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Abstract: A compressive sensing joint sparse representation direction of arrival estimation
(CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting
the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach
provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random
sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless
channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can
be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor
signals is derived assuming a linear sensor array configuration. This bound provides a theoretical
constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received
acoustic sensor array signals. The Cramér–Rao bound of the CSJSR-DoA estimator that quantifies the
theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA
approach is validated using both simulations and field experiments on a prototype WSAN platform.
Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach
shows significant performance improvement.

Keywords: wireless sensor network; sensor array; compressive sensing; array processing

1. Introduction

Direction of arrival (DoA) estimation using acoustic sensor arrays has attracted significant interest
due to its wide applications [1–4]. Traditionally, DoA is realized using sensor arrays, such as passive
towed-array sonar systems, where all sensors are wire-connected to a fusion center (FC) [5]. For wireless
sensor array networks (WSAN) [6,7], arrays (locally wire/wireless-connected clusters) of dispersed
sensors are deployed over large sensor fields and communicate wirelessly to the FC. However, remote
sensor arrays often suffer from restricted resources, such as local power supply, local computational
capacity and wireless transmission bandwidth. Therefore, data samples at remote sensor arrays
need to be compressed before transmitting to the FC. On the other hand, executing sophisticated
data compression algorithms on remote sensors is also restricted by local power consumption and
computational ability.

To meet those resource requirements of the WSAN, the newly-emerged compressive sensing (CS)
technology [8–10] has great potential because of its ability to reconstruct the raw signal from only a
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small number of random measurements. In this work, we propose a novel DoA estimation approach
that accomplishes low power, robust DoA estimation over a WSAN platform, which reduces the
volume of transmitted data without complicated local data compression operations. Incorporating a
CS-based formulation, this approach is able to directly estimate the incident angles of acoustic sources
from randomly-sampled acoustic signals. This is made possible by fully exploiting the joint spatial
and spectral sparse structure of the acoustic signals acquired by the sensor array. Hence, we refer
to this approach as compressive sensing joint sparse representation direction of arrival (CSJSR-DoA)
estimation method.

Existing CS-based source DoA estimation methods can be categorized into two different
approaches: compressive bearing estimation (COBE) [11–13] and compressive sensing array DoA
estimation (CSA-DoA) [14]. With COBE, the incident angles (DoAs) are modeled as a sparse angle
vector, with non-zero entries indicating the presence of (a few well separated) acoustic sources.
The acoustic signals received at each sensor can then be represented as the product of a redundant
steering matrix and a sparse angle vector. The steering matrix, consisting of steering vectors of all
possible incident angles, must be estimated using the received noisy acoustic signal at a reference node.
Thus, the raw data at the reference node and randomly-projected measurements of the non-reference
nodes need to be transmitted to the remote FC. This imposes a heavy communication cost and
excessive energy consumption at remote sensor arrays. With CSJSR-DoA, individual sensor nodes
only perform data acquisition and random subsampling, while the DoA estimation is performed at
the FC. Therefore, no local computation is required at the remote sensor nodes, and the CSJSR-DoA
approach is more suitable for a resource-restricted WSAN system.

With the CSA-DoA [15–17] method, analog sensor array data are randomly projected onto a lower
dimensional subspace in the analog domain before being converted into digital samples using an
analog to digital converter (ADC). As such, fewer ADCs are required. This approach is similar to the
CS-camera projection and was originally proposed in [18]. The steering vectors of different incident
angles at a certain frequency are used to form the reconstruction dictionary. Further work extends this
type of array processing method to broadband scenarios [19,20]. Since the data volume reduction is
realized in the analog domain, special analog electronic circuits are required to implement the CSA-DoA
approach. The proposed CSJSR-DoA approach, on the other hand, requires no special-purpose analog
hardware. Some similar work [21] uses the angle domain sparsity of sources and formulates the
narrow band signal of an antenna array within the BCS [22,23] framework. However, it is utilized as
an alternative DoA estimation approach, and no data compression is considered.

Another distinction between the proposed CSJSR-DoA approach and these existing CS-based
DoA estimation approaches is that the CSJSR-DoA approach exploits both the spatial and spectral
domain structure of the acoustic sensor array signals. We argue that many practical broadband
acoustic signals can be characterized by a few dominant frequency entries. With the purpose of DoA
estimation, it would be sufficient to focus on these few dominant frequency entries and to exploit their
frequency sparsity to enhance the performance. For example, Figure 1 shows the spectrograms of
two types of broadband sources: an engine sound of a Porsche vehicle and a bird chirping [24]. It is
clear that these broadband acoustic signals are dominated by multiple dominant frequency entries.
The frequency domain sparse structure [25] illustrated in these figures may be utilized to realize
efficient compressive sensing.

The main contributions are:

1. A joint sparse representation-based DoA estimation approach is proposed, that exposes the
joint spatial and spectral domain sparse structure of array signals and incorporates the multiple
measurement vector [26] approach to solve the DoA estimation problem;

2. A theoretical mutual coherence bound of a uniform linear sensor array is provided, which defines
the minimum angular separation of the sources that are required for the CSJSR-DoA approach to
yield a reliable solution with a high probability;



Sensors 2016, 16, 686 3 of 23

3. The Cramér–Rao bound of the CSJSR-DoA estimator is derived to quantify the theoretical DoA
estimation performance;

4. A prototype acoustic WSAN platform is developed to validate the effectiveness of the proposed
CSJSR-DoA approach.

(a) (b)

Figure 1. Spectrogram of (a) a Porsche engine and (b) a bird chirping.

The remainder of this paper is organized as follows. In Section 2, the array signal model, the
sparsity model of narrowband array processing and the CS theory are briefly reviewed. The CSJSR-DoA
approach is derived in Section 3. In Section 4, the theoretical analysis of the DoA estimation
performance, as well as the Cramér–Rao bound are derived. In Section 5, the performance of the
CSJSR-DoA approach is evaluated by simulations and field experiments using a prototype wireless
sensor array platform. At last, the conclusion is summarized in Section 6.

2. Background

In this paper, the transposition and complex-conjugate transposition operations are denoted by
superscripts (·)T and (·)H , respectively. Lowercase and uppercase bold symbols denote vectors and
matrices, respectively. The major symbols used in this paper are summarized in Table 1.

Table 1. Symbols and notations. CSJSR, compressive sensing joint sparse representation.

