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Abstract: This work presents the development and implementation of a unified multi-sensor human
motion capture and gesture recognition system that can distinguish between and classify six different
gestures. Data was collected from eleven participants using a subset of five wireless motion sensors
(inertial measurement units) attached to their arms and upper body from a complete motion capture
system. We compare Support Vector Machines and Artificial Neural Networks on the same dataset
under two different scenarios and evaluate the results. Our study indicates that near perfect
classification accuracies are achievable for small gestures and that the speed of classification is
sufficient to allow interactivity. However, such accuracies are more difficult to obtain when a
participant does not participate in training, indicating that more work needs to be done in this area to
create a system that can be used by the general population.

Keywords: gesture recognition; wearable sensors; quaternions; pattern analysis; machine learning;
support vector machines; artificial neural networks

1. Introduction

Increasing our work efficiency while being able to perform tasks accurately is a problem people
have been trying to solve for years. The physical nature of our body limits us from being consistently
efficient in performing long, repetitive tasks. To overcome this problem, scientists and engineers started
developing assistive technologies which would recognize and imitate human gestures to perform
tasks that we consider difficult or strenuous. As a result, developing systems that can capture human
motion and recognize different gestures simultaneously is important.

Gestures are physical movements of different parts of the body that are expressive and meaningful
to human beings. We perform gestures to convey information or to interact with the environment.
Gesture recognition has a wide variety of applications that include, but is not restricted to, developing
aids for the hearing impaired, recognizing sign language, navigating in virtual environments, and
automation of manufacturing tasks, efc. [1]. There are various techniques that can be used to recognize
gestures, ranging from using mathematical models based on the Hidden Markov Model [2] and
Markov Chains [1] to applying computer vision-based approaches [1,3], by using data gloves [4] and
accelerometers [5,6], or using a combination of any of the above [1]. Gestures can be hand and arm
gestures, head and face gestures or full body movements. It is important to note that a gesture is a
small movement and tasks or activities can be considered as a series of gestures performed in sequence.

The work presented in this paper is a continuation of work that used wearable IMU (Inertial
Measurement Unit) sensors to implement a full body motion capture system in virtual reality [7].
This work suggests that motion capture and gesture recognition can be combined into a single
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system that allows for fully body gesture capture and recognition and will facilitate grammar-based
activity recognition, all possible at interactive rates. Finally, this work also demonstrates two key
novel elements: one, that the gesture recognition system does not require a kinematic model to
achieve good results and; two, the human being does not have to be overly instrumented to achieve
reasonable results.

2. Related Works

A lot of work on gesture recognition can be found in the current literature which incorporates
the use of different types of sensors and models for several real life and virtual applications. They
cover both IMU sensor-based applications as well as vision-based recognition systems. Gesture
recognition using virtual reality interfaces became more prominent with the invention of systems
like Microsoft’s Kinect [8], the Nintendo Wii, Oculus Rift, etc. In [9], a hidden Markov model-based
training and recognition algorithm was used on data collected from a Wii controller to develop a
gesture recognition system.

Vision-based gesture recognition has been on the rise since we started developing better cameras,
image and video compression technologies, in consort with faster processors and GPUs (Graphics
Processing Units). These systems cover several application areas such as surveillance, detection,
control and other analyses of captured motion data. Using a multiple sensor based approach,
Lementec et al. [10] presented a gesture recognition algorithm using Euler angles. Their work is part of
a control system for an Unmanned Aerial Vehicle (UAV). A wide array of vision-based approaches
exist and the reader may explore [3,11] for details. The problems with vision-based systems are their
high computational expense as they incorporate the use of GPUs, the limited range of use created by
the camera viewing volume, and a large number of cameras required to cover large spaces.

Many gesture recognition systems exist which use a specific part or parts of the body to recognize
gestures using a limited number of sensors. This has become more apparent in recent work as a result
of the increasing popularity of wearable fitness devices. uWave is a gesture recognition system that
uses gesture-based interactions from a single three-axis accelerometer [12]. It requires a single training
sample for each pattern and allows users to define their own personal gestures. An automatic hand
gesture recognition system has also been developed for use in Augmented Reality [13]. It is able to
differentiate between static and dynamic gestures.

Zhu et al. [14] created a smart assisted living (SAIL) system that can aid the elderly and the
disabled using a human-robot interaction (HRI) technology. They studied hand gesture recognition
and daily activity recognition using artificial neural networks. For daily activity recognition, they
developed a multi-sensor fusion system.

The examination in [15] uses only an eight-sensor system versus our ten, and in that configuration,
it cannot do effective motion capture. The inverse kinematic elements will not work if major bones
are missed during motion capture. Moreover, their recognition rates fall around the 80% mark. The
work in [16] is an old project that was intended to assist developers in developing applications without
having to know much about machine learning systems. The recognition rates for this project allow
any system which is built with it, to recognize only the simplest of gestures (for example, left versus
right-hand gestures using an accelerometer). In the study performed in [17], the sensor is on the
device that the person is interacting with, and not being worn on the body. Furthermore, the gestures
or activities selected could be classified with an accelerometer alone given the simple nature of the
gestures. The work in [18], while interesting, also takes on the simplest of activities (Tai Chi). Because
of the slow motion, much can be done by orientation sensors rather than pure body pose. The authors
do not mention anything about runtime. With the work being about Dynamic Time Warping as well,
it seems like they were also working on pre-segmented data. Overall, much work has been done
evaluating different methods of gesture recognition with IMU sensors for various subsets of the body
including the arm [10,19,20], the leg [21], the torso [22] and the head [23,24]. In these cases, a smaller
number of IMU sensors were used due to the localized focus on a specific body part. In all of these
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cases, the subset of sensors to recognize gestures on a single limb eliminates the opportunity for full
body motion capture.

