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Abstract: This paper presents an approach to remotely evaluate the rotational velocity of a measured
object by using a quadrant photo-detector and a differential subtraction correlation (DSC) algorithm.
The rotational velocity of a rotating object is determined by two temporal-delay numbers at the
minima of two DSCs that are derived from the four output signals of the quadrant photo-detector,
and the sign of the calculated rotational velocity directly represents the rotational direction. The DSC
algorithm does not require any multiplication operations. Experimental calculations were performed
to confirm the proposed evaluation method. The calculated rotational velocity, including its amplitude
and direction, showed good agreement with the given one, which had an amplitude error of ~0.3%,
and had over 1100 times the efficiency of the traditional cross-correlation method in the case of data
number N > 4800. The confirmations have shown that the remote evaluation of rotational velocity
can be done without any circular division disk, and that it has much fewer error sources, making it
simple, accurate and effective for remotely evaluating rotational velocity.

Keywords: remote evaluation; rotational velocity; differential subtraction correlation; quadrant
photodetector; temporal-delay number

1. Introduction

Rotational parameters, which include angular displacement, velocity and acceleration, can
describe the performance, operation states and kinetic characteristics of rotating systems [1,2], such as
the vortices of fluid substances, gear transfer systems, rotational machines and fan blades, etc. The exact
measurement of transient velocity is vitally important for accurately controlling and monitoring the
movements of some bodies, and for acquiring fault information in machine diagnoses [3]. Thus the
method of sensing rotational velocity can be used for the analyses, monitoring and control of
mechanical systems, swirling gas- or fluid flow, etc.

For sensing rotational or angular velocity, there exist methods using gyroscopes, marking
methods, interferometry, correlation methods, circular grating sensing and spatial filtering methods, etc.
The gyroscope method using a Sagnac-effect-based integrated gyroscope with small footprint has
high resolution, and can sense transient angular velocity [4–6]. However it is not suitable for
remote measurement and super-low velocity, and can be affected by environmental factors [7,8].
The interferometry methods, including Fabry-Perot cavities and Mach-Zehnder interferometers, have
complicated structures and high precision fabrication requirements [9–11]. In the correlation method,
the traditional cross-correlation (TCC) is often used to process the output signals of two identical
sensors in the measured region [12–14], which provides non-contact measurements with low cost
for monitoring gas-solid and solid-liquid flows [15–18]. The image matching method, in which
a high-speed camera captures a series of instantaneous images to calculate velocity, also belongs to
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the correlation methods [19–22]. Correlation methods are less applied for remotely sensing transient
angular velocity, due to the numerous multiplication operations required. Marking methods with
optical labels (plus quadrant photodiode) or Hall-effect sensors mainly sense average rotational
velocities with lower resolution or direction ambiguity [23,24], which can hardly measure instantaneous
rotational velocity. The methods based on circular gratings like optical gratings [25,26] and
magnetic grids can be employed to sense the transient angular velocity of target objects with high
resolution [27,28]. Their circular gratings must be set up as circular division disks to be coaxially
mounted on the measured object, and their resolution and precision are dependant on the grating
grooves. Optical gratings are easily destroyed by tiny dust particles and greasy dirt. In some cases
such as those of high-speed rotating machines or when measuring gas- or fluid flows, etc., circular
benchmarks cannot be mounted on the measured systems die to limitations in their structures, or their
performances are possibly deteriorated. In the spatial filtering (SF) method [29], a center coefficient is
obtained from the central frequencies of the output signals of two differential spatial filters. Then the
rotational velocity is calculated with the central frequencies and the center coefficient, and its direction
is determined by the center coefficient and one linear displacement direction. Rotational velocity
measurements using the SF method are complicated, since they need to compute all the center
coefficients, the central frequencies and the displacement direction.

