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Abstract: In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three
breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the
Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP).
The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that
can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this
purpose, we use the rider’s hip motion from the sensor information collected by inertial sensors
as feature data for the classification of a horse’s gaits. Furthermore, we develop a coaching system
under both real horse riding and simulator environments and propose a method for analyzing the
rider’s motion. Using the results of the analysis, the rider can be coached in the correct motion
corresponding to the classified gait. To construct a motion database, the data collected from 16
inertial sensors attached to a motion capture suit worn by one of the country’s top-level horse riding
experts were used. Experiments using the original motion data and the transformed motion data
were conducted to evaluate the classification performance using various classifiers. The experimental
results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a
neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network
classifier (RBFNC) for the transformed motion data.

Keywords: classification of horse gaits; neuro-fuzzy classifier; fuzzy c-means clustering; inertial
sensor; horse riding coaching

1. Introduction

The grades for quality of life in the Republic of Korea, Japan, Canada, and the US are 5.8, 5.9, 7.3,
and 7.2, respectively, according to the National Statistical Office (NSO)’s report of 2015. This indicates
that the quality of life in South Korea is low, as compared to other countries. To resolve this issue, the
objective of the present study is to facilitate the introduction of horse riding in Korea, which would
contribute to improving the quality of life through communication and sport. Horse riding involves
all the movements of walking and running on horseback. It is known to be a gentlemanly sport
that promotes an individual’s bodily balance, flexibility, and courage while on horseback. The sport
constitutes keeping in step with a living creature, not a machine. Therefore, it is important to pay
special attention to safety and the mutual balancing of the horse and rider. Indeed, although it is well
known that “riding horses is good” few learn how to ride a horse. This sport has a good influence on
posture, bodily growth and the shape of the body, and emotional stability. In addition, the beneficial
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effects on weight management and the prevention of spinal disk damage have been highlighted.
Reciprocal communication plays a significant role in horse riding, unlike other sports. Horse riding
is considered to be of such high quality that it is called “a noble sport.” However, horse riding also
requires coaching. The expensive coaching requirement makes the sport much more difficult for
ordinary people to approach. However, unmanned coaching could reduce the financial burden and
eventually help improve people’s life quality. The present study is designed to allow unmanned
coaching through classifying horse gaits and recognizing the rider’s postures for calibration.

Various studies have been conducted using inertial sensors, and wireless networking is suitable
for effective horse riding coaching. Domestic studies on the effects of inertial sensors on the
balance improvement of the elderly with dementia exist [1], as well as on reducing body weight [2],
the proliferation of vascular smooth muscle cells [3], etc. Abroad, Luinge [4] proposed a precise method
to measure human size using inertial and gyro sensors. Zhou [5] estimated human movements using
inertial sensors. Lee [6] proposed a calibration method and sensor fusion for motion capture using
an acceleration meter. Zhu [7] traced real-time movements. Venkatraman [8] investigated animal
movements using a pattern recognition algorithm and neural network. Ghasemzadeh [9] proposed a
golf swing training system. Mariani [10] assessed the walking of young and senior citizens. Jung [11]
proposed a method for tracking upper body motions using inertial sensors. Song [12] proposed
a practical calibration method of the MEMS (Micro Electro Mechanical Systems) gyroscope sensor.
Wei [13] investigated MEMS calibration. Cao [14] examined the full swing in golf. Pyeong Gook [15]
addressed smart shoes based on inertial sensors. Chan [16] developed a dancing training system for
coaching. In the area of sports analysis and coaching using inertial sensors, a human motion acquisition
system based on inertial sensors was implemented for self-coaching [17], a golf coaching system using
human motion analysis was developed [18], a four joint-based motion capture system was studied
for spinal disease protection [19], kinematic coaching analysis using wireless inertial sensors was
proposed [20], tennis strokes were classified [21], and a golf training system was developed [22].
Although several studies have been conducted on using inertial sensors in various application
areas [23–29], the research on automatic horse riding coaching through movement classification
has not thus far been studied.

In this paper, we present a method for designing a fuzzy c-means (FCM)-based neuro-fuzzy
classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type for the classification of four gaits (walk, sitting
trot, rising trot, and canter) in three breeds of horse (Jeju, Warmblood, Thoroughbred). FCM clustering
performs fuzzy partitioning such that a given data point can belong to several groups, with the
degree of belongingness specified by membership grades between 0 and 1. This clustering is used in
conjunction with a neuro-fuzzy classifier primarily to obtain knowledge of automatic fuzzy if-then
rules. Here, the sensor data information obtained by the motion capture system in this study is
transformed by a wavelet packet (WP) to provide dimensional reduction. Using a capture system,
which includes two channel receivers, as well as a PC and server, a database of riders’ motions was
constructed using the data collected from a motion capture suit to which inertial sensors were attached
that was worn by the country’s top-level horse riding expert. Based on this database, an analysis of the
rider’s practical movements is performed by calculating the elbow angle and the location of the hip.
The calculated hip motion value is used to perform the classification of the horse’s gaits through the
transformation by a WP. The experimental results obtained by the FCM-NFC are compared with those
of the previous classification algorithms, such as a neural network classifier (NNC), naive Bayesian
classifier (NBC), and radial basis function network classifier (RBFNC).

