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Abstract: The retransmission threshold in wireless sensor networks is critical to the latency
of data delivery in the networks. However, existing works on data transmission in sensor
networks did not consider the optimization of the retransmission threshold, and they simply set
the same retransmission threshold for all sensor nodes in advance. The method did not take
link quality and delay requirement into account, which decreases the probability of a packet
passing its delivery path within a given deadline. This paper investigates the problem of finding
optimal retransmission thresholds for relay nodes along a delivery path in a sensor network.
The object of optimizing retransmission thresholds is to maximize the summation of the probability
of the packet being successfully delivered to the next relay node or destination node in time.
A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds
for relay nodes along a delivery path in the sensor network is proposed. The time complexity
is O (n∆ ·max1≤i≤n{ui}), where ui is the given upper bound of the retransmission threshold of
sensor node i in a given delivery path, n is the length of the delivery path and ∆ is the given upper
bound of the transmission delay of the delivery path. If ∆ is greater than the polynomial, to reduce
the time complexity, a linear programming-based (1 + pmin)-approximation algorithm is proposed.
Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big
enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity
O(1) is proposed. Experimental results show that the proposed algorithms have better performance.

Keywords: packet delivery; optimal retransmission threshold; in time

1. Introduction

Wireless Sensor Networks (WSNs) have been increasingly deployed for a wide variety of
real-time applications, such as industrial Internet-of-Things, emergency response, critical infrastructure
monitoring and process measurement and control. In real-time applications, deadline misses in data
transmission may bring about irreparable damage [1–4]. For mission-critical tasks, not only the packet
delivery deadline should be met, but also the transmission reliability is supposed to be guaranteed.
Therefore, providing reliable and timely data delivery in WSNs is crucial to the success of the mission.

In supporting mission critical-tasks, data delivery is required to be timely and reliable, but it is
challenging for desirable Quality of Service (QoS). Due to the transmission uncertainties, wireless link
dynamics and the queueing dynamics, wireless link qualities in sensor networks can vary at a wide
range of timescales [5,6], which also results in node failures and connectivity varying over time [7].
In practical sensor networks, the sensor node may need multiple retransmissions for successfully
forwarding a packet at each hop. A maximum number of retransmissions, i.e., retransmission threshold,

Sensors 2016, 16, 665; doi:10.3390/s16050665 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 665 2 of 21

is usually set for each node to prevent transmitting a packet over a bad link unlimitedly, and the
packet will be eventually dropped by the sender after the maximum number of transmission retries.
The success of a packet delivery is probabilistic, and thus, the WSNs are rendered unreliable.

QoS supported by the underlying networks aims to meet end users’ satisfaction with the services
that the system provides [8]. The QoS provisioning in data delivery can be measured in the form of
performance metrics, such as delay, packet loss rate and throughput. There exists a tradeoff among the
QoS requirements, such as transmission reliability and deliver delay. Thus, the soft QoS supported
can be accomplished, in which the soft QoS refers to achieving the QoS requirements with probability.
Many efforts have been made to improve transmission reliability and deliver delay in WSNs, including
quality measurement of forwarding data [5,9,10] and real-time routing protocol designing [11–13].

The main methodology applied in the existing works is to exploit a delivery path based on
the QoS-aware forwarding quality metrics to improve the performance of packet transmission.
However, there exist limited studies on the optimization of the retransmission threshold for each node
in a delivery path, which imposes a significant effect on the probability of a packet being successfully
transmitted within specified deadline. Most protocols set the same retransmission threshold for all
sensor nodes in advance without considering the delay requirement and link quality, so that the
delivery performance in terms of latency and reliability is decreased. We use an example inspired
by the one in [14] to show the impact of retransmission threshold on the performance, illustrated in
Figure 1.

Figure 1. Impact of the retransmission threshold on the probability of packet delivery.

The number associated with each link is the probability for a packet being successfully delivered
to the next node through the link, denoted by psuc, which means that on average, 1

/
psuc transmission

trials are needed to successfully deliver a packet through the link. The integer variable A denotes
the number of packets in the buffer waiting to be served. The delivery path for the first packet
is S → B → C → D1, and the path for the second packet is S → E → D2. We assume that
one transmission takes 10 ms, and the deadline of delivering the first packet from node S to node D1 is
90 ms. For delivering the packet to node D1 before the deadline, the summation of transmission trials
along the path must be no more than nine, that is the result of 90 ms divided by one transmission time
of 10 ms. Traditional protocols set the same retransmission threshold for each relay node in advance.
If the protocol is set by a high retransmission threshold, such as 29, in the CTPprotocol [15], without
the consideration of delay requirement, thus the probability for successfully transmitting the first
packet through the link S→ B can be significantly improved. However, this strategy may make the
deadlines of both packets expire and consumes more system resource. If the maximum number of
transmission trials is three for each node, in view of the summation of transmission trials, there are no
more than nine. Then, the probability of the first packet passing the link S → B is 1− 0.93 = 0.271.
However, if the retransmission thresholds of the three nodes are set to 6, 0 and 0, that is the maximum
numbers of transmission trials are 7, 1 and 1, then the probability is 1− 0.96 = 0.927. In terms of
latency and reliability, there is a tradeoff in determining the retransmission threshold. Therefore, the
retransmission threshold should be carefully chosen to achieve desirable QoS provisioning [9].
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From the example above, it is obvious that the retransmission threshold has significant impact
on the delivery performance in terms of delay and reliability. Few studies focus on the optimization
of the retransmission threshold [5,14], and they have the following two major disadvantages. In the
feedback control-based framework [5], a heuristic method for adjusting the transmission numbers is
proposed, which does not provide the reliability guarantee. In our previous work [14], a greedy-based
algorithm for finding optimal retransmission thresholds is proposed, which overlooks the impact of
queue length on the forwarding quality. The aforementioned observation motivates us to investigate
the problem of finding optimal retransmission thresholds in this paper. The problem is formalized as
an integer optimization problem first. Then, a dynamic programming-based distributed algorithm
for solving the problem is proposed. It can be run on a sensor node and enables the node to
adaptively set the optimal retransmission threshold based on the link quality and the remaining
time to deadline. Its time complexity is O (n∆ ·max1≤i≤n{ui}), where ui is the given upper bound
of the retransmission threshold of sensor node i in a given delivery path and n is the length of the
delivery path. The complexity depends on delivery delay ∆. If ∆ is less than or equal to the polynomial,
the complexity of the algorithm is polynomial. Otherwise, the algorithm is not efficient. In this case,
a (1 + pmin)-approximation algorithm is provided based on the linear programming. Furthermore,
when the ranges of the upper and lower bounds of the retransmission thresholds are big enough, a
Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is
developed. The main contributions of the paper are as follows.

• The problem of finding optimal retransmission thresholds for each node along a delivery path is
defined and is formalized as an integer optimization problem.

• A Dynamic Programming-based Distributed Algorithm (DPDA) for solving the problem above
is proposed; the correctness of the algorithm is proven; and its time and space complexity are
analyzed, i.e., O (n∆ ·max1≤i≤n{ui}), and O (n∆ ·max1≤i≤n{ui}).

• In case of the delivery delay ∆ being greater than the polynomial, a Linear Programming-based
(1 + pmin)-Approximation Algorithm (LPAA) is proposed.

• Furthermore, in the case of the ranges of the upper and lower bounds of the retransmission
thresholds being big enough, a Lagrange Multiplier-based Distributed Approximation Algorithm
(LMDAA) with time complexity O(1) is proposed.