Some full-body capture, recognition or interaction systems can be found in the current literature,
such as ALIVE [25]. A couple of view-invariant full-body gesture recognition systems are described
in [26,27], but these are vision-based systems. On the other hand, references [28-30] describe Microsoft
Kinect-based full-body recognition. These systems offer little mobility as the Kinect sensor needs to be
kept in place to capture data, and the Kinect cannot be used outdoors. A gesture recognition system to
interact with a robot has been introduced in [17], but the sensors are in the robot, not on the body of a
human being.

The system that most closely resembles our work is the OPPORTUNITY project [31], a full-body
complex activity recognition system. However, the authors used 72 sensors of 10 different modalities
(including IMU sensors) to capture data from twelve subjects. It should be noted that with so many
sensors in the system, it is impossible to determine the generalization capabilities until a test dataset
grows immensely large. The OPPORTUNITY project not only instruments the human very highly,
it also instruments the environment and objects that are interacted with. Thus, any activity that
uses the instrumented fork, for example, is clearly separable from the rest of the activities to be
detected. This allows for a simple hierarchical classification system, such as a decision tree, as a first
step. The authors use standard pattern classifiers such as k-NN, NCC, LDA and QDA in [32,33] to
evaluate and benchmark the activity dataset. They use only mean and/or variance as features, which
is understandable because the data from 72 sensors are already quite descriptive for classification
purposes. The overlap in IMU sensors between this work and our own consists only of five IMU
sensors, four located on the upper and lower arms. The fifth IMU sensor used is on the back, whereas
ours is placed on the abdomen, which aside from the obvious orientation issues, should be similar.
Our sensors are a subset of the IMU sensors used in the OPPORTUNITY project, and ours use only
gyro and accelerometer data processed through a built-in sensor fusion algorithm that produces a
quaternion value. Moreover, we don’t assume a kinematic model or sensor hierarchy in the gesture
recognition portion of this work.

There are not many wearable gesture recognition datasets available publicly, making direct
comparisons of methods difficult. As seen from [34], most of the full-body datasets are Kinect-based
apart from a few, such as the OPPORTUNITY dataset mentioned above. Although we are doing an
upper-body gesture recognition, the outcome from our study will be the foundation for modeling
a wearable sensor-based full-body gesture recognition system. However, the recent survey by
LaViola Jr. [35] examines the results of many different 3D gesture recognitions systems and ours
is comparably accurate.

Our contributions to the current state-of-the-art include:

Extracting five feature descriptors including velocity and angular velocity from quaternions which
are very good at representing rotations as compared to Euler angle or matrix representations [36] and
eliminating gimbal lock.

Using a limited number of sensors to preserve as much generalization in the data as possible but
cover as many of the major movements of the upper body.

Presenting an interactive recognition rate that will allow for more complex activity recognition at
interactive rates.

Presenting results that generalize to the population, i.e., where the test users dataset is not included
in training.

This work also suggests that to achieve reasonable recognition for smaller gestures that can allow
non-traditional interaction with systems, the human does not need to be so highly instrumented, nor
does the environment need to be instrumented.

This work exhibits the effect of velocity on recognition rates and suggests that velocity and
acceleration features should only be included when speed of the gesture is an important performance
consideration. E.g. training applications.
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We make our dataset publicly available (see Supplementary Materials).

3. Background

In this study, we used Body Area Sensors to capture motion data for different gestures in the
form of quaternions. We used the collected data as input to a gesture recognition system built around
two classical pattern classification algorithms, namely, Support Vector Machines (SVM) and Artificial
Neural Networks (ANN). We followed standard experimental methodologies that are used to evaluate
such classification systems.

3.1. Body Area Sensors

Body area sensors determine the current physical state or changes in such states of an individual.
Typically, these are used in a sensor network called Body Area Sensor Network (BASN) [37]. These
sensors are typically worn on the body. In a few special cases, they may also be implanted within the
body. Figure 1 shows a basic design of such a network and how information is transferred from an
individual to the data processing unit.

Heart Rate ‘

Galvanic l
Skin
Response
Wireless Central
Receiver Processing

Accelerometer

Figure 1. A theoretical Body Area Sensor Network (BASN).

With recent technological advances, sensors have become much smaller. The development of
Micro-Electro-Mechanical Systems (MEMS) [37] have enabled sensors to generate data faster, operate
on batteries, communicate wirelessly and provide easier wearability. Sensors have applications in a
wide variety of fields that can be divided into two principle categories—physiological and mechanical.
Our interest in this work lies in three different mechanical sensors which are accelerometers, gyroscopes,
and magnetometers.

An accelerometer can measure acceleration that occurs along a device’s axis. 3-axis accelerometers
are used so that acceleration can be measured in any direction. They can provide information on
their angle of inclination with respect to downward direction by sensing the acceleration due to
gravity. However, these sensors are unable to distinguish between gravitational force and actual
acceleration [38]. They suffer most from noise in their readings.