In Section 2, the construction of an equestrian motion database, including motion analyzing
techniques, is described. In Section 3, the classification algorithms for the original data and the data
transformed by a WP are compared. Section 4 presents the study conducted on the characterization
of horses’ gaits and classification, as well as the results. Finally, Section 5 contains the conclusion of
this paper.
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2. Construction of Horse Rider’s Motion Database

2.1. Building the Horse Riding Motion Database

2.1.1. Motion Capture

Motion capture refers to recording human movements in digital form by attaching a sensor to the
body or using infrared rays. We used a wireless sensor network manufactured by Xsens Inc (Enschede,
The Netherlands) for the motion capture system in horse riding environments. The inertial sensor used
for constructing the database is a small and light 9 DOF (depth of field) human orientation tracker that
provides drift-free kinematic data. This tracker consists of a three-axis acceleration meter, three-axis
gyroscope, and three-axis geomagnetic sensor. The Xsens’ inertial sensor portfolio provides full-body,
wearable motion capture solutions. To capture expert’s motion, the rider wears a suit including inertial
sensors based on wireless inertial sensors. The motion data are transmitted to a computer, which then
compares the data. The suit is characterized by allowing calibration, real-time capture screen viewing,
simultaneous measurement, and previously measured motion data readings. Figure 1 shows a flow
chart of the rider’s motion capture system.
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Figure 1. Flow chart of horse rider’s motion capture system.

Data received through the motion capture system can be exported into BVH (bounding volume
hierarchy) files. The BVH files can be stored in 3D file format using the open software BVHViewer.
The 3D file contains the coordinate at every measurement site, stored according to frame. Twenty-eight
human measurement body sites are displayed as 28 points, as shown in Figure 2. In the data
arrangement, lines form a frame and 84 rows represent the locations (x, y, and z) of the three axes for
the 28 sites.

The 28 sites consist of hips, breast, breast 2, breast 3, breast 4, neck, head, head end, right nape,
right shoulder, right elbow, right wrist, right wrist end, left nape, left shoulder, left elbow, left wrist,
left wrist end, right hip, right knee, right ankle, right toe, right tiptoe, left hip, left knee, left ankle, left
toe, and left tiptoe. Figure 2a shows a man wearing a suit to which 16 inertial sensors are attached and
Figure 2b shows the human structure chart obtained by BVH software.
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Figure 2. (a) Motion capture suit consisting of 16 inertial sensors; (b) BVH human structure chart.

2.1.2. Database Construction in Horse Riding Environment

Motions were acquired from a horse riding expert who made one or two revolutions per gait
(walk, sitting trot, rising trot, canter) of an oval horse riding course 20 m in length and 10 m in breadth
while wearing a motion capture suit. Figure 3 shows the database construction environment.
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Figure 3. Database construction environment.

The expert, whose career is in national athletics, is female, 164 cm in height, and 235 mm in foot
size. Using the 3D motion capture suit based on Xsens inertial sensors, data were extracted in the order
of Jeju (137 cm or less), Thoroughbred (160 cm), and Warm Blood (150–173 cm). It took 1 to 2 min to
measure a file. Fifteen data were received per gait. A horse’s gaits consist of walk, sitting trot, rising
trot, and canter. In the walk gait, the horse moves at 130 m a minute, approximately 8 kph; in the
sitting trot gait at 220 m per minute, approximately 13 kph; in the canter gait at 350 m per minute,
approximately 21 kph; and at full gallop 100 m per minute, that is 60 kph; the maximum speed is
72 kph. The test used a total of four gaits: walk, sitting trot, rising trot, and canter. The measured
frame rate was 100 frames/s (fps). Figure 4a–c shows the three breeds of horse, Jeju, Thoroughbred,
and Warmblood, respectively.
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2.1.3. Gait-Specific Motions in Real Horse Riding Environment

The cycles of gait-specific professional motions were presented in the order of frames using the
BVH motion analysis program. Figure 5 visualizes canter motion data at specific frame intervals
between 10 and 15 frames.
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2.2. Method for Analyzing Real Horse Riding Postures

To achieve the correct posture while horse riding, the user’s motions must be analyzed.
A comparative analysis is performed by using the following two methods (elbow angle and hip (y)).

2.2.1. Elbow Angle

Three elbow coordinates, A, B, and C, are defined using Equation (1) by extracting the values of
the body feature points A (shoulder), B (elbow), and C (wrist) from a sensor. Figure 6 visualizes a
method for calculating the elbow angle using MVN studio motion capture software.

A “ xA, yA, zA, B “ xB, yB, zB, C “ xC, yC, zC (1)

The distance between feature points A (wrist), B (elbow), and C (shoulder) can be calculated
using by

AB “
b

pxA ´ xBq
2
` pyA ´ yBq

2
` pzA ´ zBq

2
q “ c

BC “
b

pxB ´ xCq
2
` pyB ´ yCq

2
` pzB ´ zCq

2
q “ a

CA “
b

pxC ´ xAq
2
` pyC ´ yAq

2
` pzC ´ zAq

2
q “ b

(2)

Equation (3) is entered, if a distance is calculated for each feature point:
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b2 “ c2 ` a2 ´ 2ca cosB

c2 “ a2 ` b2 ´ 2ab cosC
(3)

It is possible to calculate the angle of an elbow joint, if a transformation is made, as

Elbow angle “ cos´1p
c2 ` a2 ´ b2

2ca
q (4)
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(b) Geometric representation for elbow calculation.

2.2.2. Hipy Location

A coordinate H (x,y,z) is obtained by extracting the hip values from the database collected by
inertial sensors. Figure 7 shows the visualization of the hip value in MVN studio motion capture
software. These hip motion data are used to classify the horse’s gaits in the design of the classifier.
The Hipy is y-axis (vertical axis) component of hip position. These values represent the rhythm of rider
motion according to horse gaits.