Symbol Explanation

H number of sensors within an array

Q number of sources

Rq sparsity of the q-th source signal

sq the q-th source signal in the time domain

rq dominant sparse vector in the frequency domain with Rq-sparsity

νq less prominent components of sq in the frequency domain

τh,q time delay of the q-th source between the h-th sensor and the array centroid

xh(t) received time domain signal in the h-th array

Ψ N × N inverse DFT matrix
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Table 1. Cont.

Symbol Explanation

xh received time domain signal at the h-th sensor, xh = [xh(1), · · · , xh(N)]T

d̃h signal spectrum of xh, d̃h = [dh(0), dh(1), · · · , dh(N − 1)]T

d(k) array data spectrum at the k-th frequency, d(k) = [d1(k), d2(k), · · · , dH(k)]T

a`(k) steering vector of θ` at the k-th frequency,
a`(k) = [exp(−jωkτ1,q), · · · , exp(−jωkτH,q)]

T

r(k) source signal vector of L directions, r(k) = [r1(k), r2(k), · · · , rL(k)]T

AL(k)
steering matrix of L directions at the k-th frequency
AL(k) = [a1(k), a2(k), · · · , aL(k)]

D array data spectrum matrix

M permutation matrix

d̄ wideband array data spectrum, d̄ = [dT(0), dT(1), · · · , dT(N − 1)]T

d̃ array spectrum of H sensors, d̃ = [d̃T
1 , d̃T

2 , · · · , d̃T
H ]T

u sample intervals, u = [u(1), u(2), · · · , u(M)]T

r(·) rounding operation

Φ random sub-sampling matrix

Φh
loss channel loss matrix

yh received measurement of the h-th sensor in the fusion center

y joint measurement vector of H sensors,y = [yT
1 , · · · , yT

H ]T

w joint noise vector of N frequencies,w = [w(0), w(1), · · · , w(N − 1)]T

Θ joint measurement matrix of H sensors, Θ = diag(Φ1
e Ψ, Φ2

e Ψ, · · · , ΦH
e Ψ)

diag(.) block diagonal matrix operation

Υ joint sparse matrix

s direction indicative vector,s(`) = ∑N−1
n=0 r`(n)

2

supp(.) nonzero index of a vector, supp(x) = {n|x(n) > 0}

Υ̃ pruned joint sparse matrix,Υ̃ =
[
Υ[n1], Υ[n2], · · · , Υ[n|T|]

]
, r ∈ T

F(Λ) Fisher information matrix of parameter Λ

CRB Cramér–Rao bound of the CSJSR algorithm

2.1. Signal Model and Joint Spatial-Spectral Sparse Structure

A WSAN consists of one or more sensor arrays and one FC. Sensors within the same sensor array
are arbitrarily deployed and connected to the FC via wireless channels. Sensor arrays are battery
powered and have limited processing capabilities. The FC is connected to the infrastructure and has
stronger processing capabilities. To conserve energy at remote sensor arrays, it is desirable to reduce
the volume of data to be transmitted via wireless channels and to move as much of the processing
tasks to the FC as possible.

For simplicity of notation, in this work, we assume a single sensor array consisting of H acoustic
sensor nodes, and it communicates wirelessly via radio channels to a single FC. Each sensor node
is equipped with an omni-directional microphone. The received acoustic signals will be sampled at
a sampling frequency of fs Hz. N samples will be grouped into a frame (a snapshot) from which a
DoA estimate will be made. We assume that state-of-the-art wireless synchronization protocols, such
as Reference Broadcast Synchronization (RBS) [7], are applied so that clocks at sensor nodes can be
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synchronized at a precision in the order of micro-seconds, which is sufficiently accurate for acoustic
DoA estimation.

We assume there are Q targets. The q-th source emits an acoustic signal and contains no more
than Rq (N > Rq) dominant frequency entries. Denote sq to be a N × 1 frame vector of the q-th source
received at the reference node of the sensor array. Its N-point DFT (discrete Fourier transform) may be
decomposed into two components:

sq = Ψ(rq + νq) (1)

where Ψ is an N× N inverse DFT matrix, rq is an N× 1 and Rq-sparse vector, containing no more than
Rq DFT coefficients with larger magnitude, and νq contains the remaining smaller DFT coefficients.

The h-th sensor node of the same sensor array will receive the same sq with a relative delay τh,q.
Thus, the data received at the h-th sensor are the time-delayed summation of Q sources. That is:

xh(t) =
Q

∑
q=1

sq(t− τh,q) + ωh(t) (2)

where ωh(t) is the zero mean white Gaussian noise at the h-th sensor.
Figure 2 is the time delay model of a sensor array. Define θq as the incident angle of the q-th

source, c as the speed of acoustic signal and [uh, vh] as the position of the h-th sensor with respect to
the array centroid (∑H

h=1[uh, vh] = [0, 0]). The time delay τh,q is given by:

τh,q=dh cos(θq − ρh)/c = dh
[
cos(θq) cos(ρh) + sin(θq) sin(ρh)

]
/c =

1
c
(
cos(θq)uh + sin(θq)vh

)
(3)

where ρh is the direction of the h-th sensor with respect to the array centroid. After exploiting N-point
DFT to xh = [xh(1), · · · , xh(N)]T , its frequency domain expression is given by:

d̃h = Ψ−1xh (4)

where d̃h = [dh(0), dh(1), · · · , dh(N − 1)]T , and each component dh(k) is equivalent to multiplying the
k-th entry of the acoustic spectrum rq + νq by a phase shift exp(−jωkτh,q). That is:

dh(k) =
Q

∑
q=1

exp(−jωkτh,q)(rq(k) + νq(k)) + wh(k) (5)

where wh(k) is the frequency domain expression of ωh(t). Since xh consists of all acoustic signals, the
N× 1 vector d̃h will be R-sparse (max(Rq) ≤ R ≤ ∑Q

q=1 Rq). This is because the dominant components
of Q sources may fall within overlapped or different spectrum bands.