This paper will present a novel approach for remotely evaluating transient rotational velocities
with a quadrant photo-detector (QPD) and a differential subtraction correlation (DSC) algorithm
proposed by us, which does not require any circular indexing plates or benchmarks. The QPD outputs
four random signals, from which the amplitude and direction of the rotational velocity are obtained
simultaneously by using the DSC algorithm that only needs addition and subtraction operations
without any multiplication or division, which should make it faster than other correlation methods.
This paper is organized as follows: Section 2 shows the rotational velocity sensing system; Section 3
describes its evaluation principle in detail; Section 4 presents some experimental calculations to verify
the proposed approach, and the final section gives our conclusions.

2. System for Sensing Rotational Velocity

The quadrant photo-detector for sensing rotational- or angular-velocity, shown in Figure 1, is
formed by four photovoltaic cells PD1, PD2, PD3 and PD4. PD1 and PD2 are arranged in parallel each
other with distance P, which constitute a linear velocity sensor (LVS1), and output signals S1 and S2.
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Similarly, PD3 and PD4 are also arranged in parallel each other with the distance P, which lead
to another linear velocity sensor (LVS2), and output signals S3 and S4. The LVS1 and LVS2 are also
aligned in parallel each other at the interval of L, and then form the QPD.

The rotational velocity sensing system with the QPD and the DSC algorithm is schematically
illustrated in Figure 2. Suppose the terminal plane of a measured object has a rough surface, and
rotates around center O’ with a rotational velocityω. The surface of the terminal plane is imaged on
the QPD through an optical telescope system with magnification M. The image of the measured object
rotates around center O that is the imaged point of center O’, and it must cover the QPD. Thus the size
of the terminal plane must be at least larger than L/M. The distances of center O to LVS1 and LVS2 are
R1 and R2, respectively. The output signals of the QPD are random, owing to the stochastic reflection
image of the terminal plane. The output signals S1, S2, S3 and S4 will go to the data processing system
(DPS) after they are amplified and converted into digital signals. In the DPS, the DSC between S1 and
S2 is calculated and noted as DSC1, which is related to the linear velocity of moving image on PD1 and
PD2. The DSC between S3 and S4 is also obtained and denoted as DSC2, which indicates the linear
velocity of moving image on PD3 and PD4. The rotational velocityω of the measured object can be
derived from the DSC1 and DSC2.
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Figure 2. Schematic diagram of rotational velocity sensing system with DSC and the QPD.

3. Principle of Evaluating Rotational Velocity with DSC

3.1. Image Velocity on QPD

Supposing that the terminal plane of measured object rotates around the O’ in the rotational
velocity ofω, the terminal plane and its imaged plane are depicted in Figure 3a,b, respectively, which
are viewed from the optical telescope system. LVS1’, LVS2’ and O’ on the terminal plane are conjugated
to LVS1, LVS2 and O on the image plane, respectively.

In Figure 3a, D’1 and D’2 are two arbitrary points on the central line of the LVS1’. The interval
between O’ and the central line of LVS1’ is R’1, and the distances of O’ to D’1 and D’2 are R’D1 and R’D2,
respectively. In Figure 3b, D1 and D2 are the conjugate points of D’1 and D’2, respectively, thus the
distances of O to D1 and D2 are RD1 = MR’D1 and RD2 = MR’D2, respectively. With the rotational
velocity ofω, the linear velocities at D1 and D2 are VD1 =ωMR’D1 =ωRD1 and VD2 =ωMR’D2 =ωRD2,
respectively. VD1 and VD2 have the components VD1 ˆ cosα and VD2 ˆ cosβ, respectively, in the
direction of LVS1, where α and β are the angles of R1 relative to lines OD1 and OD2, respectively.

Meanwhile, RD1 ˆ cosα = RD2 ˆ cosβ = R1, thus the image velocity V1 on any point of the central
line of the LVS1 can be obtained, such that:

V1 “ ωR1 (1)
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Figure 3. Relations of the rotational velocityω with the linear velocities on (a) the terminal plane and
(b) the image plane.

