of the case where ANC is not effective.

To test two signals, the first rule checks the normality of detected R peaks. For this, the R
peaks of each signal are detected by the PT algorithm mentioned in Section 2.2. Then, the validity of
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detected R peaks is tested by the standard to check whether the range of acceleration or deceleration of
instantaneous HR is normal. The standard uses an inequality introduced in [35]:
ti —2tipq +tigo

2. <05 (14
() (i~ ta) (1 — Fis2) )

where t;, t;11, ti1p are the temporal positions of the three successive R peaks. This is based on the
band-limited characteristics of the variation of R peaks, and its effectiveness was verified by an open
ECG database [35]. Using this standard, if the number of three peaks that satisfy the standard in
ECGanc is higher than that of ECG,;,, then ECG 4nc is used as the output of our algorithm. This is
because it can be considered that ECG 4n¢ contains more valid information on R peaks than ECGy,.
As an example, only two groups of three R peaks satisfied the standard in ECGy,, as shown in Figure 6.
On the other hand, the number of three R peaks groups that satisfy the standard was three for ECGsnc
by reduced noise. In this case, ECG4nc is selected as the output of the algorithm by the rule.

0.04

¥ O =3 '

s VY N

1
I
I
0 1
*
W/\”‘\}% *
-0.02
S 004 !
° 0 05 1 1.5 2 25 3 35 4 45
()]
8 ECGANc
S 0.04
- e i ' -
I I 1
0.02 % 1 @ ©) ! |
o % * 1 :

0.5 1 1.5 2 25 3 35 4 45
Time (s)

Figure 6. Evaluation of ECG4nc and ECGy, using the inequality related to the normality of
instantaneous HR.

For cases that do not satisfy the first rule, the second rule is applied. The rule compares the change
of signal power in 5-15 Hz after ANC. The range of 5-15 Hz is the frequency band of an R peak [29].
Therefore, if ANC operates effectively and motion noise is reduced, the power of the frequency band
will be decreased. This is because ANC assumes that the measured signal contains an additive noise to
an original signal, and ANC operates to cancel out the noise. On the other hand, the increased power
of the frequency band can be considered as an abnormal operation of ANC. As seen in Figure 5, if the
reference signal contains noise that is uncorrelated with ECGy,, it can generate additional noise that
can cause the incorrectly detected R peaks or a performance degradation in R peak detection. For this
reason, ECGgnc is discarded and ECG,;, is used as the output of the proposed algorithm when this
rule is satisfied:
Panc > Pm (15)

where P4 nc is the 5-15 Hz signal power of ECG4nc and Py, is that of ECGy,. For the rest of the cases,
ECG4nc is used as the output of the algorithm.
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3. Experimental Results

3.1. Performance Index

To represent the accuracy of the detected R peaks, two performance indices were used: a) the
sensitivity (Se), and b) the positive predictivity (P*) index. The two indices are calculated as follows,

TP

=——x1 1
S¢ TP—i—l—"N>< 00 (16)
TP
+
= TP FP x 100 (17)

where TP is the number of correctly detected R peaks, FN is the number of undetected R peaks within
searching windows based on true R peaks, and FP is the number of detected R peaks at the outside of
the searching window. Conventionally, 150 ms of searching window is used and it has 54 sample points
in our system with a 360 Hz sampling rate [36]. However, we used 15 sample points for the searching
window to identify the correctly detected R peaks because the ECG measured in the non-intrusive
manner is much noisy than the ECG by the contact electrodes. Figure 7 shows the necessity of the
decreased searching window. In the figure, the third peak was incorrectly detected by noise, but the
sample difference with the position of its true R peak was 42 samples. In this case, the peak can be
considered as the correctly detected R peak by the 150 ms of searching window. To avoid the false
classification, the decreased searching window was used.

