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Abstract: Eddy current testing is quite a popular non-contact and cost-effective method for
nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of
the key performance factors for defect characterization. In the literature, there are many interesting
papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity.
However, research activity on frequency optimization with respect to characterization performances
is lacking. In this paper, an investigation into optimum excitation frequency has been conducted
to enhance surface defect classification performance. The influences of excitation frequency for a
group of defects were revealed in terms of detection sensitivity, contrast between defect features,
and classification accuracy using kernel principal component analysis (KPCA) and a support vector
machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of
defects when excitation frequency is set near the frequency at which maximum probe signals are
retrieved for the largest defect. After the use of KPCA, the margins between the defect features are
optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk
minimization. As a result, the best classification accuracy is obtained. The main contribution is that the
influences of excitation frequency on defect characterization are interpreted, and experiment-based
procedures are proposed to determine the optimal excitation frequency for a group of defects rather
than a single defect with respect to optimal characterization performances.

Keywords: nondestructive testing; eddy current sensor; frequency optimization; probe response;
feature extraction; defect classification

1. Introduction

Defects may occur in the stress concentration areas of in-service components or systems.
Generated defects gradually grow due to stress and pose a severe threat to the structural integrity of
in-service parts or systems [1–3]. Therefore, it is essential that periodic inspection be implemented
nondestructively for safe and efficient operation. Non-destructive testing (NDT) is an invaluable tool
to detect, identify and characterize defects in a component or system without hindering its future
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usability. Compared to common ultrasonic [4,5] and X-ray [6,7] techniques, eddy current testing
(ECT), which operates on the principles of electromagnetic induction, has many advantages such as its
efficiency, low cost, noncontact nature, implementation and so on. Currently, ECT has been widely
accepted as a desirable technique for characterization of defects in metallic parts [8–10].

Characterization of a defect is to find a solution to an inverse problem, and has to be completed
before evaluation and decision-making concerning maintenance and replacement [11]. In many
cases, the relationship between defects and probe signals is very complex and nonlinear. Although
considerable effort has been devoted to characterization of defects for decades, this subject still
remains a hot topic owing to ill-posedness and a variety of practical cases [11,12]. Most inversion
methods for nondestructive evaluation (NDE) could basically be classified either as model-based
or model-free [13]. The model-based method takes characterization of defects as an optimization
problem. It requires an accurate and efficient forward model, and could deal with complex defects [13].
However, a model-based method suffers from a heavy computational burden because of the iterative
operation of a forward model [14]. Conversely, a model-free method normally adopts signal processing
and machine learning algorithms to solve NDE inverse problems. The key to a model-free method is
to mathematically relate extracted features from probe responses to defect parameters using a set of
training data from defect samples. Compared to model-based methods, model-free methods are more
efficient and popular [11].

There are many factors that affect the performance of model-free based characterization of defects.
Extensive investigations have been conducted to improve defect characterization with regard to
reduction of liftoff effect, new design and optimization of probes, and feature extraction [11,15].
The liftoff effect, which is the variation of the distance between the probe and the specimen, produces
unwanted noise and degrades probe signals significantly. It is one of the main obstacles for effective
ECT [16]. Tian et al. [17] normalized probe signals to suppress the liftoff effect for pulsed eddy current
(PEC) evaluation. Yu et al. [18] theoretically and experimentally investigated the relationship between
peak value of PEC response and liftoff distance for reduction of liftoff noise. Novel design and
optimization of probe in the configuration and parameters dedicated to a specific case is another way
to enhance defect evaluation [19–21]. Joubert et al. [22] fabricated an array probe to acquire high spatial
resolution images of sub-millimetric surface defects. Rosado et al. [23] evaluated the influences of
geometrical parameters of a planar probe towards signal amplitude and spatial discrimination in a bid
to improve defect characterization. Recently, advanced signal processing methods were employed to
increase the contrast between features of different defects [24,25]. Principal component analysis (PCA)
is the most popular feature extraction method. Nevertheless, PCA cannot guarantee the statistical
independence of derived principal components [26]. To overcome the drawbacks of PCA, independent
component analysis (ICA) is proposed to extract defect features. It is noted that both PCA and ICA are
linear methods in nature, thus they are incapable of handling nonlinear problems [27]. Kernel PCA
(KPCA), which is regarded as an extended PCA, is developed by constructing a nonlinear mapping
from input space to high-dimensional space with a kernel function. Extensive reports confirm that
KPCA is superior to PCA [27].