Hipy “ Hvalue of vertical axis (5)
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2.3. Horse Simulator and Riding Coaching System

We developed a 5-senses convergence sports simulator as a horse riding simulator based on a
multi-axis motion platform, as shown in Figure 8a. The coaching system using the classification of
horse gaits can be applied to this simulator. The horse simulator is equipped with 26 photo sensors and
two pressure sensors to obtain information from the simulator as you can see Figure 8. A photoelectric
sensor, or photo eye, is used to discover the distance, absence, or presence of an object by using a light
transmitter, frequently infrared, and a photoelectric receiver. A pressure sensor measures pressure,
typically of gases or liquids. Pressure is an expression of the force required to stop a fluid from
expanding, and is usually stated in terms of force per unit area. Figure 8b shows the graphical user
interface for riding coaching in real-time and off-line environments. In the same manner as for real
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riding, a database was constructed from data collected from a motion capture suit to which 16 inertial
sensors were attached worn by the country’s top-level horse riding expert. As shown in Figure 8b,
the coaching system compares the expert’s motion with the user’s motion and informs the user of the
correct riding motion corresponding to the classified riding gait through text and speech on the basis
of the motion analysis as mentioned above [30].Sensors 2016, 16, 664 7 of 17 
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3. Machine Learning Algorithms

In this section, we address a WP for transforming and compressing the original sensor data.
Further, we used NNC, RBFNC, NBC, and FCM-NFC to predict the horse’s gaits for both real-time
and off-line riding coaching.

3.1. Dimension Reduction Algorithm

3.1.1. Wavelet

A wavelet is a wave-like vibration, where the breadth of the vibration repeatedly increases and
decreases, with a focus on 0. It emerges in the typical form of a “short vibration,” as recorded in a
seismograph or electrocardiogram graph. In general, a wavelet is exploited for treating signals. It
can be used to extract information from an unknown source by combination with a known source
using a convolution technique. A wavelet is a mathematical tool that can be used to extract not only
audio signals and images, but also various kinds of data. A series of wavelets is additionally needed
to analyze data completely. Such “complementary” wavelets can decompose data without leading
to a difference in the data or overlapping. Therefore, the decomposition process is mathematically
reversible. Therefore, wavelets are useful in wavelet-based compression/release algorithms designed
to minimize loss and restore original information. Mathematically, this expression technique constitutes
a set of complete orthogonal basis functions for the Hilbert space of square-integrable functions, an
overcomplete set, or a set of square-integrable functions on a vector space frame. Figure 9 shows
a wavelet decomposition structure that performs dimension reduction to provide time saving and
precision. Here, the input data are the horse gait data (100 ˆ 160) obtained by building a horse rider’s
y-axis data according to the horse’s gait. Dimension reduction allows data of Layer 0 [0,0], Layer 1
[1,0], Layer 2 [2,0], and Layer 3 [3,0] (13ˆ 160) to be extracted. The size of Layers 0, 1, and 2 is 100 ˆ 60,
50 ˆ 150, and 25 ˆ 160, respectively.
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3.1.2. Wavelet vs. Wavelet Packet

In a wavelet, decomposition continues to occur only in low frequency components after the low
and high frequency components from the first data are decomposed, as shown in Figure 9. In contrast,
in a WP decomposition occurs regardless of a low or high frequency and level decomposed in 2n. Here
n is levels of decomposition. For n levels of decomposition the wavelet packet decomposition (WPD)
produces 2n different sets of coefficients. However, due to the down-sampling process the overall
number of coefficients is still the same and there is no redundancy. Figure 10 shows the decomposition
steps of a WP. The input data are horse data (100 ˆ 160), the same as the data used for the above
wavelet. Dimension reduction allows data of Layer 0 [0,0], Layer 1 [1,0], Layer 2 [2,0], and Layer 3
[3,0] to be extracted. The size of Layers 0, 1, 2, and 3 is 100 ˆ 160, 50 ˆ 160, 25 ˆ 160, and 13 ˆ 160,
respectively. It can be seen that decomposition is performed at high frequency, unlike in a wavelet.
An excellent classification rate is achieved by executing all the WP feature data from Layer 0 to Layer 3.

Sensors 2016, 16, 664 8 of 17 

 

3.1.2. Wavelet vs. Wavelet Packet 

In a wavelet, decomposition continues to occur only in low frequency components after the low 
and high frequency components from the first data are decomposed, as shown in Figure 9. In 
contrast, in a WP decomposition occurs regardless of a low or high frequency and level decomposed 
in 	2 . Here n is levels of decomposition. For n levels of decomposition the wavelet packet 
decomposition (WPD) produces 2  different sets of coefficients. However, due to the 
down-sampling process the overall number of coefficients is still the same and there is no 
redundancy. Figure 10 shows the decomposition steps of a WP. The input data are horse data  
(100 × 160), the same as the data used for the above wavelet. Dimension reduction allows data of 
Layer 0 [0,0], Layer 1 [1,0], Layer 2 [2,0], and Layer 3 [3,0] to be extracted. The size of Layers 0, 1, 2, 
and 3 is 100 × 160, 50 × 160, 25 × 160, and 13 × 160, respectively. It can be seen that decomposition is 
performed at high frequency, unlike in a wavelet. An excellent classification rate is achieved by 
executing all the WP feature data from Layer 0 to Layer 3. 

 

Figure 10. Decomposition structure of wavelet packet. 

The wavelet packet is a generalization form of wavelet decomposition that performs signal 
analysis. This method is accomplished by three parameters such as frequency, position and scale as 
in wavelet decomposition. In the procedure of wavelet decomposition, the first step splits the 
approximation coefficients into two parts. After splitting we obtain a vector of approximation 
coefficients and detail coefficients, respectively. The information lost between two successive 
approximations is captured in the detail coefficients. The next step consists in splitting the new 
approximation coefficient vector. In the corresponding wavelet packets situation, each detail 
coefficient vector is also decomposed into two parts using the same approach as in approximation 
vector splitting[31,32]. 