Similarly, we can also get the image velocity V2 on any point of the central line of the LVS2,
governed by:

V2 “ ωR2 (2)

where R2 is the interval between O and the central line of LVS2. The image velocities V1 and V2 are
insensitive to the variation of the amplification coefficient M which has been hidden in R1 and R2 on
the image plane.

3.2. Characteristics of Output Signals of QPD

When a light source illuminates the terminal plane of the measured object that has a rough surface
with finite and stochastic reflection, some light rays will be scattered by the rough surface, and then
be imaged on the QPD through the optical telescope system with a high cut-off frequency in the
spatial domain. The image on the QPD locating the image plane is randomly distributed, and has
a wide spatial bandwidth. The output signal of each photovoltaic cell in the QPD is the integration
of the randomly-reflected light intensity on its active area, which is also stochastic. Thus the QPD
outputs four stochastic signals that are related to the random distribution of the rotating image, and
the relations among the QPD output signals are involved with the image movement decided by the
rotation of the terminal plane.

It is assumed that the central lines of LVS1 and LVS2 are x-axes that are parallel with PD1–PD2
and PD3–PD4, respectively. Figure 4 shows schematically the stochastic light-intensity distributions
on the active areas of the QPD whose PD1–PD4 positions are also indicated in x-y coordinate, where
f 1(x) and f 2(x) are the examples of actual light-intensity distributions along the LVS1 and the LVS2,
respectively, x0 is the x-axial position of PD1 and PD3, c is the width of the photovoltaic cells.
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If only considering x-axial movement, the integration of the y-axially distributed random light
at x-position can be taken as the whole light intensity at x-position, which ignores the y-axial factor
and still is a stochastic distribution on the x-axis, shown as f 1(x) or f 2(x). When the rough surface of
a measured body is imaged on the QPD, the QPD will be illuminated by the randomly distributed
light that is regarded as only an x-axial distribution, and the output signals of the PD1–PD4 are the
integrations of the light intensity distributions f 1(x) or f 2(x) in the x-axial widths of the PD1–PD4,
respectively. If the measured body is rotating, its scattering light will be randomly changed, and then
the QPD will output signals S1, S2, S3 and S4 that are stochastic in time domain.

If the LVS1 (PD1) is at position x0, its output signals S1 and S2 will be the integrations of f 1(x) in
the regions of PD1 and PD2, respectively, and they have the relation S2(x0) = S1(x0 ´ P). If the image
on the LVS1 is moving in the image velocity V1, then the space-time relation x0 = V1t allows S1(x0) and
S2(x0) to become time-domain signals S1(t) and S2(t), described by:

S1ptq “
r px0`cq{V1

x0{V1
f1pV1tqV1dt

S2ptq “
r px0`P`cq{V1
px0`Pq{V1

f1pV1tqV1dt

,

.

-

(3)

The active-area factor of the photovoltaic cells cannot be ignored, thus the integrations in S1(t)
and S2(t) will filter some high-frequency components of the light intensity distributions on PD1
and PD2, which actually function as low-pass filters that can remove much relevant characteristic
information. When the measured object revolves around O’, its image on PD1 and PD2 can be divided
into three parts: I, II and III, as illustrated in Figure 5.
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Figure 5. Region division of the rotational image on the LVS1.

Part I and Part III are labeled by blue slanted lines and red slanted lines, respectively, and Part II
is the region between Part I and Part III. Part II with the largest area makes principal contribution to
S1(t) and S2(t), and Parts I and III can be ignored because of their much less contributions. On other
hand, the image of Part II on PD1 will be on PD2 after the delay time τ1 = P/V1. Thus Equation (3)
indicates that S2(t) is approximately equal to the temporally delayed signal of S1(t) with the delay time
of τ1, which can be written as:

S2ptq « S1pt´ τ1q (4)

where τ1 > 0 represents the movement direction from left to right, and τ1 < 0 represents that from right
to left. Once τ1 is ascertained, the image velocity V1 on the LVS1 will be determined by:

V1 “ ωR1 “ P{τ1 (5)
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Like the analogous S1(t) and S2(t), S4(t) is also approximately equal to the temporally delayed
signal of S3(t) with the delay time of τ2, which is expressed to be S4(t) « S3(t ´ τ2) where τ2 = P/V2

is the time delay of S3(t). τ2 > 0 also indicates the movement direction from left to right, and τ2 < 0
indicates that from right to left. Once τ2 is obtained, the image velocity V2 on the LVS2 will be also
calculated with:

V2 “ ωR2 “ P{τ2 (6)

Based on the above descriptions, we can establish the features of the temporal output signals
of the QPD: (1) they are random, corresponding to the spatially-stochastic reflection of the terminal
plane; (2) the signals S2(t) and S4(t) are approximately interrelated to S1(t) and S3(t), respectively;
(3) some high-frequency information consisting of more useful characteristics has been filtered, which
is a disadvantage to correlation analysis. If the delay times τ1 and τ2 are obtained, Equations (5) and (6)
may let the rotational velocityω be calculated. According to the abovementioned features, the DSC
algorithm is exploited to derive the delay times from the output signals.

3.3. Differential Subtraction Correlation

The output signals of the QPD are random and correlative, thus we also employ correlation
analysis to calculate τ1 and τ2. However the conventional correlation method is low efficient, due to its
multiplication operations with the complexity of about O(3Nlog2N) or O(N2), where N is the number
of sampling data. In order to fast and exactly determine the delayed time, we propose the DSC to
analyze the correlation ϕ1(τ) between S1(t) and S2(t), defined as:

ϕ1pτq “

T2
ż

T1

ˇ

ˇ

ˇ

ˇ

dS1pt´ τq
dt

´
dS2ptq

dt

ˇ

ˇ

ˇ

ˇ

dt “

T2
ż

T1

|dS1pt´ τq ´ dS2ptq| (7)

where T1 and T2 are the start time and end time, respectively, of the integration. In practice, S1(t) and
S2(t) are converted into digital signals s1(n) and s2(n), respectively, by using a multi-channel A/D
converter with sampling interval T0. Thus the DSC ϕ1(τ) is discretized into Φ1(m) (i.e., DSC1) as:

Φ1pmq “
N2´1
ÿ

n“N1

|s1pn´m` 1q ´ s1pn´mq ´ s2pn` 1q ` s2pnq| (8)

where N1 = T1/T0, N2 =T2/T0 and m = τ/T0 are integral. If S2(t) = S1(t ´ τ1), Φ1(m) will go to zero at
m = m1 = τ1/T0, and is much more than 0 at other m, where m1 is an integer representing the temporal
delay τ1.

Similarly, the output signals S3(t) and S4(t) of the LVS2 are converted into digital signals s3(n)
and s4(n), respectively, with the same sampling interval T0. Then s3(n) and s4(n) are sent to the DPS to
calculate the discrete DSC Φ2(m) (i.e., DSC2) between s3(n) and s4(n), given by:

Φ2pmq “
N2´1
ÿ

n“N1

|s3pn´m` 1q ´ s3pn´mq ´ s4pn` 1q ` s4pnq| (9)

If S4(t) = S3(t ´ τ2), Φ2(m) will also go to zero at m = m2 = τ2/T0, and is much more than 0 at other
m, where m2 is an integer representing the temporal delay τ2.

In practice, the output signals of the QPD in this rotational velocity sensing system have the
relations S2(t) « S1(t ´ τ1) and S4(t) « S3(t ´ τ2), which let Φ1(m) and Φ2(m) go to the minimums at
m = m1 and m = m2, respectively, and they are much more than 0 at other m. Based on Equations (8)
and (9), the DSC algorithm is then described as follows:

(1) Acquiring s1(n), s2(n), s3(n) and s4(n) by discretizing the output signals of the QPD with
synchronous four-channel A/D converter;
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(2) Calculating the DSC1 and DSC2 at different m, according to Equations (8) and (9) with s1(n),
s2(n), s3(n) and s4(n);

(3) Searching the minimums of Φ1(m) and Φ2(m), and taking the serial numbers at the minimums
of Φ1(m) and Φ2(m) as the temporal-delay numbers m1 and m2, respectively.