,h q

 
sensor

,h h

h
u v

q

h

hd
q h 

[0,0]

sensor 2

sensor 1

Figure 2. Array time delay model.
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Consider the array data spectrum d(k) = [d1(k), d2(k), · · · , dH(k)]T of H sensors at the k-th
frequency; one may write:

d(k) =
Q

∑
q=1

aq(k)rq(k) + w(k) (6)

where aq(k) = [exp(−jωkτ1,q), · · · , exp(−jωkτH,q)]
T is the steering vector of the q-th source,

w(k) = [w′1(k), w′2(k), · · · , w′H(k)]
T , w′h(k) = ∑Q

q=1 exp(−jωkτh,q)νq(k) + wh(k).
The relative delay τh,q is the time for the acoustic wave of the q-th source traveling

from the array centroid to the h-th node in the array along the incident angle θq. Suppose
that the entire range of incident angles is divided into L(� Q) divisions with each division
corresponding to a quantized incident angle θ` = `/L, 0 ≤ ` ≤ L − 1. We can construct a
redundant H × L steering matrix AL(k) = [a1(k), a2(k), · · · , aL(k)] that includes L steering vectors.
Here, a`(k) = [exp(−jωkτ1,`), exp(−jωkτ2,`), · · · , exp(−jωkτH,`)]

T is defined as the steering vector
corresponding to an incident angle θ`. Furthermore, define a L× 1, Q-sparse source energy vector r(k)
such that:

r`(k) =

{
rq(k) θ` ≤ θq ≤ θ`+1
0 otherwise.

(7)

If L is sufficiently large, it is safe to assume that different θq will fall into different angle bins.
With this change of notation, Equation (6) can be rewritten as:

d(k) = AL(k)r(k) + w(k) (8)

where r(k) = [r1(k), r2(k), · · · , rL(k)]T . With Equations (4) and (6), one may construct an H×N matrix:

D = [d(0), d(1), · · · , d(N − 1)] =
[
d̃1, d̃2, · · · , d̃H

]T (9)

By performing row-vectorization of matrix D, we have an H · N × 1 vector:

d̃ =
[
d̃T

1 , d̃T
2 , · · · , d̃T

H

]T
(10)

Similarly, by performing column-vectorization of matrix D, we have another H · N × 1 vector:

d̄ =
[
dT(0), dT(1), · · · , dT(N − 1)

]T
(11)

Since the entries of both d̃ and d̄ are associated with the same D matrix, there exists an
H · N × H · N permutation matrix M such that:

d̃ = Md̄ (12)

Equation (12) provides a link between d̃, which exhibits the R-sparsity in the frequency domain,
and d̄, which exploits the Q-sparsity in the spatial (incident angle) domain. In other words, the array
samples, as summarized in matrix D, exhibit a joint frequency and spatial (angle) domain sparsity that
will be exploited later in this paper.

2.2. Compressive Sensing and Random Sub-Sampled Measurements

The presence of sparsity, as described in the models above, promises great potential for introducing
CS to reduce the amount of transmitted sensor data.

The compressive sensing theory [27] states that a signal x may be reconstructed perfectly from a
dimension reduced measurement y ∈ RM×1 through a linear measurement system y = Φx + n
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when α = Ψ−1x is a K-sparse vector. This is often accomplished by solving a constrained
optimization problem:

min ||α||1 s.t. ||y−ΦΨα|| < σ (13)

where ||α||1 is the `1 norm of vector α, Φ is the measurement matrix, Ψ is the sparse matrix and σ is a
noise threshold. To confirm stable reconstruction, the measurement matrix Φ is usually chosen to be a
random Gaussian matrix or a random binary matrix.

The measurement vector in traditional compressive sensing problem settings is often computed as
a weighted linear combination of the observed high dimensional signals. For example, in COBE [13],
the N × 1 sensor data vector in a frame will be multiplied to an M× N measurement matrix (M < N)
digitally to yield a measurement vector y and then transmitted via a wireless channel to the FC.
This obviously requires much computation and is likely to further deplete the energy reserve on
sensor nodes. In CSA-DoA [15], an analog filter needs to be inserted before the ADC to realize the
measurement operation. This approach requires special-purpose hardware and can be quite expensive.

In this work, time domain sensor data will be purposely discarded and will not be transmitted
to the FC. By doing so, data reduction may be achieved without incurring expensive compression
computations on the sensor nodes. Specifically, we will use a random sub-sampling matrix [28] defined
on a set of non-uniform, yet known random sampling intervals {τm; 1 ≤ m ≤ M}. Let a sequence be
u = {u(1), u(2), · · · , u(M)} such that u(1) = 1, and:

u(m) = u(m− 1) + r(τm), 2 ≤ m ≤ M (14)

where r(·) is the rounding operation. Then, the (m, n)-th element of this proposed random subsampling
matrix is given by:

Φ(m, n) =

{
1 1 ≤ n = u(m) ≤ N
0 otherwise

(15)

The selection of the proposed random subsampling matrix is because the product of ΦΨ is a
partial Fourier matrix, which has been proven to satisfy the restricted isometry property (RIP) property
with a high probability [29].

Furthermore, in this work, the lossy nature of wireless channels will be exploited by modeling the
packet loss during wireless transmission over noisy channels as a form of (involuntary) random data
sub-sampling. It is well known that due to different link types (amplify forward and direct link) [30],
power allocation [31] and time-varying channel conditions, wireless transmissions are likely to suffer
from packet loss, and the identities of lost data packets are known at the FC. Hence, this type of packet
loss can be modeled as another form of random sub-sampling. In our recent work [32], the data packet
loss is modeled with a random selection matrix.

In this work, both the random sub-sampling matrix and the random selection matrix will be
incorporated as a combined measurement matrix that requires no computation on the sensor nodes
while achieving the desired data reduction. Denote the random sampling matrix at the h-th sensor
node as Φh and the random selection matrix over the wireless channels between the h-th sensor node
and the FC as Φh

loss. The combined equivalent measurement matrix may then be obtained as:

Φh
e = Φh

loss ·Φh. (16)

3. CSJSR-DoA Formulation

The proposed CSJSR-DoA algorithm consists of three major steps: (1) at the h-th wireless sensor
node, the received and digitized acoustic signal xh will be sub-sampled using random compressive
sampling as described in Equation (15) to yield a node measurement vector Φhxh; (2) these node
measurement vectors will then be transmitted through lossy wireless channels to the FC; (3) The FC
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will receive an overall measurement vector y =
[
yT

1 , yT
2 , · · · , yT

H
]T , which will then be processed by

the CSJSR-DoA approach to directly estimate a sparse DoA indicator vector. The schematic diagram of
the proposed CSJSR-DOA approach is summarized in Figure 3.