• Simulation experiments are conducted to evaluate the proposed algorithms. Simulation results
show that the proposed algorithms in the paper have better performance for real-time
data delivery.

The rest of this paper is organized as follows. The related works on real-time data delivery
are surveyed in Section 2. In Section 3, the problem is described. In Section 4, a dynamic
programming-based distributed algorithm for finding optimal retransmission thresholds is provided.
Section 5 gives a linear programming-based approximation algorithm, and the ratio bound is analyzed.
In Section 6, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time
complexity O(1) is proposed. Experimental results are illustrated in Section 7, and Section 8 concludes
this paper.

2. Related Works

The real-time performance of packet delivery is a fundamental factor in sensor networks,
and many efforts have been made to design efficient real-time routing protocols in WSNs. Most
of the existing works addressed the following two challenges. First, it is essential to design
the metric, which measures the forwarding quality, such as node forwarding quality [9], link
quality [10], data aggregation [2] and energy efficiency [12]. Approximate aggregation for
tracking quantiles and range countings is presented in [2], where a dynamic binary tree based
deterministic tracking algorithm is proposed. Based on the actual number of data transmissions,
link-Quality of Forwarding (QoF) and node-QoF metrics are proposed in [9]. A data-driven-based
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link quality prediction approach is provided in [10], which combines the packet reception ratio
and the physical-layer information. Considering queuing delay, the Weighted End-to-End Delay
(WEED) metric is introduced in [11]; the work focuses on selecting the path with the minimum
expected end-to-end delay. In multi-hop wireless networks, the routing decision takes spatial
reusability into account to improve the end-to-end throughput [16]. The authors in [17] utilize
the expected available bandwidth to capture the logical intra-flow and inter-flow interference,
and an isotonic metric of expected delay is proposed. Dependence among links was revealed
recently. By exploiting the low correlated forwarding links, link-correlation Opportunistic Routing
(OR) is given in [18]. Facing the uncertainties in wireless communication, the multi-timescale
adaptation routing protocol is provided in [6], which can adapt to in situ delay conditions in
routing delay.

To provide real-time packet delivery, QoS provisioning protocols and transmission scheduling
protocols have also been extensively studied. The literature [13] studies geographic opportunistic
routing protocol for multi-constrained QoS provisioning in WSNs, and the problem is formulated as
a multi-objective multi-constraint optimization problem. By differentiating the priorities of user-level
applications, the author in [19] develops an optimization tool for balancing the system resources
and presents a cluster-based routing protocol. Under the constraints of delay and load balancing
requirements, a centralized heuristic algorithm for selecting the path with minimal cost is provided
in [20]. To separate the packet of different QoS requirements, a virtual hybrid potential field is
introduced in [21]. Considering capacitated multicast routing problem, the work [22] provides the
approximation algorithms for multicast k-path routing and multicast k-tree routing. By supporting slot
rescheduling, the segmented slot assignment-based method for improving retransmission efficiency is
proposed in [23]. Pan et al. [24] formulate joint routing and scheduling into an optimization problem
and solve the problem with a column generation method. To route around the dead end relay node,
the authors in [25] propose the cross-layer protocol, which integrates geographic routing with the
contention-based MAC protocol. The author in [26] map the scheduling of data flow to multiprocessor
scheduling and prove an upper bound of the end-to-end communication delay.

There exist limited studies on optimizing the retransmission threshold [5,14]. A distributed
route maintenance framework is proposed in [5], which enables the link to adjust the retransmission
number. However, the proposed heuristic method cannot provide the reliability guarantee theoretically.
In our previous work [14], a greedy-based algorithm for finding optimal retransmission thresholds is
proposed, which overlooks the impact of queue length on the forwarding quality. To overcome the
shortage of the method, we investigate the problem of finding optimal retransmission thresholds in
this paper.

3. Problem Description

In this section, the problem of finding optimal retransmission thresholds for each node along
a delivery path is defined and is formalized as a general integer optimization problem. We prove that
the problem is NP-hard.

3.1. Problem Definition

Suppose that the end-to-end path is P = j1, j2, . . . , jn+1, where j1 and jn+1 are source and
destination nodes and other ji’s are relay nodes. There exist the following four attributes for each link
ji → ji+1.

• transmission time t: This means that once transmission costs time, including encoding and
wireless communication. Usually each sensor node takes the same time for once transmission.

• transmission failure probability pi: pi denotes the transmission failure probability over the link
ji → ji+1. It means that pi is the probability of a transmission failure due to either collisions or
bad channel quality when node ji forwards a packet to node ji+1.



Sensors 2016, 16, 665 5 of 21

• retransmission threshold Ki: This means that the maximum number of retransmission trials is Ki.
It is obvious that the maximum number of transmission retries is Ki + 1, and thus, the packet will
be eventually dropped by the sender after the Ki + 1 transmission retries. It can be known that
1− pKi+1

i is the probability of a packet being successfully delivered to node ji+1.
• retransmission threshold Ai: Each hop delay consists of the transmission delay over the wireless

link and the queuing delay in the buffer [9]. Ai denotes the number of the packets queued at node
ji, which means that there exist Ai + 1 packets to be forwarded [6].

We define the metric of a given retransmission threshold as the probability of a packet being
successfully delivered through the link. Existing works exploit multipath routing to guarantee both
reliability and deliver delay in WSNs [13,27,28]. Similarly to [5,9], we aggregate the measure over
a path based on the metric and aim at maximizing the summation of the probability of the packet
delivered to the next relay node along the given path within the deadline. The path-metric estimates
the given path forwarding quality, and it considers both transmission reliability and delay constraint.

The end-to-end delay over a path is the summation of the delays of all of the hops along the path.
Let δ denote the delay constraint. Then, the problem of finding the optimal retransmission thresholds
for each node can be formulated as the following integer optimization problem, where Li and Ui are
the given lower and upper bounds of the retransmission threshold of node i.

max
n

∑
i=1

(
1− pKi+1

i

)
s.t.

n

∑
i=1

(Ai + 1)(Ki + 1)t ≤ δ

Li ≤ Ki ≤ Ui, Ki ∈ Z, i ∈ {1, 2, ..., n}

(1)

Each hop delay consists of the transmission delay and the queuing delay in the buffer; thus, the
maximum delay latency for each hop is (Ai + 1)(Ki + 1)t. The first inequality constraint means that the
deliver delay of the last packet served at source node j1 is no more than the deadline constraint δ. The
second inequalities mean that the retransmission thresholds should be bounded in a given interval.

For the convenience of formalization and analysis, let ∆ denote δ/t. For any i ∈ {1, 2, ..., n}, let
ai = Ai + 1, ki = Ki + 1, li = Li + 1 and ui = Ui + 1; then, the problem above is equivalent to the
following integer optimization problem.

min
n

∑
i=1

pki
i

s.t.
n

∑
i=1

aiki ≤ ∆

li ≤ ki ≤ ui, ki ∈ Z, i ∈ {1, 2, ..., n}

(2)

3.2. Computational Complexity Analysis

In this subsection, we construct a 0-1 Knapsack problem [29], and we prove that integer optimization
Equation (2) is equivalent to the proposed 0-1 Knapsack problem. The computational complexity of
the 0-1 Knapsack problem is NP-hard [29]; thus the hardness of the problem for calculating optimal
retransmission thresholds is NP-hard.