The temporal-delay numbers m1 and m2 have indicated the delay times τ1 and τ2, respectively.
The proposed DSC algorithm just requires subtraction, absolute and addition operations without
any multiplications or divisions, so it can facilitate the fast correlation calculation of two random
signals. Furthermore, its difference operation between two adjacent data can recover high-frequency
components, and can eliminate low-frequency noise and shift, and then can enlarge the differences
between adjacent data, which are advantageous to improve accuracy.

3.4. Evaluation of Rotational Velocity

According to the DSC algorithm described before, m1 and m2 can be derived from Φ1(m) and
Φ2(m) by searching the minima of Φ1(m) and Φ2(m), respectively. Because τ1 = m1T0 and τ2 = m2T0,
m1 > 0 and m2 > 0 indicate the image movement directions from left to right on the LVS1 and the
LVS2, respectively, and m1 < 0 and m2 < 0 indicate that from right to left on the LVS1 and the LVS2,
respectively. Thus Equations (1), (2), (5) and (6) lead to the relations of the rotational velocityωwith
m1 and m2, governed by:

ωR1 “ P{pm1T0q (10)

ωR2 “ P{pm2T0q (11)

Now let us suppose that the LVS1 is above the LVS2. The location of the rotational center O on
the image plane may be between the LVS1 and the LVS2, below both the LVS1 and the LVS2, or above
both the LVS1 and the LVS2, as shown in Figure 6a–c, respectively.
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The signs of m1 and m2 represent the image movement directions on the LVS1 and LVS2, which
can be used for judging the rotational center locations and directions. In Figure 6a, the sign of m1 is
always different from that of m2, and m1 > 0 and m1 < 0 demonstrate the clockwise rotational direction
and the counter-clockwise one, respectively. In Figure 6b,c, the sign of m1 is always the same as m2, and
their rotational center locations can be discriminated by comparing m1 to m2, where |m1| < |m2| and
|m1| > |m2| as indicated in Figure 6b,c, respectively, owing to the fact R2 ˘ L = R1. In Figure 6b, m1 > 0
and m1 < 0 illustrate the clockwise rotational direction and the counter-clockwise one, respectively.
In Figure 6c, m1 < 0 and m1 > 0 mean the clockwise rotational direction and the counter-clockwise
one, respectively. At the same time, Figure 6a–c have shown R1 + R2 = L, R1 ´ R2 = L with |m1| <
|m2|, and R2 ´ R1 = L with |m1| > |m2, respectively, from which we can derive the rotational velocity
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ω as (1/m1 ´ 1/m2)P/(LT0) by using Equations (10) and (11). The sign of ω is the same as that of
m1 in the cases of Figure 6a,b, and is opposite that of m1 in the case of Figure 6c, which shows that
ω > 0 and ω < 0 always represent the clockwise rotational direction and the counter-clockwise one,
respectively. Thus in all cases of different directions and centers, the sign of ω always indicates the
rotational direction, and the rotational velocityω can be determined by:

ω “
P

LT0

ˆ

1
m1
´

1
m2

˙

(12)

Note that |m1| and |m2| are not equal to 0 in Equation (12), and must be less than N at least
in the DSCs. In practice, they should be less than N/2, in order to accurately acquire them. Thus the
better range of the rotational velocity calculated with Equation (12) should be from 2P/(NT0Rmin) to
P/(T0Rmax), where Rmin = min(R1, R2) and Rmax = max(R1, R2).

The relations of ω with m1, m2, rotational center location and direction are listed in Table 1.
The rotational velocityω calculated with Equation (12) includes the amplitude and direction of the
rotational velocity on the image plane, which is corresponding to the rotational velocity of the measured
object. Therefore once m1 and m2 are obtained, the rotational velocity consisting of its amplitude and
direction will be calculated by only using Equation (12).