3.2. Classifier Algorithms 

3.2.1. Neural Network Classifier 

The neural network is a structure adopted in computer programs to solve problems in a similar 
way to human brain processing. In other words, when neurons, that is, nodes or connection points, 
form a network by mutual connection, the network is called a neural network [26,27]. Figure 11 shows 
the basic structure of a neural network. The horse gait data consisted of a rider’s y-axis data (100 × 160) 
and WP feature data (25 × 160). Since we used 50% of the data as the input, the size of the hip data 
for the walk gait was 100 × 20. The input vector for training classifier consists of vector including 
y-axis component of hip position. These values represent the rhythm of rider motion according to 
horse gaits. We use original data points and the data transformed by wavelet packet in this paper. 
The angle of elbow, knee, backbone, and distance of each elbow were used for motion analysis and 
coaching[33,34]. 

Figure 10. Decomposition structure of wavelet packet.

The wavelet packet is a generalization form of wavelet decomposition that performs signal
analysis. This method is accomplished by three parameters such as frequency, position and scale
as in wavelet decomposition. In the procedure of wavelet decomposition, the first step splits the
approximation coefficients into two parts. After splitting we obtain a vector of approximation
coefficients and detail coefficients, respectively. The information lost between two successive
approximations is captured in the detail coefficients. The next step consists in splitting the new
approximation coefficient vector. In the corresponding wavelet packets situation, each detail coefficient
vector is also decomposed into two parts using the same approach as in approximation vector
splitting [31,32].
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3.2. Classifier Algorithms

3.2.1. Neural Network Classifier

The neural network is a structure adopted in computer programs to solve problems in a similar
way to human brain processing. In other words, when neurons, that is, nodes or connection points,
form a network by mutual connection, the network is called a neural network [26,27]. Figure 11 shows
the basic structure of a neural network. The horse gait data consisted of a rider’s y-axis data (100 ˆ
160) and WP feature data (25 ˆ 160). Since we used 50% of the data as the input, the size of the hip
data for the walk gait was 100 ˆ 20. The input vector for training classifier consists of vector including
y-axis component of hip position. These values represent the rhythm of rider motion according to
horse gaits. We use original data points and the data transformed by wavelet packet in this paper.
The angle of elbow, knee, backbone, and distance of each elbow were used for motion analysis and
coaching [33,34].Sensors 2016, 16, 664 9 of 17 
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3.2.2. Naive Bayesian Classifier

Naive Bayes is a stochastic classifier and a model that hypothesizes that all features are
conditionally independent, if class variables are given. The Bayesian network shows structures
are independent, if class variables are given. The naive Bayesian classifier is very efficient in terms
of learning and application. The parameters composing a model are limited to those for probability
distribution. A learned model can be also applied efficiently. The naive Bayesian classifier exercises an
optimum performance, if it meets a conditional independent hypothesis with probability distribution.
The performance of the naïve Bayesian classifier has been proved experimentally and theoretically.
However, many current problems do not follow the naive Bayesian hypothesis. Specifically, there are
many problems in which the specific variables are not conditionally independent. The performance is
expected to be degraded, if each specific variable is not conditionally independent. If each variable
has a binary value, the expressiveness of the naive Bayesian classifier is the same as that of a linear
classifier [35,36].

3.2.3. Radial Basis Function Network Classifier

In the field of mathematical modeling, the radial basis function network classifier (RBFNC) is
an artificial neural network and uses radial basis functions as sigmoid functions. The output of the
network is a linear combination of the radial basis functions of the input and neuron parameters.
The RBFN is used for function approaches, time series prediction, classification, system control, etc.
Figure 12 illustrates the RBFNC’s architecture [37]. The horse gait data consisted of a horse rider’s y
data (100 ˆ 160) and WP feature data (25 ˆ 160). Since we used 50% of the data as the input, the size
of the hip data in the walk gait was 100 ˆ 20.
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3.2.4. FCM-Based Neuro-Fuzzy Classifier (NFC)

The design of the FCM-NFC consists of an NFC assisted by FCM clustering. Here, the NFC is
similar to the adaptive neural fuzzy inference system (ANFIS) introduced by Jang [38]. While Jang’s
model frequently encounters the “curse of dimensionality” problem that the number of fuzzy rules
exponentially increases because of the grid partitioning of the input space, the FCM-NFC can solve
such a problem by virtue of the flexible scatter partitioning of FCM clustering. In general, a fuzzy
classifier has an appropriate reasoning ability that is easy to apply to a complicated or non-linear
system using professional and experiential knowledge and can overcome the vagueness or uncertainty
inherent in the human thinking process. However, professional knowledge is often inconsistent
and sometimes incomplete. There are also difficulties in acquiring fuzzy rules by human intuition
and experience due to the lack of a systematic and efficient method. To confront this problem, it is
frequently advantageous to use several computing techniques synergistically rather than exclusively,
resulting in the construction of complementary hybrid intelligent systems. Thus, we attempted to
combine the fuzzy system with a neural network. Figure 13 shows the architecture of the FCM-NFC.
The classifier shown in Figure 13 has an inference system with two TSK-type fuzzy rules as follows [38].