Let Si,j denote pli+j
i − pli+j−1

i , where j ∈ {1, 2, ..., ui − li}. It can be known that pli+j
i = ∑

j
k=1 Si,k + pli

i .
Thus, we can formulate a 0-1 Knapsack problem as follows.
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min
n

∑
i=1

ui−li

∑
j=1

Ci,jSi,j + pli
i

s.t.
n

∑
i=1

ui−li

∑
j=1

aiCi,j +
n

∑
i=1

aili ≤ ∆

Ci,j ∈ {0, 1}, i ∈ {1, 2, ..., n}, j ∈ {1, ..., ui − li}

(3)

Lemma 1. For ∀i ∈ {1, ..., n}, the following inequalities hold if 0 < pi < 1 and li < ui,

pli+j
i − pli+j−1

i < pli+j+1
i − pli+j

i < 0 (4)

where j ∈ {1, ..., ui − li}.

Proof. Let gi(x) = px
i . For any i ∈ {1, ..., n}, it is obvious that gi(x) is a monotone decreasing

function; thus, pli+j+1
i − pli+j

i < 0. Obviously, pi(pli+j
i − pli+j−1

i ) = (pli+j+1
i − pli+j

i ). Since 0 < pi < 1

and pli+j+1
i − pli+j

i < 0, we have pli+j
i − pli+j−1

i < pli+j+1
i − pli+j

i . In conclusion, pli+j
i − pli+j−1

i <

pli+j+1
i − pli+j

i < 0.

Lemma 2. If C∗1,1, C∗1,2, ..., C∗1,u1−l1
, C∗2,1, ..., C∗n,un−ln are the optimal solutions to Equation (3), then there exist

j1, ..., jn, such that:

C∗i,k =

{
1 k ≤ ji
0 k > ji

(5)

where i ∈ {1, 2, ..., n}, k ∈ {1, ..., ui − li}, ji ∈ {0, 1, ..., ui − li}.

Proof. The proof is by contradiction. Suppose that C∗1,1, C∗1,2, ..., C∗1,u1−l1
, C∗2,1, ..., C∗n,un−ln are the optimal

solutions to Equation (3) and that they enable the objective function value to achieve the minimum.
For given m, if there is no integer in {0, 1, ..., um − lm} such that Equation (5) are true, then there
must exist integers r, t, q ∈ {1, ..., um − lm} such that C∗m,r = 1, C∗m,t = 0, C∗m,q = 1 and r < t < q.
We can construct a solution, whose objective function values are less than that of C∗1,1, ..., C∗n,un−ln , by
exchanging C∗m,t and C∗m,q. Suppose that C′1,1, C′1,2, ..., C′n,un−ln are derived by merely exchanging C∗m,t
and C∗m,q.

Firstly, we prove that C′1,1, C′1,2, ..., C′n,un−ln are feasible solutions of Equation (3). For any
i ∈ {1, 2, ..., n} and j ∈ {1, ..., ui − li}, C∗i,j and C′i,j are 0, 1 variables. It is obvious that

∑um−lm
j=1 amC∗m,j = ∑um−lm

j=1 amC′m,j. According to the construction of the solution, C∗i,j and C′i,j are

identical correspondingly, except for C∗m,t and C∗m,q. Since ∑n
i=1 ∑ui−li

j=1 aiC∗i,j + ∑n
i=1 aili ≤ ∆, we have

∑n
i=1 ∑ui−li

j=1 aiC′i,j + ∑n
i=1 aili ≤ ∆. Thus, C′1,1, C′1,2, ..., C′n,un−ln are feasible solutions.

Let ε = ∑n
i=1 ∑ui−li

j=1 C∗i,jSi,j + pli
i − ∑n

i=1 ∑ui−li
j=1 C′i,jSi,j + pli

i be the difference between the values

of the two objective functions. It is easily derived that ε = ∑um−lm
j=1 C∗m,jSm,j − ∑um−lm

j=1 C′m,jSm,j =

Sm,q − Sm,t. From Lemma 1, we know ε > 0. Then, C′1,1, ..., C′n,un−ln are more optimal solutions, and it
contradicts the fact that C∗1,1, ..., C∗n,un−ln are the optimal solutions.

Theorem 3. Suppose that C∗1,1, ..., C∗n,un−ln are the optimal solutions to Equation (3). For any i ∈ {1, 2, ..., n},
let k∗i = ∑ui−li

j=1 C∗i,j + li. Then, k∗1, ..., k∗n are the optimal solutions to Equation (2), and the values of the
two objective functions are identical.
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Proof. Suppose that k′1, ..., k′n are the optimal solutions of Equation (2), then we can construct feasible
solutions C′1,1, ..., C′n,un−ln to Equation (3) as following, where i ∈ {1, 2, ..., n}, j ∈ {1, ..., ui − li}.

C′i,j =

{
1 j ≤ k′i − li
0 j > k′i − l

(6)

It can be known that ∑n
i=1 ∑ui−li

j=1 aiC′i,j + ∑n
i=1 aili = ∑n

i=1 ∑
k′i−li
j=1 aiC′i,j + ∑n

i=1 aili =

∑n
i=1 ai(k′i − li) + ∑n

i=1 aili = ∑n
i=1 aik′i. Since ∑n

i=1 aik′i ≤ ∆, C′1,1, ..., C′n,un−ln are the feasible

solutions to Equation (3). Based on the definition of Si,j, it can be derived that ∑n
i=1 pli+k′i−li

i =

∑n
i=1 ∑

k′i−li
j=1 Si,j + pli

i = ∑n
i=1 ∑

k′i−li
j=1 C′i,jSi,j + pli

i = ∑n
i=1 ∑ui−li

j=1 C′i,jSi,j + pli
i . Thus, the following

inequality can be derived.

min
n

∑
i=1

p
ki
i =

n

∑
i=1

pk′i
i =

n

∑
i=1

ui−li

∑
j=1

C′i,jSi,j + pli
i ≥ min

n

∑
i=1

ui−li

∑
j=1

Ci,jSi,j + pli
i

Therefore, the objective function value of Equation (3) is a lower bound of that of Equation (2).
Since C∗1,1, ..., C∗n,un−ln are the optimal solutions of Equation (3), there exist j1, ..., jn, such that

Equation (5) hold according to Lemma 2. For any i, ∑ui−li
j=1 C∗i,j = ∑

ji
j=1 C∗i,j = ji from Equation (5),

then ∑ui−li
j=1 C∗i,jSi,j + pli

i = ∑
ji
j=1 Si,j + pli

i = pli+ji
i . Since k∗i = ∑ui−li

j=1 C∗i,j + li = ji + li, we have

∑n
i=1 ∑ui−li

j=1 aiC∗i,j + ∑n
i=1 aili = ∑n

i=1 ∑
ji
j=1 aiC∗i,j + ∑n

i=1 aili = ∑n
i=1 ai ji + ∑n

i=1 aili = ∑n
i=1 ai(li + ji) =

∑n
i=1 aik∗i . Since C∗1,1, ..., C∗n,un−ln satisfy all of the constraints of Equation (3), ∑n

i=1 aik∗i ≤ ∆. For any i,
it is obvious that 0 ≤ ji ≤ ui − li. Thus, k∗1, ..., k∗n are the feasible solutions of Equation (2), and hence:

min
n

∑
i=1

ui−li

∑
j=1

Ci,jSi,j + pli
i =

n

∑
i=1

ui−li

∑
j=1

C∗i,jSi,j + pli
i =

n

∑
i=1

pk∗i
i

≥ min
n

∑
i=1

p
ki
i (7)

Thus, the objective function value of Equation (2) is a lower bound of that of Equation (3). Based
on the analysis above, we can conclude that k∗1, ..., k∗n are the optimal solutions of Equation (2); the
values of the two objective functions are identical.