1( )y n

( )Hy nSensor

ADC

ADC

CSJSR-DoA
Lossy transmissionRandom compressive

sampling

Figure 3. Schematic diagram of the CSJSR-DoA approach.

Note that at the FC, the received compressive measurement of the h-th sensor node may be
expressed as:

yh = Φloss ·Φhxh = Φh
e Ψd̃h (17)

Hence, the overall measurement vector y may be expressed as:
y1

y2
...

yH

=


Φ1
e Ψ

Φ2
e Ψ

. . .
ΦH

e Ψ




d̃1

d̃2
...

d̃H

 (18)

or in matrix form,
y = Θd̃ (19)

where Θ = diag(Φ1
e Ψ, Φ2

e Ψ, · · · , ΦH
e Ψ) is the joint sparse representation matrix. As discussed earlier,

{d̃h, 1 ≤ h ≤ H} shares a common R-sparse structure, since the signal measured at one sensor node
would be a time-delayed version of those at other sensors.

Next, from Equations (8) and (11), one may write:

d̄ = ALrL + w, (20)

where rL = [rL(0)T , rL(1)T , · · · , rL(N − 1)T ]T , w = [w(0)T , w(1)T , · · · , w(N − 1)T ]T , AL is the HN ×
NL joint steering matrix:

AL =


AL(0)

AL(1)
. . .

AL(N − 1)


Substituting Equations (12) and (20) into Equation (19) leads to:

y = Θd̃ = ΘMd̄ (21)

= ΘM(ALrL + w) = ΥrL + wc
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where wc = ΘHw is the subsampled Gaussian white noise received in the FC. Here, Υ = ΘMAL is
the joint sparse representation matrix that combines the joint sparse matrices Θ and AL. The details of
this joint sparse representation matrix are:

Υ=


φ1

e,1aT
L,1(0)

φ2
e,1aT

L,2(0)
...

φH
e,1aT

L,H(0)︸ ︷︷ ︸
Υ[1]

φ1
e,2aT

L,1(1)
φ2

e,2aT
L,2(1)
...

φH
e,2aT

L,H(1)︸ ︷︷ ︸
Υ[2]

. . .

φ1
e,NaT

L,1(N−1)

φ2
e,NaT

L,2(N−1)
...

φH
e,NaT

L,H(N−1)


︸ ︷︷ ︸

Υ[N]

(22)

where φh
e,n is the n-th column of Φh

e Ψ and aL,h(n) is the h-th row of AL(n). The significance
of Equation (22) is that one may reconstruct the joint sparse indicating vector rL from the joint
measurement vector y directly without reconstructing the raw data xh, 1 ≤ h ≤ H at individual sensor
nodes. rL is a joint sparse vector with no more than R non-zero blocks, and there are at most Q non-zero
entries in each of the R non-zero blocks.

With these relations, we may now formulate the joint sparse representation-based DoA
estimation problem (group sparse reconstruction [33]) in a multiple measurements vector (MMV)
formulation [26,34,35]:

min
rL

L

∑
`=1
|s(`)| subject to ||y− ΥrL||2 ≤ γ (23)

where s(`) = ∑N−1
n=0 r`(n)

2 and γ is a noise threshold. To solve this optimization problem, a
second-order cone programming (SOCP) [36] approach has been proposed. The joint sparse
representation of the wideband array signal in Equation (23) helps to improve the DoA estimation
performance of wideband signals, as long as the same DoA of a signal is shared by different
frequencies [37]. Note that the group sparsity-based DoA estimation for wideband signals is
advantageous as compared to the traditional wideband DoA estimation methods, because it achieves
near-coherent DoA estimation performance without the requirement of coherent signal projection
through, e.g., the well-known focusing technique [38].

However, the computation cost is rather expensive. In [39], an MMV-Proxmethod has been
proposed. We adopt this method for the underlying problem. In particular, we solve Equation (23) by
a two-step process:

1. Estimate the frequency domain support T of array signals by reconstructing the spectral sparse
indicative vector d̃ from the joint measurements y and prune the joint reconstruction matrix Υ by
selecting Υ[r] with non-zero frequency bins;

2. reconstruct the DoA indicative vector s directly from the joint measurements y using the pruned
joint reconstruction matrix.

In summary, the first step is to estimate the non-zero block rL(k) and to simplify the joint sparse
matrix by selecting Υ[r] with non-zero rL(r). The second step is to reconstruct the DoA using the
pruned joint sparse representation matrix Υ̃. These steps are summarized in the listing of Algorithm 1.

The computational complexity of Equation (23) in the SOCP framework using an interior point
implementation is O(L3N3) [39]. If we decouple the original problem into two sub-problems (Steps 2,
3 and 4 in the above algorithm), its computational complexity can be reduced to O(L3R3 + N3H3).
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Algorithm 1 Decoupled joint sparse reconstruction.
Input: Received joint random measurement vector y;
Equivalent random measurement matrix Φh

e ;
Output: DoA indicating vector s;
1. Estimate the noise level by random sampling in source free scenario, γ = ||y||22;
2. Estimate the common support T = supp(d̃) by solving:

min
d̃

N−1
∑

n=0

H
∑

h=1
dh(n)2

subject to ||y−Θd̃||22 ≤ γ;
3. Construct the pruned joint reconstruction matrix Υ̃;
Υ̃ =

[
Υ[n1], Υ[n2], · · · , Υ[n|T|]

]
, r ∈ T;

4. Solve the pruned reconstruction problem:
min

r̄L
‖s‖1 subject to ||y− Υ̃r̄||22 ≤ γ,

s(`) = ∑n∈T r`(n)
2, r̄ = [rT(n1), · · · , rT(n|T|)]T ;

4. Performance Analysis

In this section, the performance of the proposed CSJSR-DoA approach is investigated. First, the
relevant coherence, its upper bound and the angular separation problem are studied. Second, the
Cramér–Rao bound of the proposed CSJSR-DoA approach will be discussed.

4.1. Sparse Reconstruction Analysis and Angle Separation

The existence of solution to Equation (23) depends on the property of the reconstruction dictionary
Υ. Usually, the mutual coherence and the restricted isometry property (RIP) of a sparse representation
matrix are used as the criteria that indicate the reconstruction performance. Consider that the
verification of the RIP property requires combinational computational complexity [40]; it is preferable
to use the property of coherence that is easily computable to provide more concrete recovery guarantees.
In this paper, we try to analyze the coherence of the CSJSR-DoA approach.