In addition to the aforementioned factors, excitation strategy plays an important role in defect
characterization as well. At present, single frequency, multiple frequency and pulsed excitation are
presented to acquire more information on defects [24,28,29]. However, the influences of excitation
frequency on defect characterization have not been paid much attention yet. A few reports show
that maximum probe signals were observed by tuning frequency for a single specific defect, which
is recommended to enhance the NDE of structural integrity [30–34]. Unfortunately, the findings
in [30–33] were only restricted to a single defect, and not suitable for a set of defects. In different
industries, the defects to be identified are generally different in size. Therefore, there is a demand to
find an optimal frequency for a group of defects. Moreover, the influences of excitation frequency
should be fully investigated in terms of detection sensitivity, contrast between defect features and
classification accuracy, which are to be exploited.



Sensors 2016, 16, 649 3 of 16

The purpose of this paper is to enhance surface defect classification by seeking the optimal
excitation frequency. In order to determine the optimal frequency, the influences of excitation
frequency on characterization performances for a set of defects were disclosed and interpreted in
terms of detection sensitivity, contrast between extracted features and accuracy of classification.
The main contribution of this work lies in the experiment-based procedures for determining the optimal
frequency applied to a group of defects in terms of characterization performances. The remainder of
this work is arranged as follows: KPCA for feature extraction and support vector machine (SVM) for
classification of defects are briefly introduced in Section 2. Then, the experimental setup and fabricated
specimen are described in Section 3. In Section 4, the influences on probe sensitivity, contrast between
extracted features and misclassification are analyzed to derive the optimal excitation frequency so as
to enhance characterization of surface defects. Finally, conclusions and further work are outlined in
Section 5.

2. Methodology

2.1. Kernel PCA

PCA is a statistical multivariate analysis technique. It transforms original observed data into
a new set of uncorrelated variables. Each derived variable termed as a principal component is a
linear transformation of original observed data. In theory, KPCA is a nonlinear extension of standard
PCA using kernel methods [35]. As a result, KPCA is well suited to extract interesting nonlinear
structures [36].

Assuming there is a set of data sampled from probe signals corresponding to a given scanning
route xi, i “ 1, ..., N, xi P RM. Suppose we map the data xi into a feature space F using a nonlinear
transformation φpxq

φ : RM Ñ F, x Ñ X (1)

Given that the data φpxiq mapped into the feature space F are centered, i.e., 1
N

N
ř

i“1
φpxiq “ 0,

to perform PCA, the covariance matrix C in the space F is calculated by

C “
1
N

N
ÿ

i“1

φpxiqφpxiq
T (2)

We need to find Eigenvalues and Eigenvectors satisfying

λkvk “ Cvk, k “ 1, 2, ..., M (3)

where λk and vk stand for non-zero eigenvalue and eigenvector of the covariance matrix C, respectively.
Substituting Equation (3) into Equation (2), we have

1
N

N
ÿ

i“1

φpxiq
!

φpxiq
Tvk

)

“ λkvk (4)

and there exists a coefficient αi such that

vk “

N
ÿ

i“1

αkiφpxiq (5)

From Equations (4) and (5), we have

1
N

N
ÿ

i“1

φpxiqφpxiq
T

N
ÿ

j“1

αkjφpxjq “ λk

N
ÿ

i“1

αkiφpxiq (6)
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Defining the kernel function κpxi, xjq “ φpxiq
Tφpxjq and kernel matrix Ki,j “ κpxi, xjq, Equation (6)

can be simplified by means of matrix notation as

Kαk “
´

λkαk (7)

where
´

λk and αk are the eigenvalue and eigenvector of the kernel matrix K, respectively.
Finally, the resulting kernel principal components can be calculated using

ykpxq “ φpxqTvk “

N
ÿ

i“1

αkiκpx, xiq (8)

The elegance of using the kernel matrix K is that we can cope with φpxiq of arbitrary dimensionality
without having to compute φpxiq explicitly [36].