Gyroscopes are used to detect angular velocities. However, they are unable to determine their
absolute orientation and suffer from drift issues [39]. Drift adds small angular velocities even when
the device is completely stationary. Over time, these accumulate and affect the overall sensor reading.

Magnetometers are used to discern the direction of Earth’s local magnetic field. They use
Earth'’s field as a reference direction. As Earth’s magnetic field is quite weak, one thing to be careful
about while using magnetometers is to keep them away from nearby metallic objects to prevent
magnetic interference.

Using accelerometers, gyroscopes and magnetometers together can produce better measurements
than that possible with any of these sensors individually. This combination produces more accurate
information about the motion by using a sensor fusion algorithm [40]. The device is often collectively
called an Inertial Measurement Unit (IMU) [41].
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3.2. Coordinate System: Quaternions

The sensors that we use in this work output their orientations in the form of quaternions. A
quaternion is comprised of a scalar component and a vector component in complex space. This
representation can be seen in the following equations:

q = <T, ;) = (qi’/ Qx{/ l]y]AI qu%) (1)

Here i, j and k are complex orthogonal basis vectors which makes quaternion multiplication a
non-commutative operation. More details can be found in [42]. All quaternions that represent a 3D
rotation are represented by unit quaternions. A unit quaternion has a magnitude of 1 which means the
absolute value or norm [43] of “g” would be:

lal = \/qu+ 92+ qy° + 427 = 1 2

Quaternions are extremely efficient at representing rotational and orientation information. A
rotation of angle 6 about a unit axes n can be represented as:

g1 = <cosg, Zsing) 3)
To rotate the current orientation gy by the amount specified by g7, we multiply it by g1:

92 = q1490 4)

This quaternion g, is equivalent to rotating a rigid body (in a current orientation described by
qo) by a rotation described by g;. A series of rotations can therefore be represented by a series
of quaternion multiplications. It is a very efficient method of computing and representing a series
of rotations. Quaternions can be a powerful form of representing rotations over other forms of
representation. One of the biggest benefits of using quaternions is that they do not suffer from issues
such as gimbal lock that methods like Euler angles do. Moreover, they are very computationally
efficient because they do not require the calculations of many trigonometric functions. On the contrary,
they suffer from being more conceptually difficult to understand and more abstract to visualize.

3.3. Pattern Classification and Feature Extraction

Pattern classification involves the use of (pattern) classifiers to distinguish among different,
interesting patterns inherent in a dataset. In the broadest sense, it employs learning methods to find
meaningful patterns in the data [44]. Learning refers to the use of some form of algorithm to reduce
error on the training portion of the dataset. It comes in several forms such as supervised learning,
semi-supervised learning, unsupervised learning, representation learning efc. In this study, we used
two supervised learning algorithms—Support Vector Machines (SVM) and Artificial Neural Networks
(ANN), as classifiers for our gesture recognition system. For a much more detailed discussion on SVM
and ANN, the reader can refer to [45—48].

Data that exhibits good class separation is a general requirement for classifiers to perform well
during the classification process [49]. This can be achieved by extracting and/or selecting meaningful
features from the raw dataset. On the other hand, reducing the dimensionality of a feature set enables
faster runtime, hopefully without compromising classification accuracy [50].

Principal Component Analysis or PCA, among many others, is a dimensionality reduction
technique that is most commonly used in pattern classification. PCA projects multi-dimensional data
into a lower dimensional space or hyperspace but preserves necessary variations in the dataset. A
broader explanation about PCA can be found in [51].
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4. An IMU Motion Tracking System

The system proposed in [52] uses the IMU sensors mentioned in Section 3.1 to track the pose and
motion of an individual. 3D printed cases were made for the sensors so that each one can be fit inside
a case and attached to the body using Velcro straps as shown in Figure 2. The system is comprised of
10 sensors attached to the body.

Figure 2. IMU sensor inside its 3D printed case.

One sensor is assigned to each body segment, hereafter referred to as bone. The sensors are
programmed to operate on their own individual frequencies. The placement of the sensors along with
their corresponding frequency channels is shown in Figure 3.

Figure 3. Sensor placements on the body for the motion capture system (green) and the subset of
sensors used in the gesture recognition portion of this work (circled)

A character model was imported into the Unity game engine [53] to animate based on the sensor
data. The bones were modeled as separate objects to allow greater positional control.

4.1. Sensor and Bone Orientation

Upon startup, the sensors generate their own global reference frame in quaternion orientations
to represent rotations with respect to the initial reference frame. Figure 4 shows the initial reference
generated by a sensor, the corresponding initial orientations of the right upper arm of the user, and the
character’s arm orientation in Unity’s axis frame.

To resolve these issues while mapping the player's motions to the character, the quaternion was
converted from the sensor's global frame to the Unity frame in order for the rotation directions to
match correctly. The offset of the quaternions was also changed so that the orientation of the character's
bones matched those of the user at the start of the program.
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]

Figure 4. (a) Global orientation of sensor on startup; (b) Global reference frame of the sensor on the

right upper arm; (c) Character’s arm orientation in Unity's axis frame.