In the CS theory, the coherence of a matrix is the worst-case linear dependence of any pair of its
column vectors. Similarly, in the block sparse signal case, in which a signal is composed by several
blocks and only a small number of these blocks is non-zero, the block-coherence [41] has been proposed.

Recall from Equation (21):
Υ = ΘMAL (24)

where Θ is a block diagonal joint sparse sampling matrix, M is a full rank, unitary permutation
matrix and AL is a block diagonal steering matrix. To study the coherence of Υ, we need to study the
block-coherence of Υ.

Theorem 1. Assume that H sensor nodes form a sensor array, and the received data in the fusion center are
yh = Φh

e xh(Φ
h
e ∈ RM×N), h = 1, 2, · · · , H. Then, the block-coherence of the joint sparse representation matrix

Υ satisfies:

µB(Υ) ≤
√

N −M
(N − 1)M

(25)

Proof. See Appendix A.

The block-coherence µB guarantees stable reconstruction of the block sparse signal rL with a high
probability. However, each block rL(n) indicates the DoA of sources. Thus, the coherence of each
sub-matrix Υ[n] should be considered. In this paper, we derive the coherence of Υ[n]. This result will
provide a lower bound of the source separation (in turns of DoA angle) issue to ensure a reliable DoA
estimation. However, the coherence of Υ[n] depends on array geometry, and it is difficult to obtain an
analytical bound.
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In this paper, we consider the typical uniform linear array geometry and find an interesting result
of the coherence bound. The derived result is similar to the array pattern [42] analysis and is validated
for both narrowband and broadband acoustic sources. For broadband sources, the highest dominant
frequency may be used.

Theorem 2. Assume that H sensor nodes form a uniformly-spaced linear array with d(≤ λ/2) being the
spacing between adjacent sensors where λ is the wavelength of the acoustic signal. If the difference of the incident
angles of any pair of sources satisfies:

∆θ ≥ c
Hd f

(26)

then the coherence of Υ[n] is bounded by:

µ(Υ[n]) ≤ 1
H sin(π/H)

√
N −M

(N − 1)M
(27)

Proof. See Appendix B.

4.2. Cramér–Rao Bound of CSJSR-DoA

In this subsection, we derive the Cramér–Rao bound (CRB) of the proposed CSJSR-DoA
method and study its impact on the DoA estimation accuracy due to factors such as the number
of measurements, the number of sensors and the noise level σ2, which is defined in Equation (13).

Recall that the CRB is defined as the inverse of the Fisher information matrix (FIM) [43],

CRB(Λ) = F−1(Λ) (28)

where Λ is the unknown parameter set. In this paper, we only derive the CRB of a single
source case. Thus, the unknown parameter is Λ = [θ, rT , fT ]T , where f = [ f1, f2, · · · , fR]

T and
r = [r0(k1), r0(k2), · · · , r0(kR)]

T are the sparse frequency bins and their corresponding source
spectrum, respectively.

In the case of Gaussian white noise, the FIM is:

F(Λ) =
σ2

2
Re[GHG] (29)

where G = ∂y/∂ΛT . For simplification, we assume that all H sensors have the same Φe(Φ1
e =, · · · ,=

ΦH
e = Φe). Recall Equations (4), (6) and (17); the measurement vector of the CSJSR-DoA approach in a

single source case is:

y (Λ) =
R

∑
i=1

r0(ki)a0(ki)⊗φe,ki
+ wc (30)

where φe,ki
is the ki-th column of ΦeΨ. After some calculations, the CRB of the CSJSR-DoA approach

is given by:

CRB(θ) =
σ2

2Mα‖e‖2
2

(31)

where e = [ f1r0(k1), f2r0(k2), · · · , fRr0(kR)]
T , α = 4π2

c2 ∑H−1
h=0 (uh cos(θ)− vh sin(θ))2.

Proof. See Appendix C.

5. Performance Evaluation

In this section, extensive simulations are carried out to: (1) study the performance of the
CSJSR-DoA approach; and (2) compare the performance of the CSJSR-DoA approach against COBE
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and CSA-DoA, using the L1-SVD [26] algorithm as the baseline. In addition, we also developed a
hardware prototype platform and collected data from outdoor experiments to validate the practical
applicability of the CSJSR-DoA approach.

5.1. Simulation Settings

We synthesized acoustic signals based on Equation (1). The synthesized signals contain four
dominant frequency entries at 300 Hz, 500 Hz, 600 Hz and 800 Hz. These correspond to wavelengths
of 1.14, 0.7, 0.57 and 0.43 m, respectively, assuming the sound speed at 343 m/s. The received acoustic
signal also contains additive Gaussian white noise with zero mean. The variances are set so that the
resulting SNR ranges from −10 dB to 10 dB in 5-dB increments. Such an acoustic signal resembles
the dominant entries’ distribution of some practical acoustic sources, such as truck engine sounds.
The sampling rate is 2 ksamples/s. At this rate, a frame of 125 ms is selected. The sampling rate is
chosen so that it satisfies the Nyquist sampling rate and avoids the frequency aliasing issue.

We assume a single uniform linear array consisting of six (H = 6) acoustic sensor nodes deployed
in a sensor field. The spacing between adjacent sensors is 0.2 m, which is smaller than half of the
wavelength (0.43 m) of the 800-Hz entry. All acoustic sources are located at the broad side of this linear
array, so that the incident angles (directions of arrivals) are constrained within a −90◦ to 90◦ range. We
divide this angle range into (L = 360) partitions, so that each partition equals 0.5◦.

Consider that data packets transmitted from the sensor array to the FC may suffer from data
packet loss. We will simulate data packet loss rates, denoted by rloss, at 0, 5%, 10%, 20% and 30%,
respectively. To mitigate burst data transmission loss, the acoustic data stream will be interleaved while
being assembled into the data packet for transmission. However, other than packet headers, there will
be no additional channel coding bits appended. The data loss rate is computed as the percentage of
packets that are lost during transmission through wireless channels versus the total number of packets
that are sent from the sensor array.