2.2. Support Vector Machine

The classification problem can be restricted to consideration of the two-class problem without
loss of generality. In this application, the goal is to produce a classifier that will generalize well in
unknown cases. The support vector machine (SVM), founded by V. Vapniks, is a pattern recognition
technique based on structural risk instead of empirical risk minimization. Therefore, an SVM has
better generalization capabilities, and suitable for small sample size.

Given a dataset S “ tpxi, yiqu, i “ 1, 2, ¨ ¨ ¨ , N, where xi P Rd and yi P t´1, 1u denote the input and
output of a classifier, respectively. Theoretically, there are multiple linear classifiers that can separate
the data in S correctly. However, only the optimal hyperplane in canonical form can maximize the
margin between the two classes, which is formulated as

yirw ¨ x` bs ě 1, i “ 1, ..., N (9)

The margin could be derived by

ρpw, bq “
2

||w||
(10)

Hence, the optimal hyperplane is determined by minimizing the following function with the
constraints of Equation (9)

Φpwq “
1
2

||w||2 (11)

To solve Equation (11), we define the Lagrange function below

Lpw, b,αq “
1
2

||w||2
´

N
ÿ

i“1

αipyirw ¨ xi ` bs ´ 1q (12)

where αi is the Lagrange multiplier.
αi is given by minimizing

min
1
2

N
ÿ

i“1

N
ÿ

j“1

yiyjαiαj
@

xi, xj
D

´

N
ÿ

j“1

αj (13)

with constraints,

αi ě 0, and
N

ÿ

i“1

αiyi “ 0 (14)

The aforementioned formulation of the optimal hyperplane is restricted to linearly separable
cases. However, this will not be the case in general. To deal with linearly non-separable cases, a kernel
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function and penalty factor C are introduced. A kernel function is adopted to map observed data
into a high-dimensional feature space in order to transform a linearly non-separable case to a linearly
separable case. As a result, Equations (13) and (14) become

min
1
2

N
ÿ

i“1

N
ÿ

j“1

yiyjαiαjκpxi, xjq ´

N
ÿ

j“1

αj (15)

subject to the constraints

0 ď αi ď C, and
N

ÿ

i“1

αiyi “ 0 (16)

where C is a penalty factor, and κpxi, xjq is a kernel function.
After the variable αi is obtained, the decision function used to classify sampled dataset from

sensors is

ypxq “ signp
n

ÿ

i“1

αiyiκpxi ¨ xq ` bq (17)

3. Experimental Setup and Specimens

The automated experimental setup developed for eddy current characterization of defects is
composed of an impedance analyzer, a probe, a 3D scanner and a PC, as shown in Figure 1. The probe
is a packaged air-cored coil. It has an inner diameter of 4.0 mm, outer diameter of 4.8 mm, height
of 5.0 mm and 300 turns, respectively. The WK65120B impedance analyzer (Wayne Kerr Electronics,
West Sussex, UK) which nominally has a broad bandwidth ranging from 20 Hz to 120 MHz and
0.05% basic measurement accuracy, is used to obtain the impedance of the probe. The PC acquires
probe signals from the impedance analyzer through the LAN. The 3D scanner is controlled by pulse
width modulation (PWM) signals from a PCI-bus card MPC08 with an application developed in
Labview (Leetro Automation Co., Ltd., Chengdu, China) and installed in the PC. A pulse from PWM
signals can drive a step motor to rotate a fixed angle. Therefore, the displacement and the speed of the
3D scanner are proportional to the number and frequency of the pulses fed into the motor, respectively.
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Figure 1. Automated experimental setup.