Table 1. The relations ofωwith rotational direction, center location, m1 and m2.

Rotational Direction Relation of m1 with m2
Judgment Results

Location of the Rotational Center O Sign ofω

Clockwise
m1 > 0, m2 < 0 Between LVS1 and LVS2 +
0 < m1 < m2 Below both LVS1 and LVS2 +
m1 < m2 < 0 Above both LVS1 and LVS2 +

Counter-clockwise
m1 < 0, m2 > 0 Between LVS1 and LVS2 ´

0 > m1 > m2 Below both LVS1 and LVS2 ´

m1 > m2 > 0 Above both LVS1 and LVS2 ´

4. Experimental Calculations

The rotation of a planar wooden disk with rough surface is taken as an example to confirm
the validity of the proposed method for remotely sensing rotational velocity. The confirmation
can be realized according to the following steps: (1) The wooden disk is installed on the shaft of
a DC-micromotor (Model 2230G0003, Faulhaber GmbH & Co. KG, Schönaich, Germany) which drives
the rotation of the disk. The angular speed of the DC-micromotor is controlled by the output voltage
of an adjustable DC regulated power supply (Model APS3005S-3D, Atten Technology Co., Shenzhen,
China); (2) The rotational velocity of the wooden disk is set by adjusting the output voltage and then
measuring the rotational velocity with a DT-2234B Digital Tachometer (Suwei Co. Ltd., Guangzhou,
China); (3) Sunlight or very bright white LEDs illuminate the wooden disk whose surface is imaged
on a QPD through a telecentric imaging system (telescope) with magnification of 1ˆ. The telecentric
imaging system includes an adjustable aperture and two composite objectives with a focal length
of ~26 mm. The QPD is constructed by four identical photovoltaic-cells with the active area of
0.89 ˆ 4.39 mm2, where two photovoltaic cells of each linear velocity sensor (LVS1/LVS2) directly
come from two adjacent pixels of a Si-based photovoltaic-cell array (Model A5V-38, OSI Optoelectronics
Inc., Hawthorne, CA, USA), and then the LVS1 and LVS2 form the QPD. Other parameters of the QPD
are as follows: P = 0.99 mm and L = 16 mm; (4) The output signals of the QPD are amplified and
then converted into discrete data by four A/D converters with the sampling interval of T0 = 0.2 ms.
The amplifier and the A/D converter are INA128 (Texas Instruments Inc., Dallas, TX, USA) and AD7663
(Analog Devices Inc., Norwood, MA, USA) with 16-bit resolution, respectively; (5) The discrete data
are sent to a DPS, in which Φ1(m) and Φ2(m) are calculated, and their minimums are searched to get
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m1 and m2. Then the rotational velocityω is calculated with Equation (12); (6) Finally, we compare the
calculated value and direction to the given ones, and judge whether they are agree with each other.

When the wooden disk was rotated at a rotational velocity of 6.3 rad/s in the clockwise direction,
we located the rotational center O, whose distance to its closest LVS was ~6 mm, to be between the LVS1
and the LVS2. The output signals S1(t), S2(t), S3(t) and S4(t) of the QPD are shown in Figure 7a,b,d,e,
respectively. Figure 7c,f illustrate the calculated Φ1(m) and Φ2(m), respectively. The minima of Φ1(m)
and Φ2(m) were searched at m1 = 79 and m2 = ´131, respectively. According to Equation (12), the
calculated rotational velocity was 6.278 rad/s with the “+” sign that represents the clockwise direction.
These results demonstrate that the calculated value and direction of the rotational velocity agree with
the given ones.

