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Abstract: The rapid development of Unmanned Aerial Vehicle (UAV) remote sensing conforms to
the increasing demand for the low-altitude very high resolution (VHR) image data. However, high
processing speed of massive UAV data has become an indispensable prerequisite for its applications
in various industry sectors. In this paper, we developed an effective and efficient seam elimination
approach for UAV images based on Wallis dodging and Gaussian distance weight enhancement
(WD-GDWE). The method encompasses two major steps: first, Wallis dodging was introduced to
adjust the difference of brightness between the two matched images, and the parameters in the
algorithm were derived in this study. Second, a Gaussian distance weight distribution method
was proposed to fuse the two matched images in the overlap region based on the theory of the
First Law of Geography, which can share the partial dislocation in the seam to the whole overlap
region with an effect of smooth transition. This method was validated at a study site located
in Hanwang (Sichuan, China) which was a seriously damaged area in the 12 May 2008 enchuan
Earthquake. Then, a performance comparison between WD-GDWE and the other five classical
seam elimination algorithms in the aspect of efficiency and effectiveness was conducted. Results
showed that WD-GDWE is not only efficient, but also has a satisfactory effectiveness. This method is
promising in advancing the applications in UAV industry especially in emergency situations.
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1. Introduction

The development of UAVs conforms to the current increasing demand for low-altitude very high
resolution (VHR) remote sensing data [1–3]. Compared with the traditional photogrammetry process,
the fast reconstitution of UAV image mosaics is a precondition of its application [4,5]. However, the
UAV image-processing challenges include large geometric deformity, small size, large number and
uneven exposure. These challenges lead to difficulties in seam elimination when mosaicking UAV
images [6,7]. The mosaic seams mainly come from two sources: (1) the color or brightness differences
due to the exposure variation; and (2) the texture misplacement due to geometric deformity, projection
differences caused by tall landscapes and image capture position differences [8]. These two types
of seams clearly appear on the UAV remote sensing platform, therefore, the effective and efficient
removal of these seams is essential for the application of UAVs.

At present, the major methods of seam elimination are the seamline detection and image fusion
methods. The seamline detection method should be considered as a way of circumventing the problem
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of tall landscapes in the images [9], and can be attributed to two categories: the first category is
seamline search by the variation of gradient degree or image texture. Davis [10] proposed the optimal
seamline searching method based on Dijkstra’s algorithm, which relies mainly on the calculation of
adjacency matrices and distance matrices of high algorithmic complexity [11]. Yuan [12] replaced the
Dijkstra algorithm with a greedy algorithm for local optimal path selection. However, the algorithm
was still influenced by iterative convergence. Kerschner [13] applied the twin snake operator to
automatically select the image seamline. However, the operator cannot guarantee the systematical
optimization. Chon [14] eliminated seamlines by dynamic planning stitching. The computational
burden of the algorithm rises exponentially with the increase of seamline length [15]. The second
category is applying ancillary data to detect the seamline. Wan [16] proposed an algorithm based on
the vector path ancillary data, which is only suitable for a few systems and is significantly limited by
the vector data. Zuo [17] applied the greedy snake algorithm with the assistance of the DSM method
to detect seamlines. The algorithm is fairly complicated and highly dependent on the ancillary data.
In conclusion, all these searching seamline algorithms applied on UAV images have three limitations:
(1) they require high geometric accuracy of the UAV images, but UAV remote sensing platforms
are rather instable and have low parameter accuracy. The equipped camera sensors cannot meet
the accuracy requirements because they are not designed for photogrammetry; (2) All of them are
complicated and time-consuming. UAV images are small in size but contain large amounts of data,
which requires high processing efficiency; (3) Objects in UAV images are not overlapped in a regular
manner. The seamlines are difficult to detect, especially for regions with high densities of tall buildings.