Corollary 4. The hardness of integer optimization Equation (2) is NP-hard. That is, finding optimal
retransmission thresholds for each node in a delivery path is NP-hard.

Proof. Based on Theorem 3, the hardness of Equation (2) is identical to 0-1 programming Equation (3),
which is equivalent to the Knapsack problem. Since the Knapsack problem is NP-hard [29], the hardness of
integer optimization Equation (2) is NP-hard.

4. Dynamic Programming-Based Distributed Algorithm for Optimal Retransmission Thresholds

As analyzed in Section 3.2, the problem of finding optimal retransmission thresholds is
equivalent to the 0-1 Knapsack Problem. Thus, it can be solved by a dynamic programming-based
pseudo-polynomial time algorithm [29]. In this section, we first prove the correctness of the dynamic
programming-based algorithm, which can output the optimal resolutions to Equation (3). We design
a dynamic programming-based algorithm to solve the proposed 0-1 Knapsack Problem, and then,
according to Theorem 3, the optimal retransmission thresholds can be derived based on the resolutions
to Equation (3).
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Theorem 5. If C′1,1, C′1,2, ..., C′n,un−ln are the optimal solutions to Equation (3), then C′1,2, ..., C′n,un−ln are the
optimal solutions to the following problem.

min
n

∑
i=2

ui−li

∑
j=1

Ci,jSi,j + pli
i +

u1−l1

∑
j=2

C1,jS1,j + pl1
1

s.t.
n

∑
i=2

ui−li

∑
j=1

aiCi,j +
u1−l1

∑
j=2

a1C1,j +
n

∑
i=1

aili ≤ ∆− a1C′1,1

Ci,j ∈ {0, 1}, j ∈ {1, ..., ui − li}, i ∈ {1, 2, ..., n}

(8)

Proof. The proof is by contradiction. If C′1,2, ..., C′n,un−ln are not optimal solutions to Equation (8),
suppose that Z′1,2, ..., Z′n,un−ln are the optimal solutions of Equation (8). Then, C′1,1, Z′1,2, ..., Z′n,un−ln are
batter solutions of Equation (3), which leads to a contradiction. The proof demonstrates the correctness
of the dynamic programming-based algorithm.

To briefly describe the recursive procedure, based on Lemma 2, the following mappings
are introduced,

f : N×N→ N, f (i, j) =
i−1
∑

m=0
(um − lm) + j

g : N→ N,g(h) = min
{

i|h−
i

∑
m=0

(um − lm) ≤ 0, i ≥ 1
}

where u0 = l0 = 0. Let Ci,j = C f (i,j), Si,j = S f (i,j) and sum = ∑n
m=1 (um − lm), then Equation (3) is

equivalent to the following knapsack problem.

min
sum

∑
h=1

ChSh +
n

∑
i=1

pli
i

s.t.
sum

∑
h=1

ag(h)Ch +
n

∑
i=1

aili ≤ ∆

Ch ∈ {0, 1}, h ∈ {1, 2, ..., sum}

(9)

When the object set is {Sh, Sh+1, ..., Ssum} and the capacity is bounded by j, we use m(h, j) to
express the minimum cost. Then, we derive the recursive equation of m(h, j).

m(h, j) =

m(h + 1, j), 0 ≤ j−∑n
h=1 ahlh < ag(h)

min
{

m(h + 1, j), m(h + 1, j− ag(h)) + Sh

}
, j−∑n

h=1 ahlh ≥ ag(h)

Additionally, the initial conditions are as follows.

m(sum, j) =

{
0 0 ≤ j−∑n

h=1 ahlh < an

Ssum j−∑n
h=1 ahlh ≥ an

Suppose that node ji needs to forward a packet with delivery delay ∆′ and that the end-to-end
path is ji, ji+1, ..., jn. Since the packet is the first one queued at node ji, ai = 1. Therefore, finding the
optimal retransmission threshold ki for the packet over link from ji to ji+1 is equivalent to solving the
following integer optimization problem.
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min
n

∑
v=i

pkv
v

s.t.
n

∑
v=i+1

avkv + ki ≤ ∆′

lv ≤ kv ≤ uv, kv ∈ Z, v ∈ {i, i + 1, ..., n}

(10)

According to Theorem 3, the above Equation (10) is equivalent to the following knapsack
Equation (11).

min
sum

∑
h=ui−1−li−1+1

ChSh +
n

∑
v=i

plv
v

s.t.
sum

∑
h=ui−1−li−1+1

ag(h)Ch +
n

∑
v=i

avlv ≤ ∆′

Ch ∈ {0, 1}, h ∈ {ui−1 − li−1 + 1, ..., sum}

(11)

Based on the above analysis, knapsack Equation (11) is a special instance of Equation (9), where the
‘object’ set is {Sui−1−li−1+1, ..., Ssum} and the ‘capacity’ is bounded by ∆′. Suppose C′ui−1−li−1+1, ...., C′sum

are the optimal solutions of Equation (11), then ∑ui−li
h=ui−1−li−1+1 C′h is the optimal retransmission

threshold of node ji. The message exchanges among network nodes are enhanced to carry necessary
information of link quality and queue length [6,11], so that each node can independently calculate the
optimal retransmission threshold based on the path forwarding quality and the remaining time to
deadline. Such a property enables the node to adaptively set the optimal retransmission threshold in a
scalable manner. The proposed dynamic-based distributed algorithm for the optimal retransmission
threshold is described in Algorithm 1.

We present the analysis for the computational complexity of Algorithm 1. The recurrence
process of the algorithm yields the time computation of (∆′ −∑n

h=i aili) · (∑n
h=i ui − li). Thus, the

time complexity of the proposed distributed algorithm is O (n∆ ·max1≤i≤n{ui}). Space complexity
can be similarly analyzed, that is O (n∆ ·max1≤i≤n{ui}).

5. Linear Programming-Based Approximation Algorithm

The dynamic programming-based algorithm proposed in Section 4 is not efficient, if ∆ is greater
than the polynomial function with respect to n. In this section, we construct a linear programming
problem and prove that the solution of the proposed problem can be used to construct the approximate
solution of integer optimization Equation (2). Additionally, then, a linear programming-based
(1 + pmin)-approximation algorithm is provided.

5.1. Mathematical Foundations

According to pi, li and ui, piecewise linear function fi(z) is defined as follows, where
h ∈ {0, 1, ..., ui − li − 1}. We use an example to illustrate the defined function, as depicted in
Figure 2.

fi(z) =

{
(z− li−h)(pli+h+1

i −pli+h
i ) + pli+h

i , z ∈ (li + h, li + h + 1)

pz
i , z ∈ {li, li + 1, ..., ui}

Lemma 6. For any i ∈ {1, 2, ..., n}, fi(z) is a convex function.



Sensors 2016, 16, 665 10 of 21

Algorithm 1: Dynamic Programming-based Distributed Algorithm for the optimal
retransmission threshold (DPDA).