ECGm
0.03
4 42
oo 5 ¥ A 5
) V # 7
S 0.01 ¥
8 ) *
S M 1
>
0
-0.01
0 05 1 15 2 25 3 35 4 45
Time (s)

Figure 7. Detected R peaks in ECG measured by cECG. The numbers on the detected R peaks represent
the sample difference with each true R peak positions.

3.2. Comparison of Results

To verify the effect of the proposed method, we applied the method to the experimental data.
In this process, every 4.5 s block of recorded data were processed sequentially. We used the 4.5 s
length because at least three R peaks were needed for our post-processing. More longer block can
be used, but we did not enlarge the length considering near-real-time operation. Furthermore, short
block length will be advantageous for the post-processing because signal can be evaluated more
minutely. In the processed data, 1.5 s of data represented the overlapped data that were used in
previous processing. The overlapped data were needed to detect a R peak occurred at the boundary of
two processing windows stably. The step size and tap length of the adaptive filter were set to 0.01 and
360 experimentally.

A comparison of the results for the indoor and outdoor experiments is listed in Tables 1 and 2.
In the tables, Se and P are presented for ECG,;, ECGanc, and the signal after post-processing. To
show the difficulty of using a conventional ECG denoising method for the signal by a non-intrusive
sensor, the performance indices of a wavelet-thresholding-based method were attached together [37].
In addition, the results by EKF were presented for comparison. In the table for the indoor experiment,
data 1-1, 1-2, and 1-3 are the data from the subject 1. Likewise, data 2-1, 2-2, and 2-3, and data 3-1,
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3-2, and 3-3, and data 4-1, 4-2, and 4-3 were measured from same subjects. d_acc is the difference of
Se + PT between the tested signal and that of ECG,,. That is, let Se and P™ of ECGy, be Se;, and P,
and those of the tested signal be Se; and PtJr . Then, d_acc is as follows:

d_acc = (Set + P;") — (Sem + Py (18)

This is calculated to compare the increase in R peak detecting accuracy by applied methods
considering both Se and P*.

In Table 1, the effect of ANC could be identified. For most data, Se and PT were increased
after ANC. However, the R peak detecting accuracy was lower than that of ECG,, at data 3-3. This
was because the reference signal of the data contained uncorrelated noise with the ECGy;, as seen in
Figure 5. This noise could happen by an electrical or measurement noise at the additional sensors used
to construct the reference signal. Post-processing is added for cases like this. After post-processing, the
accuracy of all data were higher than that of the ECG,,. Se + P increased 8.91% on average and 26.26%
maximally at data 2-1. For the outdoor data, the proposed method likewise detected R peaks more
accurately, as seen in Table 2. The proposed method increased Se + P* by 7.36% on average. However,
ANC itself was not effective and the increase in accuracy was not significant after post-processing for
outdoor data 1, 2, and 3. This was related to the characteristics of the data and will be discussed in the
next section.

Post-processing increased the accuracy in most data. Its effect was noticeable at indoor data 3-3,
and outdoor data 1, 2, and 3 having lower accuracy than ECG,; after ANC. By the post-processing,
the accuracy of the data was increased and it was higher than that of ECG,, likewise other data.
On the other hand, the R peak detecting accuracy of ANC decreased for indoor data 2-1, 3-2, and
4-2 after the post-processing. This was because the post-processing could not perfectly distinguish
the signal having better accuracy in a certain processing window. It was hard to choose better signal
when the signal contained a noisy or irregular component. However, the decreased accuracy was
insignificant and it was lower than 0.5%. Furthermore, the accuracy increased for all outdoor data
having longer data length than indoor data after the post-processing. This result shows an advantage
of the post-processing for general cases.