4.2. Coordinate System Transfer

A change in system handedness is required due to the sensors right-handedness and Unity’s
left-handed frame. To fix this problem, any rotation value of 8 was changed to —0 by taking advantage
of the even/odd nature of the sine and cosine functions. The final mapping from raw sensor quaternion
go to the Unity re-mapped quaternion ¢’y is given by:

90 = (9w 9x 9y 92)

7o = (Guw, —qx, =Gz, —qy) (5)

The i, j, k bases are omitted for easier readability since it is implicit based on their position in the
vector part of any unit quaternion.

4.3. Initial Quaternion Offset

The orientation of the onscreen character's bone must match properly to that of the player’s.
This was accomplished by making the player stand in the matching attention pose of the character
as shown in Figure 3. Now, to represent the rotations in quaternion form, ¢4’y was defined as the
sensor's quaternion output while the user in in the pose shown in Figure 3, and ¢/ as any other valid
orientation at a later time t. As a result, there exists another rotation ¢’y that takes ¢’y (initial pose) to
q't (current pose):

q't= 714" ©6)

This rotation, g'1 is the rotation that the bones use for their orientation. To isolate, we simply
multiply each side of the equation by the complex conjugate of ¢’y. Thus at any later time t, the bones
would rotate by:

q1= 41" @)

Here, * refers to the complex conjugate of the quaternion g’¢. This resets the starting orientation
of each sensor to be its orientation relative to when the motion capture system starts (at the pose in
Figure 3), rather than when the sensors are turned on.

The bones of the virtual character obtain a rotational offset (g.) once the character is imported
from the 3D modeling program to the game engine. Therefore, one additional offset is required for
each bone to neutralize the default offset amount. This rotation must be included in the calculation
so that the virtual character’s bones starts in the proper attention pose (Figure 3) before rotating to
match that of the player’s current pose. Thus, the final quaternion representation of the total rotation
is given by:

q1= 919" 0qe ®)
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4.4. Sensor Calibration

The sensors needed to be calibrated to avoid their strong reliance on the startup position and to
reduce sensor drift [54] about their vertical axes. These issues cause axes misalignment which results
in the character's on-screen motion not exactly matching that of the player’s. The calibration routine
has two steps: the first is the initial attention pose and the second is the modified T-pose (Figure 5). A
few seconds of transition time between each pose is allowed to complete the calibration.

Attention Pose Modified T-Pose

Figure 5. Poses used to perform the calibration routine.

The following equation determines which axis the sensor rotated around between the attention
and modified T-pose:

o1 = (719" a) v0(q'1q"* 2)"
= q' 19 4009’ 49" 1 9)

Here, g’ 4 is the sensor’s reading in the attention pose, 4’1 is the reading in the modified T-pose, v
is the new vector resulting from rotating the initial orientation v through the same rotation the sensor
underwent from the attention pose to the modified T-pose. Figure 6 shows the relative difference in
orientation of the reference frames of the sensor axes and Unity’s program axes for the two poses.

The rotation angle of drift y, which is the angle between the ideal and current sensor’s reference
frames, is determined by:

v = atan(vﬂ) (10)
027

where v3 is the cross product between v; and vy vectors as seen in Equation (11):
03 = 01 X 7 (11)

Using the drift (y) calculated for each sensor, the different reference frames are aligned using the
previously determined mapping between the raw sensor quaternions and the Unity quaternions from
Equation (5). This mapping was rotated about the vertical axis after sensor calibration to align the
sensor's reported y-axis properly with Unity's z-axis. The newly calibrated mapping, q.,; is given by:

Geal = (qu, — (quweos (—y) + qysin (=), —qz, — (—qxsin (—y) + gycos (—v))) (12)

Here, g is the sensor’s quaternion output. g, is the calibrated quaternion that we use for the
remaining calculations.
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Figure 6. Different orientations of the rotation axis between the attention pose and the T-pose.

4.5. Skeletal Model

By default, Unity takes care of positioning all of the bones. However, this resulted in the loss of
control of several factors, including the order that the bones were updated. This, in turn, led to the
poorer performance and a lower quality tracking result. To overcome this problem, a specific skeletal
model was created to handle the positioning of all the bones. The positioning of the bone base and tip
positions were redefined and new calculations for the skeletal walking design were developed. More
details on this can be found in [52].

5. Gesture Recognition Using Multiple Sensors

With the technical setup in place for a wearable motion capture system, we designed a
comprehensive gesture recognition system. The model was built to classify among six different gestures
performed by humans. We followed standard experimental methodologies to run the experiment and
analyze the results using SVMs and ANNS.

5.1. Features

We calculated variance, range, velocity, angular velocity and covariance from the dataset. As the
data was collected from a set of five sensors, every feature label contains the serial number of the sensor
that is relevant to the feature. A feature labeled as “var_15_qx” refers to variances calculated using
the g, vector from Sensor 15. We call these types of features “Single Sensor-based Features” because
each of these features are calculated by using data from one sensor at a time. On the other hand, a
feature labelled as “cov_15_16_qgx” refers to the covariance of Sensor 15 and Sensor 16’s output for the
quaternion element g,.. Variance, Range, Velocity and Angular Velocity are the four single sensor-based
features used in this study whereas Covariance is the only multiple sensor-based feature that has been
used here. The entire feature set has 115 features. Variance, range and, covariance are simple statistical
measurements of the data whereas velocity and angular velocity are physical properties extracted
from the dataset.