Input: Ui−1, Li−1, T = {Ti, Ti+1, ..., Tn},for h =

i, i + 1, ..., n; ki = 0
Th =< ph, Ah, Lh, Uh >,
Int = ∑i−1

h=1 uh − lh,
sum = ∑n

h=i uh − lh
Output: optimal retransmission threshold of ji.
for h = i to n do

ah = Ah + 1, lh = Lh + 1, uh = Uh + 1;
for h = i to n do

for k = 1 to uh − lh do
e = f (h, k); Se = plh+k

h − plh+k−1
h ;

Low = ∑n
h=i ahlh; for j = 0 to min(an − 1, ∆′ −

Low) do
m(sum, j) = 0

for j = an to ∆′ − Low do
m(sum, j) = Ssum

for h = sum− 1 to Int + 1 do
for j = 0 to min(ag(h) − 1, ∆′ − Low) do

m(h, j) = m(h + 1, j)
for j = ag(h) to ∆′ − Low do

m(h, j) = min(m(h + 1, j), m(h + 1, j −
ag(i)) + Sh)

if ∆′ − Low < ai then
m(Int + 1, ∆′ − Low) = m(Int + 2, ∆′ − Low);

else
min = min(m(Int + 2, ∆′ − Low), m(Int +

2, ∆′ − Low− ai) + SInt+1)

m(Int, ∆′ − Low) = min;
for h = Int + 1 to Int + ui − li do

if m
(

h, ∆′ −∑h−1
k=Int+1 aiCk

)
= m

(
h + 1, ∆′ −∑h−1

k=Int+1 aiCk

)
then

CInt+1 = 0; else
CInt+1 = 1, ki = ki + CInt+1;

return ki − 1;

Figure 2. Example of a piecewise linear function.
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Proof. For any i, since fi(z) is a piecewise linear function, f ′′i (z) = 0, where z ∈ (li + h, li + h + 1)
and h ∈ {0, 1, ..., ui − li − 1}. Thus, fi(z) satisfies the sufficient condition of convexity function if
z ∈ (li + h, li + h + 1). Now, we prove that fi(z) is a convex function if z ∈ {li, li + 1, ..., ui}.

Suppose that z = ∑n
h=1 λhzh, where z ∈ {li, li + 1, ..., ui}, λ1, ..., λn ∈ [0, 1], z1, ..., zn ∈ [li, ui] and

∑n
h=1 λh = 1. Since (px

i )
′′ > 0, px

i is a convex function. Thus, pz
i ≤ ∑n

h=1 λh pzh
i . For any zh, there must

exist jh ∈ {0, 1, ..., ui − li − 1}, such that zh ∈ [li + jh, li + jh + 1].
From the definition of fi(z), fi(zh) = (zh − li − jh)(pli+jh+1

i − pli+jh
i ) + pli+jh

i . Let b′i,zh
=

1 + li + jh − zh, b′′i,zh
= zh − li − jh, we have fi(zh) = b′i,zh

pli+jh
i + b′′i,zh

pli+jh+1
i , b′i,zh

, b′′i,zh
∈ [0, 1] and

b′i,zh
+ b′′i,zh

= 1. Since zh = b′i,zh
(li + jh) + b′′i,zh

(li + jh + 1), then pzh
i ≤ fi(zh) according to the

convexity of px
i . Based on the above analysis, it can be derived that pz

i ≤
n
∑

h=1
λh pzh

i ≤
n
∑

h=1
λh fi(zh).

In conclusion, for any i ∈ {1, 2, ..., n}, fi(z) is a convex function.

According to the constraints of Equation (2), a general optimization problem can be formulated
as follows.

min
n

∑
i=1

fi(zi)

s.t.
n

∑
i=1

aizi ≤ ∆

li ≤ zi ≤ ui, , i ∈ {1, 2, ..., n}

(12)

Theorem 7. The objective function value of Equation (12) is a lower bound of that of Equation (2), which
implies that a feasible solution can be derived based on the optimal resolutions of Equation (12).

Proof. Suppose that k′1, k′2, ..., k′n are the optimal solutions to Equation (2). For any i ∈ {1, 2, ..., n}, let
x′i = k′i. Thus, x′1, x′2, ..., x′n are feasible solutions to Equation (12), and hence:

min
n

∑
i=1

pki
i =

n

∑
i=1

pk′i
i =

n

∑
i=1

fi(x′i) ≥ min
n

∑
i=1

fi(zi)

Therefore, the objective function value of Equation (12) is a lower bound of that of
Equation (2).

Theorem 8. The proposed optimization Equation (12) is equivalent to the following linear programming
problem, and then, the general optimization Equation (12) can be solved by the linear programming technique.

min
n

∑
i=1

ui−li

∑
j=0

λi,j p
li+j
i

s.t.
n

∑
i=1

ai

ui−li

∑
j=0

λi,j(li + j) ≤ ∆

ui−li

∑
j=0

λi,j = 1, 0 ≤ λi,j ≤ 1,

j ∈ {0, ..., ui − li}, i ∈ {1, 2, ..., n}

(13)

Proof. For any i ∈ {1, 2, ..., n}, we have li ≤ ∑ui−li
j=0 λi,j(li + j) ≤ ui. It is easily known that for any

zi ∈ [li, ui], there exist λi,0, ..., λi,ui−li ∈ [0, 1], such that zi = ∑ui−li
j=0 λi,j(li + j) and ∑ui−li

j=0 λi,j = 1.
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Additionally, similarly for any λi,0, ..., λi,ui−li ∈ [0, 1], if ∑ui−li
j=0 λi,j = 1, there must exist zi ∈ [li, ui], such

that zi = ∑ui−li
j=0 λi,j(li + j).

Suppose that λ1,0, λ1,1, ..., λ2,0, ..., λn,un−ln are feasible solutions of Equation (13). For any
i ∈ {1, 2, ..., n}, let zi = ∑ui−li

j=0 λi,j(li + j). Thus, z1, ..., zn are feasible solutions of Equation (12).

According to the convexity of fi(z), we have fi(zi) ≤ ∑ui−li
j=0 λi,j fi(li + j) = ∑ui−li

j=0 λi,j p
li+j
i , and hence:

min
n

∑
i=1

fi(zi) ≤ min
n

∑
i=1

ui−li

∑
j=0

λi,j p
li+j
i (14)

Suppose that z′1, ...., z′n are the optimal solutions to Equation (12); there must exist n integers
j1, ...., jn, such that z′i ∈ [li + ji, li + ji + 1]. For any i ∈ {1, 2, ..., n}, let λ′i,ji = 1 + li + ji − zi, λ′i,ji+1 =

z′i − li − ji, and the others λ′i,js are zero. Obviously, λ′1,0, λ′1,1, ..., λ′n,un−ln are feasible solutions of

Equation (13). Based on the definition of fi(x), fi(z′i) = (z′i − li − ji)(pli+ji+1
i − pli+ji

i ) + pli+ji
i =

λ′i,ji p
li+ji
i + λ′i,ji+1 pli+ji+1

i = ∑ui−li
j=0 λ′i,j p

li+j
i . Thus, we can have the following formula.

min
n

∑
i=1

ui−li

∑
j=0

λi,j p
li+j
i ≤

n

∑
i=1

ui−li

∑
j=0

λ′i,j p
li+j
i =

n

∑
i=1

fi(z′i) = min
n

∑
i=1

fi(zi) (15)

In conclusion, optimization Equation (12) is equivalent to linear programming Equation (13).

5.2. Linear Programming-Based Approximation Algorithm

Suppose that λ′1,0, λ′1,1, ..., λ′n,un−ln are the optimal solutions to Equation (13). For any i ∈
{1, 2, ..., n}, let z′i = ∑ui−li

j=0 λ′i,j(li + j). Thus, z′1, z′2, ..., z′n are the optimal solutions to Equation (12)
according to the proof of Theorem 8. To obtain the feasible solutions of integer optimization
Equation (2), rounding optimal fractional solutions is a natural idea [29]. The following theorem
guarantees that the ratio bound of the rounding approach is 1 + pmin, where pmin is the minimum of
the probabilities of one transmission failure along the given end-to-end path.