With the CSJSR-DoA approach, both random subsampling and wireless channel packet loss
will reduce the amount of received acoustic samples compared to what was originally sampled at
the sensor array. In particular, at each sensor node, the acoustic data samples will be randomly
subsampled according to Equations (14) and (15). The ratio M/N in these equations can be regarded,
in the context of CS, as the ratio of the number of measurements versus the total number of data
samples. With channel data packet loss taken into account, we instead define rdc(≤ 1) to be the ratio
of the number of acoustic samples successfully received at the fusion center versus the total number of
samples acquired by the H acoustic sensors. Ignoring the overhead of data packet header, we have:

rdc ≈ (1− rloss)×M/N (32)

In this section, the DoA performance will be reported against different values of rdc. In practice, if
rloss can be estimated in real time, we may adjust M to achieve the desired DoA accuracy.

Four algorithms are implemented: L1-SVD, CSJSR-DoA, CSA-DoA and COBE. The L1-SVD
algorithm [26] is applied to the entire set of acoustic samples without random subsampling and is
used as a baseline for both simulation and experiment. The COBE algorithm [13] requires a specific
reference node to be sampled at the Nyquist rate without any subsampling in order to provide a
reference source signal. To have fair comparisons, we performed trial runs to empirically obtain the
best parameters for the CSA-DoA and COBE algorithms. All four algorithms are implemented using
MATLAB Version 7.9.0. The optimization is performed using the Sedumi 1.2.1 toolbox [44].

5.2. CSJSR-DoA Performance Evaluation

In this simulation, two (Q = 2) stationary acoustic sources are placed in the far field from the
sensor array at [−60◦, 30◦]. The noise levels of the acoustic signal correspond to SNR = −10 dB,
−5 dB, 0 dB, 5 dB and 10 dB, and it is assumed that rloss = 0%. Five hundred independent trials are
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performed. Consider that sparse reconstruction is a probability event; a DoA estimate is considered a
success detection if a sparse indicative vector can be reconstructed successfully. In other words, some
trials fail to give a solution to the sparse DoA indicative vector. Based on the results of detected
trials, the number of impinging signals, Q, and the corresponding DoAs can be estimated. Similar
to some spatial spectrum search-based approaches, the spatial spectrum will be calculated using
rss = 20 log10 (s/ max(s)), and some conventional peak-finding approaches [45,46] are used to find
Q̃ peaks of the obtained spatial spectrum. However, the estimated Q̃ directions can be divided into
three categories: Q̃ < Q, Q̃ = Q and Q̃ > Q. In this case, a proper performance criterion is hard to
choose. Following a similar work [22], which takes into account both the errors in estimating the signal
number Q̃ and the corresponding DoAs, the root mean square errors (RMSE) of the n-th detected trial
will also be reported using the formula:

RMSE =

√√√√√ Ne
∑

n=1

(
RMSE(n)

)2

Ne
(33)

RMSE(n) =



√
∑

Q̃(n)
q=1

∣∣∣θq−θ̃
(n)
q

∣∣∣2+|Q−Q̃(n)|(∆θmax)
2

Q , Q̃(n) ≤ Q√
∑Q

q=1

∣∣∣θq−θ̃
(n)
q

∣∣∣2+∑Q̃(n)
j=Q+1

∣∣∣θ̃(n)j −θ̄
(n)
j

∣∣∣2
Q , Q̃(n) > Q

(34)

where Ne is the number of detected trials, θ̄
(n)
j = arg

{
min

θq ,q∈[1,Q]

∣∣∣θq − θ̃
(n)
j

∣∣∣}. Here, ∆θmax is a penalty

term of the maximum admissible DoA error (i.e., 180◦ for a liner array), and θ̄
(n)
j is the least error of

additional false DoA.
The averaged detection rate and the RMSE are summarized in Figure 4. It may be noted that

when the SNR is greater or equal to 0 dB, rdc ≥ 0.25 yields very satisfactory DoA performance. To
put it into context, rdc = 0.25 roughly equals transmitting 500 samples per second without data loss.
The corresponding data volume of Nyquist rate sampling is 1600.
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Figure 4. Performance comparison of the CSJSR-DoA approach under different data volumes:
(left) detection rate (right) RMSE.

It is also interesting to examine how the RMSE obtained using simulation is compared against the
theoretical Cramér–Rao bound. In Figure 5, it can be seen that for SNR > 0 dB, the RMSE is very close
to the theoretically-computed CRB.
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Figure 5. Comparison between the CSJSR-DoA result and the Cramér–Rao bound (CRB): (a) CRB
comparison with rdc = 23%; (b) CRB comparison with rdc = 31%; (c) CRB comparison with rdc = 39%;
(d) CRB comparison with rdc = 47%.
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Figure 6. Comparison of different lossy transmissions: (a) Detection rate versus M/N; (b) RMSE versus
M/N; (c) Detection rate versus rdc; (d) RMSE versus rdc .

Next, we want to investigate the impact of varying the data packet loss rate for different values of
random subsampling ratio M/N. The noise level of the acoustic signal is set at SNR = 0 dB. Two sets
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of plots are provided in Figure 6. On the top, the averaged probability of successful detection and the
RMSE are plotted against M/N. The performance degradation due to data packet loss can be seen
clearly. On the bottom, the averaged probability of successful detection and the RMSE are plotted
against rdc, which, according to Equation (32), already takes into account the impact of rloss. Hence, the
different curves on the bottom panel are merged into an identical one. This is because the random data
loss is equivalent to the random subsampling of the raw data.

Our next goal is to investigate the DoA resolution of the proposed CSJSR-DoA approach when
two acoustic sources become closer in terms of DoAs. Under the same simulation configuration, we
fix one source at 0◦ and vary the incident angle of the second source from 2◦ to 40◦ in 2◦ increments.
We perform 300 independent trials for each setting. The SNR = 5 dB, and the peaks of the 360× 1
sparse vector indicate the DoAs of two sources.