In addition to the seamline detection method, image fusion can also be applied to eliminate
mosaic seams [18]. Uyttendael [19] applied a feathering and interpolating function based on weighted
features to reduce the color difference. However, the feathering algorithm tends to give fuzzy
edges when smoothing the exposure difference, and can sometimes lead to the “ghosting” effect.
Szeliski [20,21] manually selected at least four pairs of feature points, and estimated the variation of
images with the function built on the variation of pixel difference of the feature points, which achieved
a satisfactory layer fusion effect. However, since the estimation is based on brightness differences, it
is highly sensitive to the brightness of images and can be poorly automated [22]. Su [23] proposed
an image fusion method based on wavelet multi-scale decomposition. This method first applies
wavelet multi-scale decomposition over the source images. Then, the wavelet weight parameters are
determined and the images are reconstructed through inverse wavelet transform. The algorithm is
highly complicated and it is difficult to determine wavelet parameters [24]. Zomet [25] eliminated
mosaic seams by analyzing the contrast in smooth stitching areas. However, the field smoothing can
lead to the appearance of “ghosting” effects [11,26]. Tian [27] developed a brightness and texture
seam elimination (BTSE) method with a smooth transition effect on a one-dimensional direction in the
overlap region. A “ghosting” effect tends to appear at the border when the algorithm is applied to
UAV images with the large geometric deformity. In conclusion, all these image fusion methods for
UAV images have two major limitations: (1) a “ghosting” effect tends to appear due to the uneven
exposure and the large geometric deformity of UAV images; (2) they are fairly complicated and require
long computation times, which conflicts with the fact that UAV systems require high data processing
efficiency to deal with the massive amount of image data.

Therefore, the objective of this study is twofold: firstly, to adjust the difference of brightness
between the two matched images with the Wallis dodging method and; secondly, to develop a new
image fusion algorithm to eliminate the texture seamline based on the First Law of Geography.

2. Study Site and Data

The study site is located in Hanwang (104˝091E to 104˝121E and 31˝251N to 31˝281N) in the
northwestern part of the Sichuan Basin (China) and has an overall area of 54.3 km2. It is a city at
the foot of mountains with an average elevation of 685 m above sea level and slopes of less than 5˝.
As an industrial city, it has a sound transportation system and a total population of 53,000, among
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which the non-agricultural population is 35,000 [28,29]. The major land uses of this study site are
woodland, farmland, water, road, and buildings. In this task, UAV image data were acquired on
15 May 2008 after the 5.12 Wenchuan Earthquake. The flight altitude and speed of the UAV platform
are 400 m and 50 km/h, respectively. The major parameters of the image sensor equipped on the UAV
platform are shown in Table 1. A total of 678 images were acquired with an image resolution of 0.3 m.
The average forward overlap is 70% and the side forward overlap is 40%.

Table 1. The parameters of the image sensor.

Items Parameters

Image Sensor Ricoh Digital
Pixel Number 3648 ˆ 2736
Focal Distance 28 mm

CCD 1/1.75 inch
Navigation sensor GPS

Image Format JPEG

3. Methodology

3.1. Wallis Dodging

Image processing before image fusion contains two major steps: image matching and image
dodging. Image matching aims to find corresponding points, and image dodging was used to
eliminate the brightness differences between two matched images. First, in order for us to find the
corresponding points between two images, an image matching method should be applied. In this study,
the Scale-Invariant Feature Transform (SIFT) algorithm was used to match the two images [30,31],
which consists of four stages: (1) building the scale-space; (2) keypoint localization; (3) removal of bad
keypoints; and (4) keypoint description. It has been proven in many studies [32,33] that SIFT not only
performs well in image rotation, scale zoom and illumination changes, but also does well in affine
transformation, and noise jamming. Subsequently, the Random Sample Consensus (RANSAC) method
was applied to the points matched by SIFT to remove any mismatched points [34]. Additionally, the
Wallis dodging algorithm [8,35,36] was employed to adjust the difference of brightness between the
two matched images before the texture seam elimination method.

The principle behind Wallis image dodging is that it can adjust the variance and mean value of
the target image to the reference image’s level. The Wallis filter can be defined by Equation (1):

Iij “ pI2
ij ´ I2q ˆ

cσI1

cσI2 ` p1´ cqσI1
` bI1 ` p1´ bqI2 (1)

where I1 is reference image, I2 is target image, and Iij is the pixel value of I2 in i row, j column after

image dodging. I1, I2 and σI1 , σI2 , are the mean and variance value of I1 and I2, respectively; cP[0.1] is
an adjustment coefficient for variance value of the image, and bP[0.1] is an adjustment coefficient for
the mean value. However, setting the two specific parameters is still a critical question in the existing
research. The parameter setting method was derived in this study. First, the variance of the target
image is shown in Equation (2):

σI2 “

g

f

f

e

m´1
ÿ

i“0

n´1
ÿ

j“0

pI2
ij´I2q2{mˆ n (2)