Two Al alloy specimens were prepared, and ten artificial slots were manufactured by electrical
discharge machining (EDM) for training and test datasets, as illustrated in Figure 2. Geometrical
parameters of the manufactured defects are listed in Table 1. Both of the samples have a thickness of
3.0 mm. The defects in sample 1 have a constant depth of 2.5 mm and lengths with values 4.0, 6.0, 8.0,
10.0 and 12.0 mm. The defects in sample 2 have depths ranging from 0.5 mm to 2.5 mm in steps of
0.5 mm with a constant length of 20.0 mm. All the fabricated defects have a uniform width of 1.0 mm.
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Figure 2. Fabricated specimens. (a) Sample 1: Defects with different lengths; (b) Sample 2: Defects
with different depths.

Table 1. Parameters of the defects.

Defects Length (mm) Width (mm) Depth (mm)

different lengths (Sample 1)

L1 4

1 2.5
L2 6
L3 8
L4 10
L5 12

different depths (Sample 2)

D1

20 1

0.5
D2 1.0
D3 1.5
D4 2.0
D5 2.5

4. Results and Discussion

In this section, we will experimentally assess the influences of excitation frequency on the
classification of surface defects in light of detection sensitivity, dissimilarity of defect features and
classification accuracy. As the probe is fixed on the 3D scanner, the liftoff distance is kept constant
during inspection. The probe moves in a direction perpendicular to the defects. After multiple trials,
scanning distance is set to 10 mm with a step of 0.1 mm, and scanning speed is 0.1 mm/s. Therefore,
we can obtain 100 sampled data points from a single scan. Each data point stands for coil impedance
consisting of resistance and reactance. The excitation frequency, which is much greater than the
frequency corresponding to the standard penetration depth, should be chosen to increase detection
sensitivity, as we simply focus on surface defects in this work. The excitation frequency ranges from
50 kHz to 850 kHz in step of 100 kHz.
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4.1. Effect on Detection Sensitivity

In order to analyze the effect of excitation frequency on defect sensitivity, experiments were
carried out to acquire probe signals due to the given sets of the defects varying in depth and length,
as shown in Figures 3 and 4. The excitation frequencies are 50 kHz, 150 kHz, 250 kHz, 350 kHz,
450 kHz, 550 kHz, 650 kHz, 750 kHz and 850 kHz, respectively. It is observed that for the defects
D1, D2, L1 and L2, both the resistance and reactance signals increase when the excitation frequency
increases, and peak at 850 kHz. By contrast, for the defects D4 and D5, the probe signals increase
initially, then reach a peak at 450 KHz, and decrease afterwards when the excitation frequency increases
from 50 kHz to 850 kHz. Probe signals from the defects L4 and L5 possess similar characteristics
to those from the defects D4 and D5. However, probe signals from the defects L4 and L5 reach a
maximum at a frequency of 550 kHz. The observed phenomenon could be confirmed by the findings
in [31,34] as well.

Further analysis shows that the excitation frequency, at which maximum probe signals are
collected, should vary with the size of defects. For example, the probe signals due to the defect D1
increase with the increase of the excitation frequency from 50 kHz to 850 kHz. This indicates that
maximum probe signals for the defect D1 shall be observed when the excitation frequency is higher
than 850 kHz. In contrast, the probe signal due to the defect D5 reach maximum at the frequency of
550 kHz. This finding implies that we cannot simultaneously acquire all the maximum probe signals
for different size defects at a single frequency. We also note that probe signals change significantly
before reach of the peak, and decrease slightly afterwards.
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Figure 3. Probe signals due to the defects with different depths. (a) Probe signals of the defect D1;  
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(e) probe signals of the defect D5. 
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(e) probe signals of the defect D5.
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4.2. Effect on the Contrast of Defect Features

In this subsection, we aim at disclosing the influences of excitation frequency on the defect
features. With the KPCA presented in Section 2, the defect features for identification were extracted
from the probe signals, as shown in Figure 5. When excitation frequency increases from 50 kHz to
850 kHz, the margins between different type defects increase dramatically before 350 kHz, then remain
almost constant, and decrease at 650 kHz, 750 kHz and 850 kHz, as shown in Figure 6.
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Figure 5. Defect features under different frequencies. (a) 50 kHz; (b) 150 kHz; (c) 250 kHz; (d) 350 kHz;
(e) 450 kHz; (f) 550 kHz; (g) 650 kHz; (h) 750 kHz; (i) 850 kHz.