Theorem 9. For any i ∈ {1, 2, ..., n}, the ratio bound of the rounding approach is 1 + pmin, if
⌊
z′i
⌋
≥ ln pmin

ln pi
,

where pmin = min{p1, p2, ..., pn}.

Proof. Suppose that z′1, z′2, ..., z′n are the optimal solutions to Equation (12), which are derived from the
optimal solutions of linear programming Equation (13). Denote k′1, k′2, ..., k′n as the optimal solutions to
Equation (1). From Theorem 7, the approximation ratio r satisfies the following formula.

r =

n
∑

i=1
1− pk′i

i

n
∑

i=1
1− pbz

′
ic

i

=

n−
n
∑

i=1
pk′i

i

n−
n
∑

i=1
pbz

′
ic

i

≤
n−

n
∑

i=1
fi(z′i)

n−
n
∑

i=1
pbz

′
ic

i

(16)

According to the proof of Theorem 8, for any i ∈ {1, 2, ..., n}, there must exist integer ji in
{0, 1, ..., ui − li − 1}, such that z′i ∈ [li + ji, li + ji + 1]. Based on the convexity of px

i , we know that:

fi(z′i) = (1 + li + h− z′i)pli+h
i + (z′i − li − h)pli+h+1

i ≥ pz′i
i

Let pmin = min{p1, p2, .., pn}; we have:

n−∑n
i=1 fi(z′i) ≤ n−∑n

i=1 pz′i
i < n−∑n

i=1 pbz
′
ic+1

i ≤ n− pmin ∑n
i=1 pbz

′
ic

i
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Additionally, then, the approximation ratio r satisfies the following formula:

r <
n− pmin ∑n

i=1 pbz
′
ic

i

n−∑n
i=1 pbz

′
ic

i

=
n− npmin + npmin − pmin ∑n

i=1 pbz
′
ic

i

n−∑n
i=1 pbz

′
ic

i

=

n− npmin + pmin

(
n−∑n

i=1 pbz
′
ic

i

)
n−∑n

i=1 pbz
′
ic

i

=
n−∑n

i=1 pmin

n−∑n
i=1 pbz

′
ic

i

+ pmin

(17)

For any i ∈ {1, 2, ..., n}, since
⌊
z′i
⌋
≥ ln pmin

ln pi
, pbz

′
ic

i ≤ pmin and n−∑n
i=1 pmin

n−∑n
i=1 p
bz′ic
i

< 1. In conclusion, the

ratio bound is 1 + pmin.

The link properties vary as a result of environmental conditions changing at a longer
timescale [6,15], then the difference of failure transmission probability among links is little. Thus, the
premises of Theorem 9 are always satisfied in practical sensor networks. Since the objective function
value of Equation (12) is decreasing with respect to zi, its optimum value can be achieved if and only
if ∑n

i=1 aizi = ∆. For a general linear programming problem, finding optimal solutions incurs high
computational overhead. However, it can be efficiently solved if the problem is to optimize a linear
function subject to linear equality constraints [30].

The linear programming-based distributed approximation algorithm running at each sensor
node is described in Algorithm 2, which is derived from the convex programming algorithm in [30].
f L
h (x) and f R

h (x) are the left and right derivative of fh(x), respectively. The proposed algorithm in [30]
can yield optimal solutions for the piecewise linear convex function. For any i ∈ {1, 2, ..., n}, the
derivative of fi(x) is discontinuous and constant. According to the proposed algorithm [30], the
termination condition can be satisfied when the optimal retransmission threshold is not Li or Ui. The
maximum number for iteration rounds can be assigned in advance. The algorithm can also be stopped
if the convergence condition is not achieved. Therefore, figuring out the retransmission threshold of
node ji can be achieved.

6. Lagrange Multiplier-Based Distributed O(1)-Approximation Algorithm

In practical sensor networks, the optimal retransmission thresholds hardly hit the given upper or
lower bounds. Therefore, we aim at finding the optimal retransmission thresholds when the ranges
of the upper and lower bounds of the retransmission thresholds are big enough. In Section 6.1, we
formalize the problem as an integer optimization problem and provide a mathematical method for
finding the approximate solution of the problem. Then, a Lagrange multiplier-based distributed
O(1)-approximation algorithm with time complexity O(1) is provided.

6.1. Mathematical Foundations

Compared to integer optimization Equation (1), the problem of optimal retransmission thresholds
in the case that the ranges of the upper and lower bounds of retransmission thresholds are big enough
can be formulated as follows, which implies that the optimization problem has no interval constraints
of retransmission thresholds.



Sensors 2016, 16, 665 14 of 21

Algorithm 2: Linear Programming-Based distributed Approximation Algorithm for the
retransmission threshold (LPAA).

Input: t = ∞, T = {Ti, Ti+1, ..., Tn},
Th =< ph, Ah, Lh, Uh > for h = i, ..., n

Output: retransmission threshold of ji.
for h = i to n do

ah = Ah + 1, lh = Lh + 1, uh = Uh + 1;
si = f (xi1)− f (xi1 + 1), π1 = si/ai;
for h = i + 1 to n do

if h = t then
th = f (xh1)− shxh1;

else

sh = si, th = f (xh1)− shxh1;

Low =
n
∑

h=i
ahlh; for h = i + 1 to n do

if sh < f R
h (lh) then

x′h = lh;
else if sh ≥ f R

h (lh) then
x′h = uh;

else

for k = lh + 1 to uh − 1 do
if f L

h (k) ≤ sh ≤ f R
h (k) then

x′h = k ;
break;

y′h = fh(x′h)− six′h, th = fh(xh1)− shxh1 ;
Min = y′i+1 − ti+1 for h = i + 1 to n− 1 do

if Min ≥ y′h+1 − th+1 then
Min = y′h+1 − th+1, temp = h + 1;

if Min = 0 then
return bxi1c;

else if xi1 hits the lower bound li or the upper bound
ui then

return xi1 − 1 and stop;
else

According to the convex programming
algorithm [30], adjust xi1 and xt ;

max
n

∑
i=1

(
1− pki

i

)
s.t.

n

∑
i=1

aiki ≤ ∆

ki ∈ Z+, i ∈ {1, 2, ..., n}

(18)

The following lemma provides a mathematical method to figure out the optimal solutions of
Equation (18) in the real number field; that is for any i, ki is a real number. Lemma 10 is the foundation
for the rounding technique.
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Lemma 10. Let Λ = ∑n
i=1
(
1− pxi

i
)
+ ω (∑n

i=1 aixi − ∆). If there exist x′1, x′2, ..., x′n, such that for any
i ∈ {1, 2, ..., n}, the following equations hold:

∂Λ
∂x′i

= 0

then x′1, ..., x′n are the optimal solutions to the following problem.

max
n

∑
i=1

(
1− pxi

i
)

s.t.
n

∑
i=1

aixi ≤ ∆

xi ∈ R, i ∈ {1, 2, ..., n}

(19)

Proof. For any i ∈ {1, 2, ..., n}, px
i is a decreasing function. By contradiction, it is easily proven that

the objective function achieves the maximum if and only if ∑n
i=1 aixi = ∆. Since x1, x2, ..., xn are real

numbers and the only constraint is equality, then we can derive the optimal solutions by the Lagrange
multiplier method. We integrate the objective function and the constraint multiplied by ω to the
following Lagrange function:

Λ(x1, x2, ..., xn, ω) =
n

∑
i=1

(
1− pxi

i
)
+ ω

(
n

∑
i=1

aixi − ∆

)

Since ∑n
i=1 aixi − ∆ = 0, Λ(x1, ..., xn, ω) is a function with respect to x1, ..., xn. The gradients on

x1, ..., xn and ω are as follows: 

∂Λ
∂x1

= −px1
1 ln(p1) + ωa1

...
∂Λ
∂xi

= −pxi
i ln(pi) + ωai

...
∂Λ
∂xn

= −pxn
n ln(pn) + ωan

∂Λ
∂ω= ∑n

i=1 aixi − ∆

(20)

For any i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n}, we have ∂2Λ
∂xi∂xj

= 0 if i 6= j. For any i ∈ {1, 2, ..., n}, it is

easily derived that ∂2Λ
∂2xi

= −pxi
i ln2(pi). The Hessian matrix of Λ(x1, x2, ..., xn) is as follows.

∂2Λ
∂xi∂xj

= −



px1
1 ln2(p1) 0 . . . ... 0

0
. . . 0 · · · · · ·

. . . 0 pxi
i ln2(pi) 0 . . .

· · · . . . 0
. . . 0

. . . . . . . . . 0 pxn
n ln2(pn)


Then, the following equalities can be easily derived.

λE− ∂2Λ(x1 ,x2 ,...,xn)
∂xi∂xj

=



λ + px1
1 ln2(p1) 0 ... ... 0

0
. . . 0 · · · · · ·

. . . 0 λ + pxi
i ln2(pi) 0 . . .

· · · . . . 0
. . . 0

. . . . . . . . . 0 λ + pxn
n ln2(pn)


∣∣∣λE− ∂2Λ(x1 ,x2 ,...,xn)

∂xi∂xj

∣∣∣ = n
∏
i=1

(
λ + pxi

i ln2(pi)
)
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Since all of the eigenvalues of ∂2Λ(x1,...,xn)
∂xi∂xj

are negative, the Hessian matrix of Λ(x1, ..., xn) is

negative definite. In conclusion, if there exist x′1, ..., x′n, such that for any i ∈ {1, 2, ..., n}, ∂Λ
∂x′i

= 0, then

x′1, ..., x′n are the optimal solutions to Equation (19).

Theorem 11. x′1, ..., x′n are the optimal solutions to Equation (19), if for any i ∈ {1, 2, ..., n}, x′i satisfies
Equation (21).

x′i =
∆−∑n

i=1 ai log−ai(ln pi)
−1

pi

ln pi ∑n
i=1 ai(ln pi)

−1 + log−ai(ln pi)
−1

pi
(21)

Proof. According to the proof of Lemma 10, if x′1, ..., x′n are the solutions of Equation (20), then they

are the optimal solutions to Equation (19). If ∂Λ
∂x′i

= 0, we have px′i
i ln(pi) = ωai. For any i ∈ {1, 2, ..., n},

since ai > 0, 0 < pi < 1 and ω < 0, we have that:

x′i = logωai(ln pi)
−1

pi
= log−ω

pi
+ log−ai(ln pi)

−1

pi

Since ∂Λ
∂ω = ∑n

i=1 aix′i − ∆ = 0, it is easily derived that:

∑n
i=1 ai

(
log−ω

pi
+ log−ai(ln pi)

−1

pi

)
= ∆

By simple calculation, we can get the following equations:

∑n
i=1

ai ln (−ω)

ln pi
+ ∑n

i=1 ai log−ai(ln pi)
−1

pi
= ∆

ln (−ω) =
∆−∑n

i=1 ai log−ai(ln pi)
−1

pi

∑n
i=1 ai(ln pi)

−1

In conclusion, x′1, ..., x′n are the optimal solutions to Equation (19), if for any i ∈ {1, 2, ..., n}, x′i
satisfies Equation (21).

It is obvious that log−ai(ln pi)
−1

pi
=

ln ai+ ln
(
−(ln pi)

−1
)

ln pi
; the following equation can be derived.

x′i =

∆−∑n
i=1 ai

(
ln ai+ ln

(
−(ln pi)

−1
)

ln pi

)
ln pi ∑n

i=1 ai(ln pi)
−1 +

ln ai+ ln
(
−(ln pi)

−1
)

ln pi
(22)

6.2. Lagrange Multiplier-Based Distributed O(1)-Approximation Algorithm

The computation of the logarithm is undesired to execute on the sensor node; the log values
needed can be stored on the sensor node in advance. For example, three arrays a[99], b[99] and c[99]
are forwarded to the sensor node at first, where a[h] = ln h, b[h] = ln(0.01h), c[h] = ln

(
−(ln 0.01h)−1

)
and h ∈ {1, 2, ..., 99}. Then, the log values needed by Equation (22) are stored in the sensor node. The
proposed Lagrange multiplier-based distributed approximation algorithm is described in Algorithm 3.
It is easily known that the computation cost is O(n), where n is the number of hops from the source
node to the destination node. Since the number of sensor nodes along the given end-to-end delivery
path is no more than a few dozen, hence the computation complexity of the algorithm is O(1).
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Algorithm 3: Lagrange Multiplier-based Distributed Approximation Algorithm for the
retransmission threshold (LMDAA).

Input: T = {Ti, Ti+1, ..., Tn}, Th =< ph, Ah >,
for h ∈ {i, i + 1, ..., n},
∆, a[99], b[99], c[99], S1 = 0, S2 = 0

Output: retransmission threshold of node ji.
for h = i to n do

ah = Ah + 1, ph = 100ph;
for h = i to n do

S1 = S1 + ah

(
a[ah ]+c[ph ]

b[ph ]

)
, S2 = S2 +

ah
b[ph ]

;

xi =
∆−S1
b[pi ]S2

+ a[ai ]+c[pi ]
b[pi ]

.
return bxic − 1;

Similarly to the linear programming-based approximation algorithm, approximate solutions to
integer optimization Equation (18) can be derived by rounding the optimal fractional solutions. The
following theorem guarantees that the ratio bound of the rounding approach is 1 + pmin. Due to
0 < pmin < 1, the ratio bound of the Lagrange multiplier-based approximation algorithm is two.

Theorem 12. Suppose that x′1, x′2, ..., x′n are the optimal solutions to Equation (19), then
⌊

x′1
⌋

, ..., bx′nc are
the feasible solutions to Equation (18). The ratio bound is 1 + pmin, if for any i ∈ {1, 2, ..., n},

⌊
x′i
⌋
≥ ln pmin

ln pi
,

where pmin = min{p1, p2, ..., pn}.

Proof. Since x′1, x′2, ..., x′n are the optimal solutions to Equation (19), ∑n
i=1 aix′i = ∆, and hence,

∑n
i=1 ai

⌊
x′i
⌋
≤ ∆. Thus,

⌊
x′1
⌋

, ..., bx′nc are the feasible solutions to Equation (18). Suppose that
k′1, k′2, ..., k′n are the optimal solutions to Equation (18). Obviously, the objective function value of
Equation (19) is an upper bound of that of Equation (18). Thus, the following inequalities can
be derived.