Second, the variance and mean value of the target image was adjusted to the reference image’s
level. So the variance and mean value of the target image after image dodging should be roughly equal
to σI1 and I1, respectively. Therefore, they can be denoted as Equation (3):
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σI1 «
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e

m´1
ÿ

i“0

n´1
ÿ

j“0

pIij´I1q2{mˆ n (3)

Third, both sides of the Equation (3) are multiplied by σI2{σI1 :

σI2 «
σI2

σI1
ˆ

g

f

f

e

m´1
ÿ

i“0

n´1
ÿ

j“0

pIij´I1q2{mˆ n (4)

Then, simultaneous application of Equations (2) and (4) gives:

σI2

σI1
ˆ pIij ´ I1q « I2

ij ´ I2 (5)

Finally, the pixel value of target image after image dodging is shown in Equation (6):

Iij «
σI1

σI2
ˆ pI2

ij ´ I2q ` I1 (6)

Comparing Equation (1) with Equation (6), it found that we will get Equation (6) when the
parameters (b and c) were both set to 1 in Equation (1). Therefore, to adjust the mean and variance
value of target image to reference image’s level, Equation (6) with Wallis filter (b = 1, c = 1) was used
for UAV image dodging.

3.2. GDWE Method

3.2.1. Theoretical Basis

The First Law of Geography proposed by Waldo Tobler in 1970 is “all attribute values on
a geographic surface are related to each other, but closer values are more strongly related than are more
distant ones” [37]. The law is the foundation of the fundamental concepts of spatial autocorrelation
and spatial dependence [38], based on which we have developed an effective and efficient seamline
elimination method (GDWE) for UAV image. The principle of GDWE is an image fusion algorithm
combining relevant information from two matched UAV images into a single image in the overlapping
region. As such, GDWE embraces three major steps: first, the principal point of each image was set as
the optimal pixel with the minimum geometric distortion because the image sensor equipped on UAV
platform is, in general, a type of non-measurement array CCD camera. Second, the weight in a certain
pixel contributed by each image in the overlap region was determined by the distance between the
pixel and the principal point. A two-dimensional Gaussian kernel was then employed to describe
it. Third, in order to enhance the influence of distance to the weight, an exponent form adjustment
coefficient was introduced and it was parameterized by a sensitive analysis method.

3.2.2. Seam Elimination

To develop the algorithm for image fusion in the overlap region of the matched UAV images, some
parameters should be defined first, in which the principle points of the two matched images were O1

and O2; O is an arbitrary point in the overlap region; d1(|O ´ O1|) and d2(|O ´ O2|) are the distances
between O1, O2 and O; The pixel values of point O in the two matched UAV images are I1

ij and I2
ij. The

pixel value of point O after image fusion is Iij. Therefore, Iij can be defined as ω1 ˆ I1
ij `ω2 ˆ I2

ij, where
w1, w2 are the weight contributions of the two UAV images to point O, and w1 plus w2 is equal to 1.
Based on the theory mentioned above, a Gaussian kernel shown in Figure 1 was introduced to describe
the Gaussian distance weight distribution (Gw1), and was defined by Equation (1):

Gw1 “ aˆ e´p|O´O1|{|O´O2|q
2
{2σ2

(7)
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where a was set to 1 because Gw1 should be equal to 1 when d1 is 0. In order to enhance the influence
of Gaussian distance on the weight, an exponent form adjustment coefficient (λ) was introduced into
Equation (2):

w1 “ e´p|O´O1|{|O´O2|q
2λ
{2σ2

(8)

In which w1 was set to 0.5 when d1 equals d2. When we apply the relationship to Equation (8),
we get:

σ “
a

1{ p2ˆ ln2q (9)

Therefore, including these terms in Equation (8) results in Equation (9), the pixel value was
defined by Equation (10):

Iij “
´

0.5p|O´O1|{|O´O2|q
2λ
¯

ˆ I1
ij `

´

1´ 0.5p|O´O1|{|O´O2|q
2λ
¯

ˆ I2
ij (10)

Finally, we named our method Wallis dodging and Gaussian distance weight enhancement
(WD-GDWE) when taking the Wallis dodging algorithm into consideration. It is shown in
Equation (11):