Rule 1: If x1 is A1 and . . . xm is B1, and then f is f1
Rule n: If x1 is An and . . . xm is Bn, and then f is f2

(6)

where fi is the linear equation of i’th consequent part. The linguistic labels in the first layer are
constructed by Gaussian membership functions with two parameters as
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Each of the cluster centers generated by FCM clustering represents a prototype that exhibits
certain characteristics of the system to be modeled. The final inference output of the FCM-NFC is
computed as the weighted average method
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ÿ
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where wi is a normalized firing strength of the i’th rule. These values are obtained by the ratio of the
i’th rule’s firing strength to the sum of all rule’s firing strengths. The learning scheme of the proposed
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FCM-NFC is realized by hybrid learning method using a back-propagation (BP) algorithm and least
square estimator (LSE). Fuzzy c-means (FCM) clustering is a method of clustering that allows one data
point to belong to two or more clusters. This method is frequently used in pattern recognition. It is
based on the minimization of the objective function

Jm “

N
ÿ

i“1

N
ÿ

i“1

um
ij‖ xi ´ cj ‖2 , 1 ď m ă 8 (9)

where m is any real number greater than 1, uij is the degree of membership of xi in the cluster j, xi is
the i’th piece of d-dimensional measured data, cj is the d-dimension center of the cluster, and ‖ ¨ ‖ is
any norm expressing the similarity between any measured data and the center. Fuzzy partitioning is
performed through an iterative optimization of the objective function shown above, with the update of
membership uij and the cluster centers cj by

uij “
1

řC
k“1

´

‖xi´ci‖
‖xi´ck‖

¯
2

m´1
(10)

cj “
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ij¨ xi
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ij

(11)
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[Step 4] If ‖ Upk`1q ´Upkq ‖ă ε, then stop; otherwise, retun to Step 2.

4. Experiment and Results

4.1. Horse Rider’s Motion Database by Riding Gaits

In this section, we describe the construction of a horse rider’s motion database for four horse gaits
of three breeds of horse (Jeju, Warmblood, and Thoroughbred). The data in this database were obtained
from a motion capture suit including inertial sensors worn by a horse riding expert. From among
several data, we used the hip values of the y-axis for horse gait classification. To synchronize this
database, the minimum value was extracted between 1 and 400 frames and 100 values were extracted
from the point of time one. In order to achieve a standard performance, all the experiments were
completed in the 10-fold cross-validation mode. The entire data set used in this study comprised
80 data. The training and validation data set were randomly selected by a 50%/50% split, respectively.
The training data set was used for predictor construction, while the test data set was used for predictor
validation. Thus, the resultant predictor was not biased toward the training data set and it was likely
to have a better generalization capacity to new data.

4.1.1. Horse Riding Learning Data and Validation Data

Figure 14 shows some of the hip motion data for four horse gaits (walk, sitting trot, rising trot,
canter). As shown in Figure 14, the hip motion for each gait has unique characteristics. In the case of
the walk gait, we can see that the motion is flat. In the case of the sitting trot gait, the motion shows
an iterative curve, because the trot is a two-beat diagonal gait of the horse, where the diagonal pairs
of legs move forward at the same time with a moment of suspension between each beat. Figure 15
visualizes several overlapped hip motion data. Table 1 lists the database information for the four gaits.
The size of this database is 100 ˆ 160. Here, the number of dimensions is 100. We divided it into the
validation data with a size of 100 ˆ 80 and the learning data with a size of 100 ˆ 80.
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Figure 15. Overlapped hip motion data. (a) original sensor data (walk, sitting trot, rising trot, canter)
(b) data transformed by wavelet packet (walk, sitting trot, rising trot, canter).

The initial center of FCM is randomly generated by the membership matrix U with random values
between 0 and 1 such that the summation of degrees of belongingness for a data set always is equal to
unity. We selected 33 if-then rules through trial and error as the number of rule increases between 2
and 50. The size of cluster centers after performing FCM clustering is 33 ˆ 25. The size of membership
matrix is 33 ˆ 80 for training and testing data, respectively. The output is class number representing
horse gaits to be classified. The size of output is also 80 ˆ 1. The input vector for training classifier
consists of vector including y-axis component of hip position. These values represent the rhythm of
rider motion according to horse gaits. We use original data points and the data transformed by wavelet
packet in this paper. The angle of elbow, knee, backbone, and distance of each elbow were used for
motion analysis and coaching.

Table 1. Original data.

Walk Sitting Trot Rising Trot Canter Total

Training data 100 ˆ 20 100 ˆ 20 100 ˆ 20 100 ˆ 20 100 ˆ 80
Test data 100 ˆ 20 100 ˆ 20 100 ˆ 20 100 ˆ 20 100 ˆ 80

Total 100 ˆ 40 100 ˆ 40 100 ˆ 40 100 ˆ 40 100 ˆ 160

4.1.2. Features Transformed by Wavelet Packet

The features are extracted by applying the training data and the validation data based on a WP.
The transformed data sets consist of four layers. Each layer is composed of [0,0], [1,0], [1,1], [2,0], [2,1],
[2,2], [2,3], [3,0], [3,1] [3,2], [3,3], [3,4], [3,5], [3,6], and [3,7], as shown in Figure 16. Figure 16 shows the
decomposition step of a WP consisting of four layers. It is possible to generate a total of 14 feature data,
i.e., 2 in Layer 1, 4 in Layer 2, and 8 in Layer 3. Here, we used the transformed data (25 ˆ 160) of Layer
2 as feature data in consideration of the recognition rate and velocity. Thus, the size (100 ˆ 160) of the
original data is transformed into a reduced size (25 ˆ 160) by the WP. We divided this transformed
database into validation data with a size of (25 ˆ 80) and learning data with a size of (25 ˆ 80). Table 2
lists the information of the database transformed by the WP. Figure 14 visualizes the hip motion data
and transformed by the WP for the four gaits. Figure 15 visualizes the overlapped and transformed
motion data and transformed by the WP for the four gaits.
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Table 2. Size of the feature data transformed by wavelet packet for training and testing data.