Sensors 2016, 16, 649 10 of 16 

 

4.2. Effect on the Contrast of Defect Features 

In this subsection, we aim at disclosing the influences of excitation frequency on the defect 
features. With the KPCA presented in Section 2, the defect features for identification were extracted 
from the probe signals, as shown in Figure 5. When excitation frequency increases from 50 kHz to 
850 kHz, the margins between different type defects increase dramatically before 350 kHz, then 
remain almost constant, and decrease at 650 kHz, 750 kHz and 850 kHz, as shown in Figure 6. 

 
(a) (b) (c) 

  
(d) (e) (f) 

 
(g) (h) (i) 

Figure 5. Defect features under different frequencies. (a) 50 kHz; (b) 150 kHz; (c) 250 kHz; (d) 350 kHz; 
(e) 450 kHz; (f) 550 kHz; (g) 650 kHz; (h) 750 kHz; (i) 850 kHz. 

 
Figure 6. Distance between the defect features. 

-0.4 -0.2 0 0.2 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with 
different lengths

defects with 
different depths

-0.4 -0.2 0 0.2 0.4
-0.3

-0.2

-0.1

0

0.1

0.2

PC1

P
C

2

 

 

defects with
different depths

defects with
different lengths

-0.4 -0.2 0 0.2 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with
different lengths

defects with
different depths

-0.4 -0.2 0 0.2 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

P
C

2

defects with
different depths

defects with
different lengths

-0.4 -0.2 0 0.2 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with
different depths

defects with
different lengths

-0.4 -0.2 0 0.2 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with
different depths

defects with
different lengths

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with
different depths

defects with
different lengths

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with
different depths

defects with
different lengths

-0.3 -0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

0.3

PC1

PC
2

defects with 
different depths

defects with 
different lengths

50 150 250 350 450 550 650 750 850
0

0.05

0.1

0.15

0.2

0.25

Frequrency (kHz)

D
is

ta
nc

e

0.21

Figure 6. Distance between the defect features.



Sensors 2016, 16, 649 11 of 16

Here, all the manufactured defects are divided into two groups. Group 1 consists of the defects
with different depths, while group 2 is composed of the defects with different lengths. All the features
were reprocessed using the KPCA method. The features for group 1 and group 2 were shown in
Figures 7 and 8 respectively. From Figure 7, it can be seen that the contrast between the defect features
for group 1 increases with the increase of the excitation frequency from 50 kHz to 450 kHz. When
the frequency is higher than 450 kHz, the contrast between the features of the defects D1 and D2
continues increasing. Nevertheless, the differences between the features of the defects D3 and D4 and
those of the defects D4 and D5 become smaller. Similar characteristics are also observed in Figure 8.
For classification, the goal is to increase the contrast between the defect features according to the
structural risk minimization principle [37,38], because large contrasts between different type defects
correspond to good generalization capabilities and low misclassification probabilities. For the defects
in group 1, the classification accuracy should increase gradually when the excitation frequency ranges
from 50 kHz to 450 kHz. However, when the frequency is higher than 450 kHz, the classification
accuracy is supposed to decrease. The analysis on the defects with different depths, which will
be examined and confirmed in the following subsection, applies to defects with different lengths.
In summary, the optimal contrasts between the defect features would be achieved if the excitation
frequency is tuned at or near the frequency at which the maximum response from the largest defect
is obtained.
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4.3. Effect on Classification Accuracy

In this subsection, we focus on the classification accuracy at different frequencies. At first, a SVM
classifier was used to evaluate the accuracy when excitation frequency ranges from 50 kHz to 850 kHz.
Then, the findings from the evaluation were validated by an artificial neural network (ANN) classifier.