∑n
i=1

(
1− pk′i

i

)
≤∑n

i=1

(
1− px′i

i

)
< ∑n

i=1

(
1− pbx

′
ic+1

i

)
Let pmin = min{p1, p2, ..., pn}. Thus, ∑n

i=1

(
1− pk′i

i

)
< ∑n

i=1

(
1− pmin pbx

′
ic

i

)
, and hence, the

approximation ratio r satisfies the following equation:

r =

n
∑

i=1

(
1− pk′i

i

)
n
∑

i=1

(
1− pbx

′
ic

i

) <

n
∑

i=1

(
1− pmin pbx

′
ic

i

)
n
∑

i=1

(
1− pbx

′
ic

i

) =
n− npmin

n−
n
∑

i=1
pbx

′
ic

i

+ pmin

In conclusion, the ratio bound is 1 + pmin, if for any i ∈ {1, 2, ..., n},
⌊

x′i
⌋
≥ ln pmin

ln pi
. Similarly, we

know that the premises of Theorem 12 are easily satisfied in practical sensor networks.

7. Experiment Evaluation

The effectiveness and efficiency of the proposed algorithms are evaluated through simulations
in this section. Several experiments are conducted to demonstrate the relationships between the
performance of real-time data delivery and the input parameter, such as deadline, the number of hops
of the given delivery path and the number of packets queued at the relay node. The first two group of
simulations are carried out by MATLAB, and the third group is implemented with NS2.

One hundred sensor nodes and the sink are randomly deployed into a region of size
200 m × 200 m (m for meters), and we assume that the sensors have the same transmission radius. In
each simulation, source and destination nodes are randomly selected. Each simulation is repeated
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100 times and the simulation result corresponds to the average value over 100 times. To understand the
benefits of the proposed algorithms, the comparison with the general method is conducted. The main
idea of the general method is that we set the same retransmission threshold for all of the sensor nodes.

The first group of experiments is to investigate the Deadline Success Ratio (DSR) of the proposed
algorithms, where DSR is the ratio of the packets delivered to the destination before their deadlines.
Figure 3a shows the relationship between the deadlines and DSRs. The proposed algorithms have
better performance. For example, when the deadline is 0.22 s, the DSRs of LMDAA and general
method are 74% and 61%, respectively. Furthermore, we investigate the impact of the number of
hops of a delivery path on the DSR. The remaining time to the deadline and link quality have been
considered; thus, our algorithms can achieve higher deadline success ratios as shown in Figure 3b.
Figure 3c depicts the relationship between the average number of packets queued at relay nodes
and DSRs. From Figure 3c, the DSR becomes worse with the increase of the packets queued on the
condition that the deadline is a constant. LMDAA is a distributed algorithm and enables the node to
adaptively set the optimal retransmission threshold based on the link quality and the remaining time
to the deadline. Therefore, LMDAA has better performance in terms of DSR than that of LPAA.
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Figure 3. Deadline Success Ratio (DSR) of the proposed algorithms. (a) DSR vs. deadlines; (b) DSR vs.
the number of hops; (c) DSR vs. the average number of packets queued.

The second group of experiments is to investigate the Real-Time Ratio (RTR) of the proposed
algorithms, where RTR is the ratio of the packets delivered to the destination before their deadlines
among the packets successfully delivered to the destination node. Figure 4a shows the relationship
between the deadlines and RTRs. As expected, the proposed algorithms can reach higher RTR than
that of the general method. Figure 4b depicts the relationship between the number of hops of a delivery
path and RTRs. The figure shows that our algorithms have better performance. For example, the
real-time ratio of LPAA is more than 60%. Similarly, we investigate the impact of the average number
of packets queued at relay nodes on RTR, with results illustrated in Figure 4c. Experimental results
show that the proposed algorithms can reduce the deliveries of the packets, which cannot meet their
deadlines. Therefore, our algorithms can improve the real-time ratio and energy efficiency.
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Figure 4. Real-Time Ratio (RTR) of the proposed algorithms. (a) RTR vs. deadlines; (b) RTR vs. number
of hops; (c) RTR vs. the average number of packets Queued.
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The third group of simulations is implemented with NS2, which is a widely-used simulation tool
in wireless sensor networks. From the experimental results of the first two groups of simulations,
LMDAA can reveal the effectiveness of the proposed algorithms more neutrally, then we compare the
results of LMDAA and the general method. The reasons why DSRs in the simulations implemented
by NS2 are lower than those in case of MATLAB are as follows. For identical transmission failure
probability, the link quality in NS2 simulation is much worse, which leads to a lower packet delivery
ratio. Secondly, we have to set stationary retransmission thresholds in advance in NS2 simulations, and
the retransmission thresholds cannot be adaptively set based on the link quality and remaining time
during the packet delivery. As shown in Figure 5a–c, the proposed algorithm has better performance
in real-time data delivery, in the case of worse wireless links or a severe delivery delay requirement.

0.12 0.13 0.14 0.15 0.16 0.17
30%

40%

50%

60%

70%

Deanline (s)

D
ea

dl
in

e 
S

uc
ce

ss
 R

at
io

 

 

LMDAA
General Method

(a)

5 6 7 8 9
20%

30%

40%

50%

60%

Hops of A Delivery Path

D
ea

dl
in

e 
S

uc
ce

ss
 R

at
io

 

 

LMDAA
General Method

(b)

2 3 4 5 6
10%

20%

30%

40%

50%

60%

Average Number of Packets Queued

D
ea

dl
in

e 
S

uc
ce

ss
 R

at
io

 

 

LMDAA
General Method

(c)

Figure 5. Deadline success ratio by NS2 simulation. (a) DSR vs. deadlines; (b) DSR vs. the number of
hops; (c) DSR vs. the average number of packets queued.

The forth group of experiments is to investigate the computing performance of LPAA and
LMDAA, and the correctness of the approximation ratio is verified. We prove that the objective function
value of Equation (12) is a lower bound of that of Equation (2), then ∑n

i=1 (1− fi(zi)) generated by
the optimal solution of Equation (12) is an upper bound of Equation (1). In the experiments, the
Approximation Ratio (AR) is the ratio of ∑n

i=1 (1− fi(zi)) generated by the optimal solutions of linear
programming Equation (13) to that of the approximated solutions output by LPAA and LMDAA.
Figure 6a–c demonstrates the relationships between the approximation ratio and the input parameter.
Experimental results show that the objective function value of the approximation results returned by
LPAA and LMDAA is very close to that of the optimal ones. Additionally, the proposed approximation
algorithms can achieve high accuracy in terms of optimal retransmission thresholds.
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Figure 6. Computing performance of Linear Programming-based (1 + pmin)-Approximation
Algorithm (LPAA) and Lagrange Multiplier-based Distributed Approximation Algorithm (LMDAA).
(a) Approximation Ratio (AR) vs. deadlines; (b) AR vs. the number of hops; (c) AR vs. the average
number of packets queued.
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8. Conclusions

The retransmission threshold in wireless sensor networks is critical to the latency of data
transmitting in the networks. The problem of finding optimal retransmission thresholds for each
node along a delivery path is defined and is formalized as an integer optimization problem.
A dynamic programming-based distributed algorithm for finding the optimal retransmission threshold
is proposed. The correctness of the algorithm is proven, and its time and space complexity are
analyzed. When the delivery delay ∆ is greater than polynomial, a linear programming-based
(1 + pmin)-approximation algorithm is proposed. Furthermore, in the case of the ranges of the upper
and lower bounds of the retransmission thresholds being big enough, a Lagrange multiplier-based
distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Simulation results
show that the proposed algorithms have better performance for real-time data delivery.
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