Velocity, by definition, is the distance traveled over time towards a specific direction, i.e., the
speed of an object towards the direction it is traveling. We considered this as an important feature
because every gesture is unique and, therefore, should show varying degrees of velocity. Moreover, it
is expected that different participants will perform gestures at different speeds. We calculated distance
summing over the Euclidean distances of each consecutive data points in every sample. Thus, velocity
was calculated in the following manner:
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total distance covered

velocity = - -
Y= Yotal time spent to cover the distance

_ Yy Euclidean distance (xi1, X;)

1
time (13)
To calculate time, we used the following equation:

(elapsed) time — number of datapoints (14)

sensor frequency

In Equations (13) and (14), x; is the value of data point at the i-th index of the sample, n is the
number of data points in the sample and sensor frequency is 110 Hz.

Angular velocity is the rate of change of angular displacement of an object about its axis of
rotation [55]. In other words, it is the rate of change of angular positions of a rotating body. This
feature gives us positional information of the active limbs in 3-D space. The rationale behind using this
as one of the features is similar to that of using velocity. It is calculated in two steps—the first step is to
convert the quaternions to Euler angles and the next step is to calculate the angular velocities from
these angles. From the different parameterizations that are possible to convert quaternions to Euler
angles [56], we chose to use:

2(quwqx + qyqz) )
1—-2(q2% + qu)

B = asin(2(quwqy — qx9z)) (16)

2(quwqz + gxqy)
1- 2(‘73’2 + 422)

where —m1 < a < 75 —% < B< %; <Y < T G, Gx, Qys 9z constitute a unit quaternion 4.
We can calculate the angular velocity vectors Precession, Nutation, and Spin from
Equations (15)-(17) as follows:

« = atan( (15)

v = atan( 17)

precession = asin (7y) sin (B) + Bcos () (18)
nutation = acos (7y) sin (B) — Bsin () (19)
spin = acos (B) + ¥ (20)
Here:
a = precession velocity
 Yi—q Euclidean distance (41, ;) 1)
o time
Similarly:
,B _ >t 4 Euclidean distance (Bi11, Bi) (22)
time
;= >t 4 Euclidean distance (yit1, Vi) (23)

time

The parameter ‘time’ in Equations (21)-(23) is calculated in a similar manner as in Equation (14).
Here, sensor frequency is 82.5 Hz, which is calculated after the conversion to Euler angles. We have 15
of these features.

5.2. Data Collection and Partitioning

Data was gathered using a subset of sensors from the wearable motion capture system described
previously. Two sensors were placed on both the arms and one on the upper abdomen (positions
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Ch. 13,15, 16, 17 and 18 in Figure 3). We used six gestures in our study: Jab, Uppercut, Throw, Lift,
Block and Sway (Figure 7). Jab, Uppercut, and Block are combat gestures. Throw, Lift and Sway can be
related to other aspects of our daily lives in different ways.
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Figure 7. Gestures performed during each study. (a) Jab; (b) Uppercut; (c) Throw; (d) Lift; (e) Block;
(f) Sway.

We collected anonymous data from 11 participants, four females and seven males. Our raw
dataset has around 20 samples per gesture from each participant. For each sample, participants were
asked to perform the respective gesture for about five seconds using one of their hands while keeping
the other hand still. They used their left and right hands alternatively for each sample which yielded
in 50% data from the left hands (LH) and 50% from the right hands (RH) (not applicable for Sway). On
average, they performed five instances of a gesture continuously within the timeframe. Thus, each of
the five sensors in our setup collected about 100 instances (20 samples x 5 instances/sample) of every
gesture per participant. This yielded in a total of about 600 instances per participant from each sensor.

While these numbers reflect the ideal scenario, problems like missing values and participants
getting fatigued contributed to the discrepancy in the actual number of samples. From the raw dataset,
we derived a Euler angle dataset. Both of these datasets were used to extract various features which
are explained later in Section 5.4. The raw dataset consists of 1080 samples which contain a total of
2,959,765 coordinates. Table 1 shows the gesture-wise distribution of samples.

Using the raw and the Euler angle datasets, we have extracted 124,200 features points, in the form
of 115 identical features for every sample in the dataset. To deal with missing values (due to sensor data
loss, for example), we interpolate the value from the prior and post data values that were available.

We organized the data into two categories: Generalized Gesture Recognition and User Specific
Gesture Recognition. The generalized dataset includes training and test set data from any participant
without repetition. Here, we are not interested in the individual from whom the data is coming but
only interested in the gestures. This rule applies to any of the training, cross-validation or test set
under this category. The splits for this dataset is shown in Figure 8.

Every user specific dataset comprises a test set that contains data from a specific individual
within the participants. As a result, the corresponding training set does not contain any data from this
individual. Figure 9 shows the data splits for this case.
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Table 1. Number of samples in the gesture dataset.

Gesture LH * Samples RH * Samples Combined (LH + RH)
Jab 102 92 194
Uppercut 105 96 201
Throw 105 96 201
Lift 95 86 181
Block 95 86 181
Sway 66 56 122
Total # of samples: 568 512 1080

* LH = Left Hand, RH = Right Hand.

We made three different test cases and none of them contains any common sample. For example,
case P1 (Figure 9) has a test set that contains data from only participant 1 but case P7 has a test set that
includes data from participant 7 only. This method tests whether our model is capable of recognizing
a particular person’s gestures as opposed to recognizing any gesture in general, which is a probable
reflection of a real life gesture recognition scenario where a user does not need to train in order to use
the system. During the selection process of our test sets, we tried to maintain fairness by randomizing
the sequence of the participant datasets before selecting the three mentioned above.