The key to the use of an SVM classifier is to determine the penalty factor C and select an
appropriate kernel function, which has great influence on the performance of an SVM classifier.
The penalty factor C represents the penalty for misclassification. It controls the trade-off between
the achievements of training and testing errors, which can generalize the classifier of unseen data.
The larger the penalty factor C, the greater the penalty for training errors. In other words, we risk
losing the generalization properties of an SVM classifier if we increase the penalty factor C too much,
because the SVM classifier will try to fit as much as possible for all the training points. Currently, there
are linear, polynomial and radial basis function (RBF) kernels for selection [39]. Many reports show
that the RBF kernel function produces the best average performances [40]. In order to achieve optimal
performances and avoid the over-fitting problem, we adopted a cross-validation technique, which is
a model validation technique to assess how the results of a statistical analysis will generalize to an
independent data set, to optimize the penalty factor C and parameters of RBF kernel function. In this
work, the penalty factor C was set 0.00097.

Using the extracted features with KPCA, the SVM classifier was trained on the training dataset,
and subsequently evaluated on the testing dataset. The classification results are listed in Table 2.
It was found that the total classification accuracy increases with the increase in excitation frequency.
The total classification accuracy arrives at 100% at the frequencies of 350 kHz, 450 kHz and 550 kHz,
and decreases at the frequencies of 650 kHz, 750 kHz and 850 kHz. The defects D1, D2, L1 and L2
can be fully recognized at all the frequencies used. The defects D4 and D5 were identified 100% at
the frequencies of 450 kHz, 550 kHz and 650 kHz. The defects L4 and L5 were correctly identified
at frequencies ranging from 350 kHz to 650 kHz. In summary, the misclassifications are mainly
contributed by the defects D4, D5, L4 and L5. The influences of excitation frequency on classification
accuracy agree well with those on detection sensitivity and contrasts between the defect features.
In short, the lowest misclassification would be achieved if the exciting frequency is tuned at or near
the frequency at which the maximum response is obtained for the deepest or longest defect.

Table 2. Classification accuracy for each defect at different frequencies.

Defect 50 kHz 150 kHz 250 kHz 350 kHz 450 kHz 550 kHz 650 kHz 750 kHz 850 kHz

D1 100% 100% 100% 100% 100% 100% 100% 100% 100%
D2 100% 100% 100% 100% 100% 100% 100% 100% 100%
D3 80% 100% 100% 100% 100% 100% 90% 70% 90%
D4 60% 70% 100% 90% 100% 100% 100% 80% 60%
D5 60% 60% 100% 100% 100% 100% 100% 70% 70%
L1 100% 100% 100% 100% 100% 100% 100% 100% 100%
L2 100% 100% 100% 100% 100% 100% 100% 100% 100%
L3 90% 100% 100% 90% 100% 100% 100% 90% 80%
L4 60% 70% 100% 100% 100% 100% 100% 70% 80%
L5 60% 60% 90% 100% 100% 100% 100% 60% 60%

Total 88% 92% 96% 100% 100% 100% 96% 92% 92%

To confirm the influences on classification accuracy, ANN and SVM classifiers combined with
PCA and KPCA methods were adopted at all frequencies, as shown in Table 3. The results demonstrate
that the highest classification accuracy was obtained at the frequencies of 450 kHz and 550 kHz. It is
noted that the maximum responses were retrieved for the deepest defect D5 at near the frequency of
450 kHz and for the longest defect L5 near the frequency of 550 kHz.
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Table 3. Classification accuracy for different classifiers at different frequencies.