We report the averaged angle estimation error versus target DoA separation angles in Figure 7.
Based on the discussion on Theorem 2, the steering vectors of two nearby sources are strongly correlated
or have larger coherence. Therefore, the reconstruction of a correct sparse DoA indicative vector does
not perform well. In simulations, the probability (false DoA probability) that only one source is found
when two DoAs exist and the RMSE of each DoA estimation versus target DoA separation angles are
shown in Figure 8. Note that when the separation angles are small, the averaged estimation errors, the
RMSEs and the probability of false DoA estimation are rather large. However, when the targets are well
separated (≥ 20◦), the DoAs of both targets are accurately estimated (the averaged estimation error
and the false DoA probability are close to zero, and the RMSEs decrease to a constant). This validates
the theoretical angle separation result of c

Hd f = 343
6×0.2×800 = 20.5◦.
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Finally, we use simulation to compare the proposed CSJSR-DoA approach against two other
CS-based DoA methods: COBE and CSA-DoA. The simulation conditions are identical to those used
in Figure 4. While these three methods differ in how the measurements are made, the definition of
rdc would still be applicable to all of them; namely, the number of samples received at the FC versus
the total amount of raw data samples at the sensor array. Specifically, the analog projection of the
CSA-DoA approach is emulated by projecting the digitized signal. The results are summarized in
Figure 9. It shows that the CSJSR-DoA method has favorable performance over others in a number
of situations. Additional comparison of these methods using data collected from a prototype WSAN
platform will be discussed next.
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Figure 9. Performance comparison among CS-based methods under the same SNR ratio:(a) Detection
rate with SNR = 10 dB; (b) RMSE with SNR = 10 dB; (c) Detection rate with SNR = 5 dB;(d) RMSE
with SNR = 5 dB; (e) Detection rate with SNR = 0 dB; (f) RMSE with SNR = 0 dB.

5.3. Prototype WSAN Platform and Field Experiment

To further validate the capability of the CSJSR-DoA approach, a WSAN [47] was developed.
Each sensor node (shown in Figure 10a) is equipped with an omni-directional microphone, a 16-bit



Sensors 2016, 16, 686 17 of 23

ADC and a wireless transceiver operating at a rate of 31.25 KBps using the ZigBee protocol [48].
Random sub-sampled acoustic data samples are transmitted to the FC through the wireless transceiver
to the FC (laptop). To guarantee time synchronization within the sensor array, the RBS time
synchronization scheme is used. Figure 10b shows the experiment configuration, in which a laptop
equipped with a wireless receiver was used as the FC. The sensor array is shown in the background
close to the upper right corner.

(a) (b)

Figure 10. Wireless sensor array network. (a) Sensor node; (b) fusion center and array.

In the first experiment, the task is to track the DoAs of a single moving acoustic source (digital
acoustic signal played through a speaker). The distance between the source and the array varies
from 20 m to 40 m, and the measured SNR in the array was about 6 dB. Each sensor node took
samples during a period of 125 ms at a 2 Ksampling rate and transmitted them to the FC using
the IEEE 802.15.4 protocol. In the FC, the DoA estimate was updated every second. The measured
data loss ratio rloss was 0.27, and the corresponding rdc of the received data in the FC was 0.23.
The result is shown in Figure 11. The red line is the ground truth, and the green circles are CSJSR-DoA
estimates. The averaged probability of success detection is 90%, and the corresponding RMSE is 2.76◦.
This experiment provides an example of the practical use of the CSJSR-DoA approach.
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Figure 11. Experiment result of the CSJSR-DoA approach.

In the second experiment, two stationary acoustic sources are used. They are placed at distances of
12.94 m and 14.66 m with (ground truth) DoA angles at −6.5◦ and 31.0◦ respectively. Six sensors were
incorporated into the array with an inter-sensor spacing equal to 0.2 m. Using data collected in this
experiment, the performance of the CSJSR-DoA approach is compared against COBE, CSA-DoA and
the baseline algorithm L1-SVD. The results are shown in Figure 12 and Table 2. The data compression
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ratio of all of these algorithms is fixed at rdc = 0.3. To facilitate the comparison, the corresponding
L× 1 sparse DoA angle vector s is normalized and expressed in units of dB. From Figure 12, it is shown
that the CSJSR-DoA approach yields sharper DoA estimates compared to the other three methods.
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Figure 12. Prototype system experiment of the CSJSR-DoA approach.

Table 2. Result of the prototype system experiment. CSA, compressive sensing array; COBE,
compressive bearing estimation.

L1-SVD CSJSR-DoA CSA-DoA COBE
DoA (◦) [−7,29] [−7.5,27.5] [−2.5,30] [−9.5,25]

6. Conclusions

In this paper, a compressive sensing joint sparse representation approach (CSJSR-DoA) is
presented for DoA estimation on a WSAN platform. By exploiting both frequency domain and
spatial domain sparsity, the CSJSR-DoA approach provides a direct DoA angle estimation at the FC,
while requiring almost no computation at power-constrained remote sensor nodes. We provided
performance analysis in terms of DoA angle resolution and the Cramér–Rao bound of the estimates.
We further conducted extensive simulation and built a prototype experimental WSAN platform
to investigate the impacts of various parameters on the DoA performance. We also compared the
performance of the proposed CSJSR-DoA approach against two other compressive sensing DoA
estimation methods and showed that the CSJSR-DoA approach provides superior performance in both
simulation runs and real-world experiments.
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Appendix A.

Let C = [c1 · · · cd︸ ︷︷ ︸
C[1]

, cd+1 · · · c2d︸ ︷︷ ︸
C[2]

, · · · cN−d+1 · · · cN︸ ︷︷ ︸
C[M]

] be a concatenation of column block C[m] of size

L× d. Then, the block coherence is defined as:
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µB = max
r,l 6=r

1
d

ρ(C[r]HC[l]) (A1)

where ρ(X) is the spectral norm of matrix X. For simplification, we assume all of the H sensors have
the same measurement matrix (Φe = Φ1

e =, · · · ,= ΦH
e ); therefore:

Υ[l]HΥ[r] = 1
MH (AL(l)⊗φe,l)

H (AL(r)⊗φe,r)

=
φH

e,l φe,r
MH AL(l)

HAL(r)
(A2)

Note the structure of φe,r; the product ΦeΨ is equivalent to selecting some rows from the discrete
Fourier transform (DFT) matrix Ψ. Hence, their product ΦeΨ is a partial Fourier transform matrix
(submatrix of a full DFT matrix). For the underlying random non-uniform sampling, the selection of
these M rows is determined by u. Applying the Welch Bound inequality [49], when u is randomly
selected from {1, 2, . . . , N},

|φH
e,lφe,r| ≤

√
(N −M)M
(N − 1)

(A3)

According to the Gershgorin circle theorem, µB is bound by:

µB = max
l,r 6=l

1
L ρ(Υ[l]HΥ[r])

≤ max
l,r 6=l

1
LH

√
(N−M)
(N−1)M λmax

(
AL(l)

HAL(r)
)

=
√

N−M
(N−1)M

(A4)

Appendix B.