Iij “
´

0.5p|O´O1|{|O´O2|q
2λ
¯

ˆ I1
ij `

´

1´ 0.5p|O´O1|{|O´O2|q
2λ
¯

ˆ

ˆ

σI1

σI2
ˆ pI2

ij ´ I2q ` I1
˙

(11)
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matched UAV images covering five different types of land use. From the perspective of visual effects, 
the results indicate that the brightness difference of two matched images has been effectively 
balanced by Wallis dodging, in which the left figure of each figure group in Figure 2 was stacked 
directly and the right figure was stacked after Wallis dodging. The root mean-square error (RMSE) 
values of the mean and standard deviation were calculated from the two matched UVA images in 
the overlap region for direct stacking and Wallis dodging, respectively. For each type of land use, at 
least 36 pairs of matched images were tested, and the averages of the RMSE values were recorded in 
Table 2. The results show that the Wallis dodging method can effectively balance the brightness 
differences between the two matched images, in which the RMSE of mean and stand deviation were 
determined to be 0.0 and less than 0.3, respectively. 

Figure 1. An example of a two-dimensional Gaussians distance weight distribution kernel.

4. Results and Discussion

4.1. Wallis Dodging

To assess the efficiency and effectiveness of WD-GDWE for seamline elimination of UAV images,
the method was implemented with Visual C++ programming using 8 GB memory and an Intel Xeon
2.5 GHz CPU. The UAV images covering five different types of land use (woodland, farmland, water,
road, and buildings) from the study site were tested.

Figure 2 shows the results of stacking directly versus stacking after Wallis dodging for two matched
UAV images covering five different types of land use. From the perspective of visual effects, the results
indicate that the brightness difference of two matched images has been effectively balanced by Wallis
dodging, in which the left figure of each figure group in Figure 2 was stacked directly and the right
figure was stacked after Wallis dodging. The root mean-square error (RMSE) values of the mean and
standard deviation were calculated from the two matched UVA images in the overlap region for direct
stacking and Wallis dodging, respectively. For each type of land use, at least 36 pairs of matched
images were tested, and the averages of the RMSE values were recorded in Table 2. The results show
that the Wallis dodging method can effectively balance the brightness differences between the two
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matched images, in which the RMSE of mean and stand deviation were determined to be 0.0 and less
than 0.3, respectively.Sensors 2016, 16, 662 6 of 11 
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Figure 2. The results of Wallis dodging for two matched UAV images of each type land use, in which 
(a)–(e) correspond to buildings, woodland, farmland, road, and water, respectively. For example, in 
the case of (a), the left figure was the direct stacking result of two matched images, whereas the right 
figure was the stacking result of two matched images after Willis dodging. 
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gradient and wavelet energy ratio [46]; (3) spectral information reserved: RMSE, standard deviation, 
deviation, and spectral distortion; Taking all three types of indicators into consideration, information 
entropy, average gradient, and RMSE were selected to access the specific five methods of seamline 
elimination, respectively. In addition, processing time is also an indicator for evaluating the efficiency 
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which was produced from the control points recorded by artificial with the help of a differential GPS. 
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Figure 2. The results of Wallis dodging for two matched UAV images of each type land use, in which
(a)–(e) correspond to buildings, woodland, farmland, road, and water, respectively. For example, in the
case of (a), the left figure was the direct stacking result of two matched images, whereas the right figure
was the stacking result of two matched images after Willis dodging.

Table 2. Average of RMSE values of mean (M) and standard deviation (SD) calculated from the matched
UVA images for stacking directly and Wallis dodging, respectively, in each type of land use.