Classifier
Accuracy

50 kHz 150 kHz 250 kHz 350 kHz 450 kHz 550 kHz 650 kHz 750 kHz 850 kHz

PCA-ANN 90% 93% 95% 96% 95% 97% 94% 93% 92%
PCA-SVM 88% 88% 92% 96% 100% 100% 96% 92% 88%

KPCA-ANN 93% 95% 97% 98% 98% 98% 98% 96% 95%
KPCA-SVM 88% 92% 96% 100% 100% 100% 96% 92% 92%

4.4. Discussions and Limitation

As described in the previous section, the performance of surface defect classification would be
the optimal if we employ the optimum frequency at which the probe signals reach the maximum
for the largest defect. For a single defect, the theoretical evidence of the existence of peak frequency
corresponding to maximum probe signals could be derived from the references [31,34]. The peak
frequency varies with defect size. However, the results of this work show that there exists an optimal
frequency for a given set of defects from the perspective of characterization performances. The optimal
frequency is extremely complicatedly connected to many factors such as probe parameters and
sample properties which are dependent on temperature and stress. Moreover, it varies with the
geometrical parameters of the largest defect. However, the largest defects in different cases are
different. Consequently, we are currently unable to present a definite mathematical equation to
calculate the optimal frequency. However, the optimal frequency could be easily determined by
means of experiments. Therefore, experiment-based procedures are preferred to determine the optimal
frequency, which are described as below

(1) Determine the range of the defects to be identified before inspections;
(2) Manufacture a sample defect with a maximum depth and length;
(3) Observe probe signals when excitation frequency is adjusted continuously until maximum signals

are retrieved for the fabricated sample defect;
(4) The optimal frequency should be equal to the frequency corresponding to the observed maximum

probe signals.

The optimal frequency should be the frequency or near the frequency at which the maximum
probe signal is retrieved for the largest defect. It is noted that the findings in this work only apply to
characterization of surface defects.

Part of the research activity has been concentrated on the development of novel excitations, such
as multiple sinusoidal signals, pulse and chirp signals [41,42]. Compared with a single sinusoidal
signal, the multi-frequency, pulse and chirp excitations aim to provide more information for better
defect characterization. Searching for optimal excitation frequency could be considered part of
excitation strategy optimization, as multi-frequency, pulse and chirp excitations consist of several
signal sinusoidal signals from a frequency domain perspective. Therefore, determination of optimal
excitation frequency should obviously contribute to the performance improvement for multi-frequency,
pulse or chirp excitations as well.

Scanning angles are supposed to change probe signals significantly, thus leading to degradation
of defect characterization [43]. To our knowledge, an operator will estimate the defect direction
with experience or prescan calibration such that the scanning route shall be perpendicular to the
defect. In addition, some researchers have carried out investigations on the influences of different
scanning angles on probe signals. The simulation and experimental results demonstrate that probe
signals change with the variation of scanning angle [44,45]. However, few reports are dedicated to
compensating for the effect of different scanning angles for the improvement of defect classification,
which means this is still an open problem to be solved. To the authors' knowledge, the eddy current
imaging technique is a potential candidate to handle the effect of variant scanning angles, which is
scheduled to be part of our future work.
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5. Conclusions

In this paper, experiment-based procedures have been proposed to determine an optimal
frequency over a group of defects with conventional eddy currents. This work is characterized
by frequency optimization with respect to characterization performances rather than only detection
sensitivity. In addition, this work features frequency optimization over a set of defects and not for a
single defect.

For enhancement of surface defect characterization, the influences of excitation frequency have
been identified in terms of detection sensitivity, contrasts between defect features and classification
accuracy. When excitation frequency was equal to or near the frequency at which maximum probe
signals were obtained for the largest defect to be inspected, probe signals from a set of defects were most
sensitive on the whole. Defect features were extracted from probe signals using the KPCA algorithm.
It was found that the retrieved defect features were evenly spaced, and the margins between them
were the largest. According to the structure risk minimization (SRM), which is a statistical learning
theory concept, the largest margins imply the lowest misclassification probabilities. Consequently,
the SVM classifier, which operates on SRM, trained by the extracted features shall possess greater
generalization capabilities. The experiments confirmed the best characterization performances at the
selected optimal frequency, which strengthens the motivations behind the proposed techniques.

It should be noted that this paper is confined to surface defects. Future research will concentrate
on determination of optimal excitation frequency for subsurface defects and the eddy current imaging
technique to eliminate signal changes resulting from variant scanning angles.
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