Assume that a uniform linear array consists of H sensors and that the distance between adjacent
sensors is d. The orientationof a linear array is set to be orthogonal to the y-axis, and the array centroid is
[0, 0]. The positions of the h-th sensor satisfies uh − uh−1 = d(h = 2, 3, · · · , H), vh = 0(h = 1, 2, · · · , H)

and τh,q = uh sin(θq), θq ∈ (−90, 90]. In this case, the corresponding steering vector is given by:

a`(k) = [e
−jωku1 sin(θ`)

c , e
−jωku2 sin(θ`)

c , · · · , e
−juH ωk sin(θ`)

c ]T

= χ[1, e
−jωkd sin(θ`)

c , · · · , e
−juH ωk(H−1)d sin(θ`)

c ]T
(B1)

where χ = e
−jωku1 sin(θ`)

c is a constant. Recall Equation (A2); the block sub-matrix is given by:

Υ[k]=AL(k)⊗φe,k (B2)

The sparse representation matrix in Equation (8) that compactly expresses the spectrum of the H
received signals is:

AL(k) = [a1(k), a2(k), · · · , aL(k)] (B3)

when ωkd/c > π (d > λ/2) [37,50]; there are at least two different angles θ1 and θ2 that satisfy:

e
−jωkd sin(θ1)

c = e
−jωkd sin(θ2)

c (B4)
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in which θ1 6= θ2 ∈ (−π/2, π/2]. This implies that there will be multiple identical columns in AL(k),
and hence, the coherence of AL(k) will be one. However, in CS theory, smaller coherence means better
reconstruction performance. To confirm the uniqueness of AL(k) (not the same columns in AL(k)) and,
hence, a stable reconstruction of a sparse indicating vector, a small coherence is desirable.

On the condition that d ≤ 1/2λ, the coherence of Υ[k] is given by:

µ (Υ[k])
= 1

MH max
1≤`1 6=`2≤L

|
(
a`1

(k)⊗φe,k
)H (a`2 (k)⊗φe,k

)
|

≤ 1
H

√
N−M

M(N−1) max
1≤`1 6=`2≤L

|aH
`1
(k)a`2 (k)|

= 1
H

√
N−M

M(N−1) max
1≤`1 6=`2≤L

∣∣∣∑H−1
h=0 exp(−jhωkdp(θ)

c )
∣∣∣

=
√

N−M
M(N−1)µa

(B5)

where µa = 1
H max

1≤`1 6=`2≤L

∣∣∣∣∣ 1−exp
(−jHωkdp(θ)

c

)
1−exp

(−jωkdp(θ)
c

)
∣∣∣∣∣ is determined by the redundant array manifold matrix,

p(θ) = sin(θ1)− sin(θ2) ≈ cos(θ1)∆θ, ∆θ = θ1 − θ2.
Note that lim

∆θ→0
µa = 1, that is when the incident angles of two sources are close enough, the

coherence may approach µB, and hence, their DoAs become unresolvable. If the angle difference
between two sources is larger than a certain value, a small coherence value can be guaranteed. Based on
such an observation, an upper bound of µa can be established as µb = 2/(H|1− exp(−jωd p(θ1)

c )|). In
Figure B1, the coherence µa and its upper bound µb are plotted against p(θ1). It is observed that µb
decreases sharply when p(θ1) is smaller than the first side lobe (Hωd p(θ1)/c = 2π). It is not difficult
to verify that when:

|∆θ| ≥ c
H f d cos(θ1)

≥ c
H f d

(B6)

µa ≤ µb(∆θ) = 1
H

∣∣∣ 2
1−e(−j2π/H)

∣∣∣ = 1
H sin(π/H)

. This means a small coherence can be guaranteed when
the angle difference of the two sources is larger than a certain threshold.
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Figure B1. Mutual coherence of the array manifold matrix and its upper bound.
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Appendix C.

Recall from Equation (29) that the details of the FIM matrix are:

F(Λ)=
2
σ2 Re


(∂yH

∂θ
∂y
∂θ) (∂yH

∂θ
∂y
∂rT) (∂yH

∂θ
∂y
∂fT)

(∂yH

∂r
∂y
∂θ) (∂yH

∂r
∂y
∂rT) (∂yH

∂r
∂y
∂fT)

(∂yH

∂f
∂y
∂θ) (∂yH

∂f
∂y
∂rT) (∂yH

∂f
∂y
∂fT)

 (C1)

Additionally, each term of the FIM is:

∂y
∂θ = ∑R

i=1 r0(ki) (b(ki)� a0(ki))⊗φe,ki
,

∂y
∂rT

0
= [a0(k1)⊗φe,k1 , a0(k2)⊗φe,k2 , · · · , a0(kR)⊗φe,kR ]

∂y
∂fT = [ ∂y

∂ f1
, ∂y

∂ f2
, · · · , ∂y

∂ fR
],

(C2)

where b(ki) =−j2π fki
[u1 cos(θ) − v1 sin(θ), u2 cos(θ) − v2 sin(θ), · · · , uH cos(θ) − vH sin(θ)], ∂y

∂ fi
=

r0(ki)a0(ki)⊗
(
vki
�φe,ki

)
, vki

= −j2π(u− 1)/N. We assume the coherence of ΦhΨ is very small and
can be neglected ((φe,kl

)Hφe,kn ≈ 0, l 6= n). Based on this approximation, each component of the FIM
is given by:

∂yH

∂θ
∂y
∂θ = Mα||e||22

∂yH

∂r
∂y
∂rT = MJI

∂yH

∂f
∂y
∂fT = εdiag(r0(k1)

2, · · · , r0(kR)
2)

∂yH

∂θ
∂y
∂rT = 0

∂yH

∂θ
∂y
∂fT = 0

∂yH

∂r
∂y
∂fT = ηdiag(r0(k1), · · · , r0(kR))

(C3)

where α = 4π2

c2 ∑H−1
h=0 (uh cos(θ)− vh sin(θ))2, e = [k1r0(k1), · · · , kRr0(kR)]

T , η = −jπ(1 + M), ε =

(4π2/N2)‖u− 1‖2
2. Applying the well-known matrix inverse lemma, the CRB of CSJSR-DoA is:

CRB(θ) =
σ2

2Mα‖e‖2
2

(C4)
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