Walk Sitting Trot Rising Trot Canter Total

Training data 25 ˆ 20 25 ˆ 20 25 ˆ 20 25 ˆ 20 25 ˆ 80
Testing data 25 ˆ 20 25 ˆ 20 25 ˆ 20 25 ˆ 20 25 ˆ 80

Total 25 ˆ 40 25 ˆ 40 25 ˆ 40 25 ˆ 40 25 ˆ 160

4.2. Experimental Results

The experiments were performed using a computer with a 3.4 GHz CPU, Intel (R) Core (TM)
i7-2600, 16 Gbyte memory, and MATLAB R2012b. The size of the original data and the transformed
data was 100 ˆ 160 and 25 ˆ 160, respectively. The experimental results of the RBFNC showed a
classification accuracy performance of 25%, as the learning failed in the case of the original motion
data. However, the experimental results showed a classification accuracy performance of 86.25% for
the feature data set transformed by the WP. Here, we selected 236 nodes and a learning rate of 0.022
through trial and error in the design of RBFNC.

In the case of the FCM-NFC, the results showed a classification accuracy performance of 91.25%,
when using the original motion data. We used 33 fuzzy if-then rules of the TSK-type by finding the
optimal number of rules that showed the minimum error for the validation data set. Furthermore,
we obtained the best classification performance, 97.5%, when using the transformed data set as listed
in Table 3. Here, we selected 50 rules in the same manner as above. Here, the number of rules is
the same as that of cluster centers estimated by FCM clustering. Figure 17 shows confusion matrix
of all algorithms(NNC, SVM, NBC, RBFM, FCM-NFC). Figure 18 shows a bar graph visualizing the
classification performance. Table 4 lists the processing time of NNC, NBC, RBFNC, and FCM-NFC for
the classification of horse gaits.
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Table 3. Performance comparison for original sensor data and the transformed data.

NNC SVM NBC RBFNC FCM-NFC

Original data 87% 93% 96% 25% 91.25%
Transformed
data by WP 88% 91% 85.62% 86.25% 97.5%

Table 4. Comparison of processing time (s).

NNC NBC RBFNC FCM-NFC

Original Data 2.8 0.03 28.26 0.8
Data transformed by WP 2.5 0.028 5.13 0.61
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5. Conclusions 

In this study, we compared horse riders’ motion features (elbow angle, hip position) and the 
gaits (walk, sitting trot, rising trot, and canter) of the horse breeds Jeju, Warm Blood, and 
Thoroughbred in a database consisting of the data collected from a suit with 16 inertial sensors worn 
by the country’s top-level horse riding expert, using the Euclidean calculation method. The 
comparison showed that there were differences between the data feature values obtained for the 
horse and gait types. For gait classification and coaching, the features were extracted using a 
multiple signal WP and the algorithm’s performance was evaluated when using the NNC, NBC, 
RBFNC, and FCM-NFC. The NBC showed a classification performance of 96% for the original 
motion data, and the FCM-NFC showed a 97.5% (the highest) performance for the motion data 
transformed by the WP. It is concluded that the FCM-NFC has a good classification capacity and is 
effective. On the basis of the classification results and the motion information such as the angle of 
elbow, knee, backbone, and distance of each elbow for motion analysis and coaching, we can apply 
to coaching system by each horse gait for rider under real or horse simulator environments. 
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5. Conclusions

In this study, we compared horse riders’ motion features (elbow angle, hip position) and the gaits
(walk, sitting trot, rising trot, and canter) of the horse breeds Jeju, Warm Blood, and Thoroughbred in a
database consisting of the data collected from a suit with 16 inertial sensors worn by the country’s
top-level horse riding expert, using the Euclidean calculation method. The comparison showed that
there were differences between the data feature values obtained for the horse and gait types. For gait
classification and coaching, the features were extracted using a multiple signal WP and the algorithm’s
performance was evaluated when using the NNC, NBC, RBFNC, and FCM-NFC. The NBC showed a
classification performance of 96% for the original motion data, and the FCM-NFC showed a 97.5% (the
highest) performance for the motion data transformed by the WP. It is concluded that the FCM-NFC
has a good classification capacity and is effective. On the basis of the classification results and the
motion information such as the angle of elbow, knee, backbone, and distance of each elbow for motion
analysis and coaching, we can apply to coaching system by each horse gait for rider under real or
horse simulator environments.

Acknowledgments: This work was supported by an Institute for Information and Communications Technology
Promotion (IITP) grant funded by the Korea government (MSIP) (No. R0101-15-0125, Development of the
5-senses convergence sports simulator based on multi-axis motion platform). This research was supported
by the MSIP(Ministry of Science, ICT and Future Planning), Korea, under the ITRC(Information Technology
Research Center) support program(IITP-2016-R0992-16-1021) supervised by the IITP(Institute for Information &
Communication Technology Promotion).