In the results, the wavelet-based method had an effect on the indoor data 1-3, 2-2, 3-2, 4-2, and
4-3 and outdoor data 1, 2, and 6, but the accuracy was mostly lower than the original one. This was
because of the large amplitude of motion noise. The wavelet-based method divides the signal into the
signals of a certain frequency band, and it applies a threshold to remove noise components. Therefore,
this method was not effective in the non-intrusive ECG because the ECG contained motion noise
having a large amplitude. The EKF enhanced the R peak detecting accuracy of all data except for
indoor data 1-1 and outdoor data 3. For indoor data 3-3 and 4-3, its accuracy was higher than that
of ANC with post-processing. However, the increased accuracy was not significant for all data. This
limitation comes from the model-based approach of EKF. It uses an ECG model to estimate the original
ECG, but the used model will have a large error with a measured signal. This error can be generated
by the low signal-to-noise ratio of the non-intrusive ECG signal itself and the motion noise having a
significant amplitude. The increased Se + P was maximum in indoor data 1-3 as 2.59% by the EKF.
On the other hand, the effect of ANC was remarkable. Its accuracy was higher than other methods for
most of the data, and its increased range was significant. Furthermore, it could improve the accuracy
of all data with post-processing. The averaged rate of increase was 8.39% for all experimental data.
Figure 8 shows one example that represents the advantage of ANC. The wavelet-based method and
EKF were not effective to reduce motion noise in the figure. However, ANC could reduce the motion
noise prominently and all R peaks were correctly detected. This effectiveness of ANC results from the
proposed reference signal that contains information on the occurred motion noise.



Sensors 2016, 16, 715

Table 1. Comparison results of R peak detecting accuracy for indoor data having severe motion noise.

Dat ECGn Wavelet EKF ANC After Post-Processing
ata

Se Pt Se Pt d_acc Se Pt d_acc Se Pt d_acc Se Pt d_acc

1-1 66.41 51.83 65.63 5112 —1.49 66.41 5110 —-0.73 7422 5828 14.27 75.00 5890 15.66
1-2 88.51 72.84 8753 7336 —0.45 88.26 73.08 0.00 88.26 74.43 1.35 88.75 75.00 241
1-3 84.06 7296 83.82 73.36 0.16 85.02 74.58 2.59 84.54 7527  2.80 85.51 7597 446
2-1 53.18 45.63 50.38 41.86 —6.57 5445 46.62 2.26 68.96 56.58 26.72 68.70 56.37 26.26
2-2 65.59 58.89 66.09 61.81 341 66.09 60.68 2.29 7252 6644 1448 72.77 6637 14.66
2-3 65.51 58.41 64.02 5695 —294 67.25 58.53 1.86 69.73 60.17 598 6998 61.17 7.23
3-1 84.84 72.59 8411 7273 —-0.60 85.82 73.28 1.66 90.95 80.87 14.39 9095 8140 1492
3-2 89.39 78.32 89.39 78.49 0.17 89.14 79.15 0.58 9217 79.52 3.98 91.67 79.61 3.56
3-3 93.35 85.61 93.09 8495 —0.92 94.15 86.55 1.74 92.82 85.12 —1.02 93.09 86.42 0.54
4-1 86.39 72.56 85.15 7197 —1.83 87.13 74.11 2.29 86.88 75.16 3.10 87.87 75.85 4.78
4-2 64.57 54.33 64.32 55.05 047 66.33 54.32 1.75 71.61 5925 1195 71.61 58.88 11.59
4-3 9233 81.73 92.59 82.35 0.88 93.39 8248 1.80 91.80 8242 0.16 92.86 82.01 0.81
Average 77.84 67.14 7718 67.00 —0.81 78.62 67.87 1.51 82.04 71.13 8.18 82.40 71.49 8.91

Table 2. Comparison results of R peak detecting accuracy for outdoor experiment.
Dat ECGn Wavelet EKF ANC After Post-Processing
ata

Se Pt Se Pt d_acc Se Pt d_acc Se Pt d_acc Se Pt d_acc
1 94.27 87.52 94.19 88.07 0.48 9481 87.64 0.66 92.74 8537 —-3.67 94.27 88.21 0.69
2 90.14 88.65 90.14 88.79 0.14 91.17 89.88 2.26 89.74 8737 —1.68 9149 89.56 2.26
3 96.59 92.86 96.50 9286 —0.09 96.50 9270 —0.24 96.16 9245 —0.84 96.59 93.17 0.31