Land Use
RMSE

M SD

Building Stacking Directly 24.5 6.5
Wallis Dodging 0.0 0.2

Woodland
Stacking Directly 23.6 6.2
Wallis Dodging 0.0 0.1

Farmland
Stacking Directly 19.8 5.7
Wallis Dodging 0.0 0.1

Road
Stacking Directly 17.5 3.6
Wallis Dodging 0.0 0.1

Water
Stacking Directly 36.2 9.5
Wallis Dodging 0.0 0.3

4.2. WD-GDWE Method

To acquire the optimal adjustment coefficient (λ) for the WD-GDWE method, a series of values
from zero to five with a step size of 0.2 were set, based on which the optimal value of λ was determined
when the lowest RMSE between the test images and reference images was achieved. In this study,
the optimal value of λ was set to 2.6. Lastly, performance comparisons between WD-GDWE and five
other classical seamline elimination algorithms were conducted in terms of efficiency and effectiveness.
The specific five classical methods are: Tian’s BTSE algorithm, Uyttendael’s feathering algorithm,
Su’s Wavelet algorithm, Szeliski’s algorithm, and Davis’s Dijkstra algorithm, in which the first four
methods are based on image fusion and the last one is based on seamline detection. Generally, the
image quality assessment indicators for seamline elimination can be divided to three types [39–43]:
(1) amount of information: information entropy, standard deviation, cross entropy, signal to noise ratio,
and joint entropy [44,45]; (2) image quality: average gradient and wavelet energy ratio [46]; (3) spectral
information reserved: RMSE, standard deviation, deviation, and spectral distortion; Taking all three
types of indicators into consideration, information entropy, average gradient, and RMSE were selected
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to access the specific five methods of seamline elimination, respectively. In addition, processing time is
also an indicator for evaluating the efficiency of the algorithm. It should be noted that orthoimages
were severed as reference images of the RMSE, which was produced from the control points recorded
by artificial with the help of a differential GPS.

From the perspective of visual effects, Figure 3 shows the performance comparisons of the
five seamline elimination methods, in which Figure 3a is the direct stacking result, Figure 3b
is the WD-GDWE method result, Figure 3c–g is the results of the other five different seamless
methods, respectively.
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Comparing Figure 3a,b, we find that the buildings and the roads obviously display mosaic
dislocation, whereas the phenomenon has been greatly improved with the WD-GDWE method. The
performance comparisons of the five seamline elimination methods shown in Figure 3c–f indicate
that: (1) a “ghosting” effect tends to appear in the Feather, Wavelet, Szeliski, and BTSE algorithms;
(2) the visual effects of the Dijkstra algorithm and WD-GDWE are much better than those of the other
methods. From the perspective of image quality assessment indicators, the details of the performance
comparisons of the six methods were shown Figure 4. Each of the four indicators is an average value
calculated from lots of UAV images (at least 36 pairs) for each type of land use. Figure 4a,b show that
Dijkstra method gives the most abundant amount of information and the highest definition, and the
WD-GDWE method follows. The BTSE is worse than the WD-GDWE method at the border of the
fusion image because it only supports smooth transitions in a one-dimensional direction in the overlap
region. Considering the improvement of WD-GDWE from BTSE is not obvious in Figure 3 from the
perspective of visual effects, therefore, some experimental results at the border of the fusion images
with the two methods were added (Figure 5). The Wavelet and Szeliski algorithm are much worse than
the BTSE method, and the Feather algorithm is the worst one. Figure 4c shows that the WD-GDWE
method preserves more spectral information than the other four algorithms. Figure 4d shows that it
takes a little time to run the WD-GDWE, BTSE, Szeliski, and Feather algorithms, whereas the Dijkstra
and Wavelet method are time-consuming. In a word, the WD-GDWE method is not only efficient, but
also has a satisfactory effectiveness.
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5. Conclusions 

In this study, an efficient seam elimination method for UAV images based on Wallis dodging 
and Gaussian distance weight enhancement was proposed. The method has successfully tested by 
using UAV images acquired after the 5.12 Wenchuan Earthquake. By comparison with other five 
classical seam elimination methods, the conclusions from this study can be summarized as follows:  
(1) the WD-GDWE method can effectively adjust the brightness differences between two matched 
images; (2) the method can successfully eliminate the texture mosaic seams which are usually caused 
by geometric deformity, projection differences, and image capture position differences on UAV 
platforms; (3) the WD-GDWE method is highly-efficient, which can meet the high processing speed 
requirements of massive UAV images. Time-savings are very important in advancing the 
applications in the UAV industry, especially in emergency situations. The results of this study can be 
further extended to other fields, such as aerospace remote sensing and computer vision. 
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5. Conclusions

In this study, an efficient seam elimination method for UAV images based on Wallis dodging and
Gaussian distance weight enhancement was proposed. The method has successfully tested by using
UAV images acquired after the 5.12 Wenchuan Earthquake. By comparison with other five classical
seam elimination methods, the conclusions from this study can be summarized as follows: (1) the
WD-GDWE method can effectively adjust the brightness differences between two matched images;
(2) the method can successfully eliminate the texture mosaic seams which are usually caused by
geometric deformity, projection differences, and image capture position differences on UAV platforms;
(3) the WD-GDWE method is highly-efficient, which can meet the high processing speed requirements
of massive UAV images. Time-savings are very important in advancing the applications in the UAV
industry, especially in emergency situations. The results of this study can be further extended to other
fields, such as aerospace remote sensing and computer vision.
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