Author Contributions: Jae-Neung Lee conceived and designed the research and experiments, and contributed as
the lead author of the article; Myung-Won Lee and Yeong-Hyeon Byeon performed database construction for the
study; Won-Sik Lee developed the horse simulator; Keun-Chang Kwak supervised the writing of the article, gave
suggestions, and analyzed the data for the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, D.H.; Kim, S.J.; Bae, S.S.; Kim, K. The Effect of Indoor Horseback-Riding Machine on the Balance of the
Elderly with Dementia. J. Korean Soc. Phys. 2008, 3, 235–246. (In Korean)

2. Lee, C.W.; Lee, I.S.; Kim, H.S. The Effect of Horse-Riding Exercise on Pain and Body Flexibility for the Patient
with Chronic Low Back Pain. J. Korean Soc. Integr. Med. 2013, 1, 67–74. [CrossRef]

http://dx.doi.org/10.15268/ksim.2013.1.4.067


Sensors 2016, 16, 664 17 of 18

3. Gang, Y.H.; Lee, D.Y.; Choi, D.S.; Yoon, B.K.; Lee, Y.J.; Rhyu, M.R. Effect of Korean Native Cimicifuga Species
on Proliferation of Vascular Smooth Muscle Cells. J. Korean Soc. Menopause 2012, 18, 100–105.

4. Luinge, H.; Veltink, P. Measuring Orientation of Human Body Segments Using Miniature Gyroscopes and
Accelerometers. Med. Biol. Eng. Comput. 2005, 43, 273–282. [CrossRef] [PubMed]

5. Zhou, H.; Stone, T.; Harris, N. Use of Multiple Wearable Inertial Sensors in Upper Limb Motion Tracking.
Med. Eng. Phys. 2008, 30, 123–133. [CrossRef] [PubMed]

6. Lee, J. Sensor fusion and calibration for motion captures using accelerometers. In Proceedings of the 1999
IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999; Volume 3,
pp. 1954–1959.

7. Zhu, R.; Zhou, Z. A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors
Package. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 295–302. [CrossRef] [PubMed]

8. Venkatraman, S.; Long, J.; Pister, K.; Carmena, J. Wireless Inertial Sensors for Monitoring Animal Behaviour.
IEEE Eng. Med. Biol. Soc. Conf. Proc. 2007, 2007, 378–381.

9. Ghasemzadeh, H.; Loseu, V.; Guenterberg, E.; Jafari, R. Sport training using body sensor networks:
A statistical approach to measure wrist rotation for golf swing. In Proceedings of the Fourth International
Conference on Body Area Networks, Brussels, Belgium, 1 April 2009; pp. 1–8.

10. Mariani, B.; Hoskovec, C.; Rochat, S.; Bula, C.; Penders, J.; Aminian, K. 3D gait assessment in young and
elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [CrossRef] [PubMed]

11. Jung, Y.J.; Kang, D.H.; Kim, J.W. Upper Body Motion Tracking With Inertial Sensors. In Proceedings of the
2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, China, 14–18 December
2010; pp. 1746–1751.

12. Song, L.J.; Qin, Y.Y. A Practical Calibration Method on MEMS Gyroscope. Piezoelectr. Acoustoopt. 2010, 32,
372–374.

13. Wei, R.; Tao, Z.; Zhang, H.; Wang L.; Zhou, Y.; Luan, M.; Liu, H.; Shi, J. A Research on Calibration of
Low-Precision MEMS Inertial Sensors. In Proceedings of the 2013 25th Chinese Control and Decision
Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 3243–3247.

14. Joris, M.L.; Robert, F.K. Miniature Low-Power Inertial Sensors: Promising Technology for Implantable
Motion Capture Systems. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 1138–1147.

15. Santana, D.D.; Furukawa, C.M.; Maruyama, N. Sensor Fusion with Low-Grade Inertial Sensors and Odometer
to Estimate Geodetic Coordinates in Environments without GPS Signal. IEEE Latin Am. Trans. 2013, 11,
1015–1021. [CrossRef]

16. Ziegler, T.; Bergner, P.; Hechenblaikner, G.; Brandt, N.; Fichter, W. Modeling and performance of contact-free
discharge systems for space inertial sensors. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1493–1510.
[CrossRef]

17. Buke, A.; Fang, G.; Wang, Y.; Yang, Z. Healthcare algorithms by wearable inertial sensors: A survey.
China Commun. 2015, 12, 1–12. [CrossRef]

18. Zhao, H.; Wang, Z. Motion Measurement Using Inertial Sensors, Ultrasonic Sensors, and Magnetometers
with Extended Kalman Filter for Data Fusion. IEEE Sens. J. 2011, 12, 943–953. [CrossRef]

19. Barry, R.G. Assessment and Classification of Early-Stage Multiple Sclerosis With Inertial Sensors: Comparison
Against Clinical Measures of Disease State. IEEE J. Biomed. Health Inform. 2015, 19, 1356–1361.

20. Mahomud, E.; James, M. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot
Arm. IEEE Trans. Biomed. Eng. 2015, 62, 1759–1767.

21. Cao, N.; Young, S.; Dang, K. 3D Dynamics Analysis of a Golf Full Swing by Fusing Inertial Sensor and
Vision Data. In Proceedings of the 2013 13th International Conference on Control, Automation and Systems
(ICCAS), Gwangju, Korea, 20–23 October 2013; pp. 1300–1303.

22. Jung, P.G.; Lim, G.C.; Kong, K.C. A Mobile Motion Capture System Based on Inertial Sensors and Smart
Shoes. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, 6–10 May 2013; pp. 692–697.