Generalized Gesture

Recognition
|
| § g |}
| Left Right Combined
Tr aining Tr+CV+ Tr-CV Tr+CV+ | | Training + Tr aining +
+ Test - Test Test Test
Test [60 - 20 - 20] Test [60-20-20] | [70-30] [60 - 40]

70-30 60 - 40 o Train
\7 70 - 30 60 - 40 Tr = Training

CV = Cross Validation

Figure 8. Dataset splits for Generalized Gesture Recognition.

Both the categories have separate datasets corresponding to left-hand gestures, right-hand
gestures and a combined dataset that includes data from both of these sets. Each dataset is divided
into three parts: Training, Cross Validation and Test sets with proportions of 60% for training, 20% for
cross-validation and 20% for testing. For the combined case, two different partitions were made with
the proportions being 70%—-30% and 60%—40% respectively for training and testing.
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User Specific
Gesture
Recognition
I |
Left Right Combined
| |
P = Participant
Test Sets CV = Cross Validation
P1 P7 P11
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P7.P9) P3-P5, P4 - P6.
P8 - P10) P8. P10)
CV (P8, L_| CV(P6, L_| CV @7,
P10) P11) P9)

Figure 9. Dataset splits for User Specific Gesture Recognition.

5.3. Data Preprocessing

After creating the partitions, we standardized the datasets so that they have zero mean and unit
variance. Standardization (also called scaling) was done in batches such that the cross-validation and
test sets have same standardized outputs as their corresponding training sets. It is very useful for
classifiers like SVM and Neural Network. Scaling the data to fit into a smaller numeric range such
as [0,1] or [—1, +1] lets all features contribute equally to the classification process. It can also make
training faster because of the uniform, smaller range of the dataset [57]. This is very beneficial in
training Artificial Neural Networks as it reduces its chances of getting stuck in local optima [58].

5.4. Classifier Setup and Initial Experiment

With the data prepared for the training phase, we performed a quick experiment to understand
how the two classifiers, SVM and ANN would perform after being trained with scaled data. We also
used the results from this step to tune the parameters of the classifiers. We ran this experiment for
both the generalized and user specific case.

54.1. SVM

Cost was set to 1.0 to 3.0 with increments of 0.5, kernel was set to linear. Varying the cost
parameter over 1.0 did not yield any difference in the results. Therefore, we decided to use 1.0 later
in our experiment as well. We used “linear kernel” because we have a large number of features.
Non-linear kernels map data onto a higher dimensional space, which we do not require for our
feature set.
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5.4.2. ANN
1 through 20 and “a” numbers of units in the hidden layer were tested where
a = # of features ; #of classes 1152+6 ~ 60, learning rate, « was set to 0.1, momentum, m was

set to 0.2, epoch was set to 500, validation set size was set to 20% and validation threshold was set
to 20.

We ran the experiments for all of the hidden layer settings (16 runs) mentioned above. Training
and validation set accuracies for Right Hand Generalized and Left Hand User Specific cases are shown
in Figures 10 and 11.

80

Accuracy (%)
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40

20

0 10 20 30 40 50 60 70

Number of units in the hidden layer

Figure 10. ANN training (blue) and validation set (red) accuracies for different number of units in the
hidden layer (RH, generalized).
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Figure 11. ANN training (blue) and validation set (red) accuracies for different number of units in the
hidden layer (LH, user specific).

The other two cases show similar results. The figures show that validation set accuracies start
to settle at around 15 units in the hidden layer. As a result, we chose to use this value for every
subsequent experiment.

Table 2 shows training and validation set accuracies for the Generalized Gesture Recognition case.
Confusion matrix for the Right Hand Generalized case with SVM for the 60-20-20 partition (Figure 8)
is given in Table 3 to show which gestures are basically getting misclassified. Misclassified gesture
pairs are marked in bold.

Looking at the confusion matrix, we can see that the classifier is mostly confusing Jab with Throw,
Uppercut with Throw and Lift, Block with Lift. Confusion matrices for the left hand and for the right
hand with ANN show similar results. This is normal at this stage of the experiment because these
gestures have a lot of similarities in the way they were performed.

We used the test case “P7” (Figure 9) to examine our parameter selection and classifier accuracy
for User Specific Gesture Recognition. Table 4 shows training and validation set accuracies for different
datasets along with classifier training time.
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Table 2. Training and validation set accuracies for different datasets (generalized category).

Classifier
SVM ANN
Dataset . . Training Validation . Training Validation
Training Training
Time (s) Accuracy Accuracy Time (s) Accuracy Accuracy
(%) (%) (%) (%)
Left Hand 1.76 99.71 93.04 12.6 97.65 93.91
Right Hand 1.03 100 94.39 12.7 98.36 90.65

Table 3. Confusion matrix (in %) for validation set accuracy of Right Hand (60-20-20), SVM.

Jab Uppercut Throw Lift Block Sway
Jab 78.9 0 21.1 0 0 0
Uppercut 0 85.0 10.0 5.0 0 0
Throw 0 0 100 0 0 0
Lift 0 0 0 100 0 0
Block 0 0 0 16.7 83.3 0
Sway 0 0 0 0 0 100

Table 4. Training and validation set accuracies for different datasets (user specific category).