4 9250 77.96 9198 7849  0.00 9313 79.89 255 94.69 86.24 1047 95.31 85.83 10.68

5 78.01 65.12 77.04 6547 —0.62 79.68 64.81 1.35 87.07 7399 1793 87.07 7449 1843

6 84.52 78.50 84.45 78.69 0.12 85.42 78.63 1.03 90.12 81.40 8.50 9095 83.88 11.80
Average 8934 81.77 89.05 82.06 0.00 90.12 82.26 1.27 91.75 8447 512 92.61 85.86 7.36

11 0f 18
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In addition, the complexity of our method is not high. In our experiments, the measured ECG was
processed by MATLAB and a personal computer having an Intel Core i7-3930k CPU and 16 GB of RAM.
The processing time for the data divided into a 4.5 s length was 0.21 s on average and total processing
time for the entire data including total indoor and outdoor data was 662.98 s. In the 4.5 s data,a 1.5 s
length is overlapped data and 3 s is newly processed data. The 0.21 s is very short compared with the
3 s length of the new data. Therefore, our algorithm could be implemented in a near-real-time system.

ECG_
0.05
0 W v |
-0.05
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Wavelet
0.05
0 -WV*WVMM*WW*M
S
o 0.05
o)) 0 0.5 1 1.5 2 2.5 3 3.5 4 45
8 EKF
© 0.05
>
il x
-0.05
0.5 1 1.5 2 2.5 3 3.5 4 4.5
ANC
0.05

-0.05
0 0.5 1 1.5 2 25 3 3.5 4 4.5

Time (s)
Figure 8. Comparison of ANC with other methods for a signal part in outdoor data 5.

4. Discussion

4.1. Analysis on Outdoor Data

In Table 2, ANC was less effective for outdoor data 1, 2, and 3 compared to indoor data.
To investigate the reason, the outdoor data were analyzed in Table 3. In the table, Se+P* represents
the sum of Se and P for the each ECG,, of outdoor data. Se+P* was high in outdoor data 1, 2, and 3
because the data had little noise. In this case, the application of ANC could not make much difference
in R peak detecting accuracy because the signal was already clean and contained little noise. This can
be one reason that the effect of ANC was not remarkable.

Table 3. Signal quality and noise power analysis for outdoor data.

Data 1 2 3 4 5 6

Se+P* 18179 17879 18945 17046 143.14 136.02
r Pwise 325 6793 6548 435 926 741
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To know the characteristics of noise in the data, we divided the processing windows of each
outdoor data into two groups. One is the windows having 100% of Se and P". The windows can be
considered signal parts having little noise, and the averaged signal power of the windows (Py,,;) was
calculated to compare it with noise power (P;s.) in each data. Windows in the other group can be
considered as noisy signal parts because it contains R peak detecting error. P,,;s, was obtained as the
averaged signal power of the windows in each data, and the relative amplitude of P,,s. (r_Pyoise) for
clean signal parts was calculated as

r_Proise = Iljm)ise (19)
clean

7_Ppoise Was extremely high in outdoor data 2 and 3 as seen in Table 3. This severe noise occurred
when the body of subjects was totally detached and far away from the cECGs by the manipulation of
the steering wheel in a corner, or by the sway of the vehicle owing to speed bumps. For this excessively
severe noise, ANC was not effective. This is because additional cECGs could not measure the valid
motion information that was related to the noise in ECG,,. Furthermore, the characteristics of noise
measured in the additional cECGs could be much different from the noise in ECG,;,. Outdoor data 2
and 3 included a small number of noisy windows, and the noise of the windows was severe. The use
of ANC was not effective in the data by this reason. When the data were measured, the movement of
subjects was restricted by the cautious behavior of subjects for the experiment and the use of contact
ECG electrodes. This could make the data contain a few signal parts having the noise that can be
effectively reduced by ANC. In real driving situations where the various movements of a subject occur,

the effect of ANC will be more prominent as in the rest of the outdoor data.