23. Chan, J.; Leung, H.; Tang, J.; Komura, T. A virtual reality dance training system using motion capture
technology. IEEE Trans. Learn. Technol. 2011, 4, 187–195. [CrossRef]

24. Ko, K.L.; Bae, S.B.; Choi, J.S.; Pan, S.B. Implementation of Inertial Sensor based Human Body Motion Capture
System for the Self-Coaching. J. Korean Inst. Inf. Tech. 2014, 12, 171–179. (in Korean). [CrossRef]

http://dx.doi.org/10.1007/BF02345966
http://www.ncbi.nlm.nih.gov/pubmed/15865139
http://dx.doi.org/10.1016/j.medengphy.2006.11.010
http://www.ncbi.nlm.nih.gov/pubmed/17251049
http://dx.doi.org/10.1109/TNSRE.2004.827825
http://www.ncbi.nlm.nih.gov/pubmed/15218943
http://dx.doi.org/10.1016/j.jbiomech.2010.07.003
http://www.ncbi.nlm.nih.gov/pubmed/20656291
http://dx.doi.org/10.1109/TLA.2013.6601744
http://dx.doi.org/10.1109/TAES.2014.120661
http://dx.doi.org/10.1109/CC.2015.7114054
http://dx.doi.org/10.1109/JSEN.2011.2166066
http://dx.doi.org/10.1109/TLT.2010.27
http://dx.doi.org/10.14801/kiitr.2014.12.4.171


Sensors 2016, 16, 664 18 of 18

25. Lim, S.J. A Development of Golf Coaching using Human Motion Analysis. J. Korea Saf. Manag. Sci. 2013, 15,
55–61.

26. Ko, K.L.; Chae, S.H.; Bae, S.B.; Choi, J.S.; Pan, S.B. A Study on the 4-Joint Based Motion Capture System for
Spinal Disease Prevention. J. Korean Inst. Inf. Tech. 2014, 12, 157–165. (In Korean) [CrossRef]

27. Cheng, L.; Hailes, S. Analysis of Wireless Inertial Sensing for Athlete Coaching Support. In Proceedings
of the IEEE Global Telecommunications Conference (IEEE GLOBECOM 2008), New Orleans, LO, USA,
30 November–4 December 2008; pp. 1–5.

28. Connaghan, D.; Kelly, P.; O’Connor, N.; Gaffney, M.; Walsh, M.; O’Mathuna, C. Multi-Sensor Classification of
tennis strokes. In Proceedings of the 2011 IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 1437–1440.

29. Burchfield, R.; Venkatesan, S. A Framework for Golf Training Using Low-Cost Inertial Sensors. In Proceedings
of the 2010 International Conference on Body Sensor Networks, Singapore, 7–9 June 2010; pp. 267–272.

30. Lee, M.W.; Kwak, K.C. 3D Motion Analysis of National Rider Athletes by Riding Types in Horse Simulator.
In Proceedings of the 2013 Third International Conference on Innovative Computing Technology (INTECH),
London, UK, 29–31 August 2013; pp. 12–16.

31. Costa, F.B. Boundary Wavelet Coefficients for Real-Time Detection of Transients Induced by Faults and
Power-Quality Disturbances. IEEE Trans. Power Deliv. 2014, 29, 2674–2687. [CrossRef]

32. Quellec, G.; Lamard, M.; Cazuguel, G.; Cochener, B.; Roux, C. Fast Wavelet-Based Image Characterization
for Highly Adaptive Image Retrieval. IEEE Trans. Image Process. 2011, 21, 1613–1623. [CrossRef] [PubMed]

33. Lin, C.; Yang, Y.C.; Wang, J.; Yang, Y. A Wearable Sensor Module With a Neural-Network Based Activity
Classification Algorithm for Daily Energy Expenditure Estimation. IEEE Trans. Inf. Technol. Biomed. 2012, 16,
991–998. [PubMed]

34. Wang, D.; Leung, H.; Kurian, A.P.; Kim, H.K.; Yoon, H.S. A Deconvolutive Neural Network for Speech
Classification with Applications to Home Service Robot. IEEE Trans. Instrum. Meas. 2010, 59, 3237–3243.
[CrossRef]

35. Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss.
Mach. Learn. Res. 1997, 29, 103–130. [CrossRef]

36. Ling, C.; Zhang, H. The representational power of discrete Bayesian networks. Mach. Learn. Res. 2002, 3,
709–721.

37. Kim, N.Y. Step-size control for width adaptation in radial basis function networks for nonlinear channel
equalization. J. Commun. Netw. 2010, 12, 600–604. [CrossRef]

38. Jang, R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. 1993, 23, 665–685.
[CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14801/kitr.2014.12.8.157
http://dx.doi.org/10.1109/TPWRD.2014.2321178
http://dx.doi.org/10.1109/TIP.2011.2180915
http://www.ncbi.nlm.nih.gov/pubmed/22194244
http://www.ncbi.nlm.nih.gov/pubmed/22875251
http://dx.doi.org/10.1109/TIM.2010.2047551
http://dx.doi.org/10.1023/A:1007413511361
http://dx.doi.org/10.1109/JCN.2010.6388307
http://dx.doi.org/10.1109/21.256541
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Construction of Horse Rider’s Motion Database
	Building the Horse Riding Motion Database
	Motion Capture
	Database Construction in Horse Riding Environment
	Gait-Specific Motions in Real Horse Riding Environment

	Method for Analyzing Real Horse Riding Postures
	Elbow Angle
	Hipy  Location

	Horse Simulator and Riding Coaching System

	Machine Learning Algorithms
	Dimension Reduction Algorithm
	Wavelet
	Wavelet vs. Wavelet Packet

	Classifier Algorithms
	Neural Network Classifier
	Naive Bayesian Classifier
	Radial Basis Function Network Classifier
	FCM-Based Neuro-Fuzzy Classifier (NFC)


	Experiment and Results
	Horse Rider’s Motion Database by Riding Gaits
	Horse Riding Learning Data and Validation Data
	Features Transformed by Wavelet Packet

	Experimental Results

	Conclusions