Classifier
SVM ANN
Dataset .. Training Validation .. Training Validation
Training Training
. Accuracy Accuracy . Accuracy Accuracy
Time (s) (%) (%) Time (s) (%) (%)
Left Hand 1.06 100 38.39 13.65 99.45 36.61
Right Hand 1.03 100 58.00 12.62 99.70 49.00

From Table 5 we see that the gesture mix-ups are Throw with Jab, Block with Lift and Sway with
Throw. Two of the gestures, Jab and Uppercut, were not recognized at all by the classifiers.

Table 5. Confusion matrix (in %) for validation set accuracy of Right Hand, ANN.

Jab Uppercut Throw Lift Block Sway
Jab 0.0 0 41.2 35.3 235 0
Uppercut 0 0.0 0 0 100 0
Throw 35.0 0 65.0 0 0 0
Lift 0 0 0 50.0 50.0 0
Block 10.0 52 0 35.0 50.0 5.0
Sway 0 0 33.3 0 0 66.7

The gestures that are similar have not been classified properly in most of the cases. There can be
two reasons behind this—one is that the current classifier parameters are not suitable for this type of
datasets. The other one would be the dataset itself. Since the classifiers showed acceptable performance
for the generalized cases (above 90% validation set accuracy), we are inclined to believe that the latter
one is the reason behind such a poor performance. In particular, we believe that if we reduce the
dimension of the dataset and keep only the data that contribute to most of the variations, we should
be able to achieve better accuracy with current settings.
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5.5. Dimensionality Reduction

As mentioned in Section 5.1, we calculated 115 features from the raw data. However, all of these
features do not contribute well to every gesture in terms of variation in data. For example, most of
the features calculated from sensors 15 and 16 would not be too useful to classify left-hand gestures
because these two sensors were subject to very limited to no movement during the performance of those
gestures. On the other hand, data from sensor 19 might be very useful to distinguish Sway because
other gestures had very limited use of this sensor during the study. Therefore, we need to apply a
proper dimensionality reduction technique to get the most out of our feature set. Principal Component
Analysis (PCA) was our choice because its operating principles match with our requirements.

We applied PCA by using Weka's [59] attribute selection tool which ranks the PCs in terms of their
Eigenvalues and keeps only those that fall within the specified variation. Initially, we applied PCA on
the entire feature dataset, ranked the principal component using Weka and kept those components
which cumulatively attributed to 95% of the variation in the dataset. We followed this procedure for
both the generalized and the user specific cases.

6. Result Analysis through Cross Validation and Testing

We applied 10-fold cross-validation on our validation sets. We will start with the generalized case
and then move forward to the user specific case following the data partition hierarchy as shown in
Figures 9 and 10.

6.1. Generalized Gesture Recognition

Table 6 lists training, cross-validation and test set accuracies of the classifiers over different
partitions of the dataset for Generalized Gesture Recognition. It shows that the classifiers achieved
near perfect accuracies on the test sets after PCA was applied. The confusion matrices for these
datasets do not have interesting data to show because the accuracies are mostly perfect. Thus, we
can conclude that the classifiers were able to classify almost all of the test set samples, with negligible
misclassifications for the generalized case after PCA was applied.

Table 6. Training, validation and test set accuracies (Generalized, after PCA).

Partition  Classifier Partition Left Hand Accuracy (%) Right Hand Accuracy (%) Combined Accuracy (%)

Training 100 100 —
SVM cv 99.7 100 _
60-20-20 Test 99.1 99.0 —
Training 100 100 —
ANN cv 99.7 99.7 —
Test 99.1 99.0 —
Training 100 100 99.9
SVM
70-30 Test 100 100 99.7
Training 100 100 99.9
ANN Test 100 99.3 99.7
Training 100 100 100
SVM
60-40 Test 99.5 100 100
Training 100 100 100
ANN Test 99.0 100 100

6.2. User Specific Gesture Recognition

Similar to the previous case, we used 10-fold cross-validation to obtain validation set accuracies for
User Specific Gesture Recognition. As seen in Table 7 below, the current configuration of the experiment
yielded extremely poor validation accuracies for the user-specific test. Further investigation revealed
that we overlooked a critical property of our study before deciding to use the same configuration for
both the cases. This is discussed in detail below.
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Table 7. Training and validation set accuracies (User Specific, after PCA).

Test Case P1

Classifier SVM ANN

A — .. ..

g;;zg ! Training Validation Training Validation
Left Hand 99.76 9.29 99.76 12.65
Right Hand 100 12.73 100 7.27
Combined 99.87 10 99.87 15.45

Every person performs gestures uniquely even after following the same set of instructions. During
our study, some of the participants performed the gestures in quick successions whereas others were
comparatively slower. As a result, while some of them might have performed five to six instances of
the same gesture within the duration of one sample (4.5 to 5.5 s), others might have performed only
4-5 gestures within the same period. With this in mind, we made an assumption that keeping velocity
based features (velocity and angular velocity) in the dataset confused the classifiers because every
participant’s speed in performing the gestures varied significantly. This phenomenon basically made
everyone’s gesture unique. To the classifiers, even two Jabs might look different because they were
performed by different individuals which might have resulted in the severe performance drops.

To overcome this problem, we decided to remove the velocity-dependent features before applying
the same experimental methodology. Table 8 below shows that in most of the cases, we achieved better
test set accuracy than training or validation set accuracy. These training and cross-validation sets are
actually similar to those under the generalized category as they have data from several participants.