ECG

m
0.1
%

0.1
0 0.5 1 1.5 2 ECG 2.5 3 3.5 4 45
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*®
e R o
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o) n
£ o1
[e]
>
—0_15W
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0 0.5 1 15 2 p_ 25 3 35 4 45
R
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0.1
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0 0.5 1 15 2 2.5 3 35 4 45
Time (s)

Figure 9. Erroneous case of ANC for a signal part in outdoor data 1.

In addition, the same problem with indoor data 3-3 occurred in some outdoor data as seen in
Figure 9. This problem was caused by the motion information that is included in reference signal but
uncorrelated with motion noise in ECG,,. A measurement noise or electrical noise can be a reason
for this phenomenon. However, these errors were corrected by post-processing. After ANC with the
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post-processing, R peak detecting accuracy was increased, and the increased accuracy outperformed
those of other methods in all outdoor data.

4.2. Appropriateness of Proposed Reference Signal

This section analyzes the suitability of the proposed reference signal as a reference signal for ANC.
First, to confirm the assumption that the reference signal and the R wave of the ECG are uncorrelated,
the ECG with a 3-min length (ECG,,,;,) was measured in a stable condition to make it contain only the
ECG itself with as little motion noise as possible. Then, ECGj,,, passed through the BPF of 5-15 Hz to
get R waves, and the correlation coefficients (CC) with r; and rr constructing the reference signal were
calculated. For two representative signals X and Y, having M samples each, their correlation can be
expressed by CC:

(X = X)(Yi-Y)

cC = L —
VIR (X - X2/ (v - V)2

where X and Y are the means of X and Y [38]. If the two signals have a low correlation, the value of
CC will be close to 0. For signals that have a high correlation, the absolute value of CC will be close
to 1. For the 5-15 Hz components of ECGj,,, calculated CC can be seen in Figure 10, and the same
analysis was conducted for indoor data 2-1 in Figure 11 for comparison. The lower parts of two figures
represent the 5-15 Hz signal power of each signal. The signal power was much higher in the indoor
data 2-1 because it contained much motion noise. Looking at the results on CC, the absolute value
of CC was lower than 0.15 when there was little motion noise and the signal was approximated to
the R wave. Comparing this result with the CC of the noisy signal in Figure 11, it is obvious that the
correlations between R wave and r;, rg are low. Therefore, it can be concluded that the correlation
between the proposed reference signal and the R wave is low because the proposed reference signal
consists of 7 and rg.

(20)

CC with r and s

0.1

0.05

-0.05

-0.1

Correlation coefficient

-0.15
5 10 15 20 25 30 35 40 45 50 55 60

5-15 Hz signal power of ECG

clean
-128

-130 -
-132

134

Signal power (dB)

-136 -

-138

5 10 15 20 25 30 35 40 45 50 55 60
Processing window

Figure 10. (Top) CCs between the 5-15 Hz components of ECG_,,, and 71, r; (Bottom) 5-15 Hz signal
power of ECG_j,;, at each processing window.
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CC with n and ')

o o
w A

=4
o -

Correlation coefficient
S o
=N N

-0.2
10 20 30 40 50 60 70 80 90 100

5-15 Hz signal power of indoor data 2-1

&%
S

Y
o
=}

Y
N
o

Signal power (dB)

-140

10 20 30 40 50 60 70 80 90 100
Processing window

Figure 11. (Top) CCs between the 5-15 Hz components of indoor data 2-1 and ry, rg; (Bottom) 5-15 Hz
signal power of indoor data 2-1 at each processing window.

From the former results, the correlation between motion noise and r, rg could also be known
because the absolute value of CC was increased when the motion noise occurred. To show a more
generalized result, the ECGy; of the indoor data and ECG,,, were filtered by a HPF of 1 Hz to
reduce the effect of respiration. Let the filtered ECG be ECGp, the sum of absolute values of CCs
between ECGy with 1 and with rg (CCr1r) was calculated at every processing window unit. Then,
CCp 4rs were averaged for each indoor data and ECG_je,;,. That is, the averaged CCy 4 g (a_CCp4R) is
calculated as

CCpryr,i = abs(CCpr;) +abs(CCr)) (21)
1 N

a_CCLir = N Y CCrig, (22)
=1

where N is the number of processing windows in each data. CCy; or CCg; is the CC between the
tested ECGp and ry or rg in the i th processing window. The calculated a_CCp  r is listed in Table 4.
In all cases, a_CCj 4 of indoor data containing motion noise was higher than ECG,,,,. This result
reveals that the reference signal and the motion noise have a correlation because a_CCp | g increased
when the ECG contained the motion noise.

To validate the relation in more detail, all ECG_y,,, indoor and outdoor data were filtered by
the HPF of 1 Hz and the averaged signal power was calculated according to CCy , g. Thatis, CCy ;g
was divide into 0.05 interval and signal power in each interval was averaged in Figure 12. For the
experiment, a processing window having signal power higher than a threshold was treated as a outlier
and excluded. The threshold was set as 100 times P, for each data. P, is obtained as the averaged
signal power of processing windows having 100% of Se and P* for each data as mentioned in the
previous section. In the Figure 12, the degree of correlation between the reference signal and ECG was
increased mostly in accordance with the increase in signal power or the occurrence of motion noise.
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This tendency can be considered as the evidence of a high correlation between the reference signal and
the motion noise because the correlation is increased as the ratio of motion noise in ECG increased.

Table 4. Averaged sum of absolute values of CCs between the ECGy with r; and with rg for the indoor
data and ECG_jpy);-

Data -1 12 13 21 22 23 31 32 33 41 42 43 ECGueu
a CCr,g 038 033 040 065 043 066 036 030 031 043 033 033 0.17

0.2 0.3 04 05 07 0.8 0.9 1
CC

0.6
R

-70

&
3

Averaged signal power (dB)

o
3

95 II I
0 0.

1

L+l

Figure 12. Relation between CCr 4 r and averaged signal power.

5. Conclusions

This study proposes a method to reduce motion noise and to accurately detect R peaks using
non-intrusive sensors. It uses additional cECGs placed adjacent to the cECGs for ECG measurement.
Then, a reference signal is constructed using the sensor signals, and it is utilized in ANC including
an adaptive filter with an APA to reduce motion noise and enhance R peaks. Post-processing is
added to prevent an incorrect result in exceptional situations and to make our method more practical.
In experiments, the system was implemented in a chair and a driving seat. Based on the results,
an increase in R peak detecting accuracy was verified when the proposed method was used.
Then, the analysis of the proposed reference signal was conducted to show its suitability for
theoretical assumptions.

The proposal for the new reference signal to denoise non-intrusive ECG is our original work.
In addition, the effect of our method using the new reference signal could be shown numerically by
our experimental results. Because of the advantages of our method, more accurate and stable HR or
HRYV values can be obtained by detected R peaks in non-intrusive measurements. In addition, the
proposed method does not need high-computational complexity, and it can proceed in near-real-time.
Therefore, our method can be used in applications that require real-time HR or HRV information and
that use a device having a shape that is similar to a chair. One of the examples is a driver’s condition
monitoring system.

To improve our system, an adaptive filter technique like variable step size algorithms or
the combination of two adaptive filters can be used to deal with motion noise. Furthermore,
post-processing can be modified to obtain better results and not to degrade the performance of
ANC as pointed out at result section. In addition, just one additional cECG was used in our method
to obtain motion information for each left and right side, because this research was conducted to
investigate its availability. Therefore, research using more sensors can be performed to improve R peak
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detecting accuracy in the future. Moreover, the system was integrated with a chair and driving seat
in our experiment. Research to apply our system to a wearable device can be conducted. This will
expand the applicability of our method.
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