Table 8. Training, validation and test set accuracies (User Specific, PCA and velocity removal).

g . Left Hand Right Hand Combined Dataset
Test Case  Classifier Partition Accuracy (%) Accuracy (%) Accuracy (%)

Training 99.67 100 99.82

SVM Validation 98.26 100 100

P1 Test 100 100 100
Training 99.67 99.63 99.82

ANN Validation 99.13 100 100

Test 100 100 100
Training 99.73 100 99.82
SVM Validation 99.75 90 86.79

Test 100 100 100

P7

Training 99.45 100 99.86
ANN Validation 100 100 91.04

Test 100 100 100
Training 99.74 100 99.86
SVM Validation 89.01 88.61 88.82

P11 Test 100 88.89 100
Training 99.74 100 99.86

ANN Validation 89.01 96.2 90
Test 98.33 100 99.12

The changes made by removing velocity and angular velocity-based features had a positive
impact on classifier performance and we obtained near perfect to perfect accuracies for all of the cases.
This proves that our assumption was true—velocity and angular velocity should not be included in
datasets that are used to classify gestures performed by a specific individual. Based on this finding, we
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ran similar experiments on the generalized case after excluding the velocity-based features and found
a slight decrease in accuracies.

7. Runtime Considerations

The recognition system was evaluated on an Intel Core i5 2.5 GHz processor with 8§ GB RAM on
a 64-bit Windows 8 operating system using the Weka machine learning tool. The recognition rates
with SVM were 1.8 milliseconds per sample for the left-hand dataset, 0.65 milliseconds per sample
for the right-hand dataset and 1.2 milliseconds per sample for the combined dataset. This gives us
an average recognition rate of 1.22 milliseconds per sample. Although ANN had a higher training
time, the recognition rate on the test sets was similar to that of SVM’s. Overall, this means we can have
a thread that tests 500 samples per second; and at this rate, we should be able to achieve interactive
rates with the recognition system. Thus, we can conclude that the classifiers were able to classify
almost all of the test set samples quickly enough to allow interactive systems to be developed, with
negligible misclassifications for the generalized case. It is important to note, that with these types
of recognition rates, more complex compound gestures (gestures in parallel or in sequence) can be
examined for interactivity.

8. Conclusions

From the results of our experiments, we can deduce that human gesture recognition is not a
problem that can be solved using any out of the box classification system. Different scenarios demand
different configurations of the experiment and different approach strategies for accurate classification.

We built a complete human gesture recognition system based on Support Vector Machine and
Artificial Neural Network for six different gestures by collecting data from 11 participants. We explored
two scenarios by organizing the same dataset in two different ways: Generalized Gesture Recognition,
where we included data from every individual in our test sets to test our system’s performance
on recognizing the gestures, regardless of who performed the gestures, and User Specific Gesture
Recognition where we tested if our system can perform well when it is given a test dataset from a
specific individual to mimic a real life use of the system.

Our experiments revealed that if we have a good set of features, it is easier to recognize random
human gestures in general as compared to recognizing a set of gestures from an individual alone. While
achieving very good accuracy for the former requires applying basic data preprocessing techniques and
common dimensionality reduction methods that are most commonly used in the literature, achieving
the same results in the latter scenario is trickier. It requires a good understanding of the dataset and
proper feature selection methods. We achieved near perfect gesture recognition in the generalized
case by following standard experimental methodologies such as feature extraction, standardization,
cross-validation and dimensionality reduction using PCA. However, the same methodology performed
poorly on the user specific case. To overcome this problem, we decided to exclude all velocity-based
features from our feature set and then follow the same gesture recognition procedure as mentioned
above. Eventually, we were able to achieve near perfect overall recognition rates on all of our datasets
for this case.

9. Limitations and Future Work

Currently, one of the limitations of this system is the provision of an uninterrupted power supply.
The IMUs can be powered by two different sources of energy. They can either be plugged into a
computer or other devices to supply power from USB ports or they can run on battery power. The
first one restricts mobility and limits portability, whereas the second one is not a reliable source of
uninterrupted energy. Using rechargeable battery cells with higher energy capacity (mAh rating)
may improve this situation, but it would make the whole system expensive. The sensors have a few
flaws in their design which restricts worry-free handling. The power/reset button on these devices
protrudes outward which makes it prone to being pressed if the user is not aware of its presence while
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performing gestures. We are also trying to design better cases or containers for the sensors so that they
can be easily strapped to a participant’s body. Lastly, the relatively larger size of the sensors would
most likely prevent researchers from using it for gesture recognition using fingers.

We can envision several possible future applications of our work. The velocity-based features
can be used to perform a user validation study that would recognize different users based on the
way they perform gestures. A very important application of our research would be industrial process
automation where industrial robots can be trained to mimic human gestures to perform heavy lifting
and do other tasks that are otherwise difficult and dangerous for humans. While similar systems have
already been developed, they can mostly only perform specific, pre-designed tasks [42,43]. Other
workers in those factories still have to perform the dangerous but more sophisticated tasks by hand.
As a future task, our aim is to carry this research forward, develop a full-body gesture recognition
system by incorporating more sensors and integrate it into a robotic system.

Supplementary Materials: The dataset is available online at http:/ /www.mdpi.com/1424-8220/16/5/605/s1.
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