When the wooden disk rotated counter-clockwise at a rotational velocity of 1.9 rad/s, we let the
rotational center O, whose interval to its nearest LVS was ~10 mm, be below both the LVS1 and the LVS2.
The output signals S1(t), S2(t), S3(t) and S4(t) are exhibited in Figure 8a,b,d,e, respectively. Figure 8c,f
plot the calculated DSCs Φ1(m) and Φ2(m), respectively, from which we derived m1 = ´100 and
m2 =´260. Based on Equation (12), the calculated rotational velocity was´1.904 rad/s whose “´” sign
indicates the counter-clockwise direction. The calculated rotational velocity including its amplitude
and direction is also in agreement with the given one. Similarly, we performed the corresponding
experimental calculations in the cases of other rotational directions and center locations, where the
calculated rotational velocities were also in agreement with their given ones.
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delay between signals S3 and S4.

The abovementioned calculations had a relative amplitude error of ~0.3%. Their resolutions
were up to 0.011 rad/s, and their optimal resolution was 5.4 ˆ 10´5 rad/s (N = 4800). The resolution
and its optimum of the DSC-based rotational velocity are actually determined by P/(LT0m1m2) and
4P/(LT0N2), respectively, which are related to the sampling interval T0 and the rotational velocity.
For measuring super-low rotational velocities, the resolution can be improved to be excellent by
increasing the sampling interval in the case of guaranteeing enough precision. In other often used
methods, the resolution of laser gyroscopes can reach 0.01˝/h~10˝/h [4], and the TCC-based method
has a relative error of 3.33% [12]. The marking method with an optical label plus quadrant photodiode
possesses a relative error of 0.001% [24], while it measures only the average rotational velocity within
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the angular displacement of 2π rad. The circular-grating-based methods with Moiré optical grating
and capacitive grating have relative errors of ~0.07% and 0.44%, respectively [30]. Compared to the
existing method, the DSC-based method proposed has mid-ranking resolution and accuracy, whereas
on the plus side, it does not require installing any standard division disk.

To verify the computational speed, the DSC-based and TCC-based calculations were performed
in an Acer PC system equipped with an Intel dual-core i3-processer plus 3.4 GHz, OS Windows 10 and
Matlab 2010. The DSC-based calculations needed average times of 141 ms and 86 ms in the cases of
N = 4800 and N = 3600 data numbers, respectively, and the TCC-based ones consumed on average times
of 158.92 s and 72.849 s, correspondingly. These achievements imply that the DSC-based computational
speed has been improved up to 1127 times that of the TCC-based one in the case of a data number
N > 4800. Thus the DSC-based calculation for rotational velocity is very fast and accurate, and is not
affected by the movement and alignment error of the QPD relative to the measured object, making it
fit for remotely evaluating transient angular-velocities. These features are due to the following reasons:
(1) (1/m1 ´ 1/m2) always makes |R1 ˘ R2| equal to constant L, in the cases of arbitrary rotational
center, eccentricity, radial fluctuation or parallel movement; (2) the amplification coefficient M has
been hidden in R1 and R2 on the image plane, which leads to the insensitivity to various M changed by
alignment error and axial shaking; (3) V1 ˘ V2 is always not related to eccentricity, parallel movement
and radial shift. Thus the rotational velocity calculated with Equation (12) is only determined by pure
rotation, which has much fewer error sources.
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5. Conclusions

The method of remotely evaluating rotational velocity has been presented in this paper, where
the rotational velocity is derived from the temporally-delayed serial-numbers at the minima of
two DSCs that are calculated with the four stochastic output signals of the QPD formed by
four identical photovoltaic-cells, and the sign of the rotational velocity represents the rotational
direction. The DSC algorithm is implemented by differentiating and subtracting the random output
signals of two photovoltaic cells, and then integrating the absolute value of the differential subtraction
signal. In the DSC algorithm, the rough surface and random reflection of measured object will
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have a contribution to precisely determining the temporal delay and rotational velocity, owing to its
difference operation. Experimental calculations were performed to confirm the proposed evaluation
method. The calculated rotational velocities, including their amplitudes and directions, were in
excellent agreement with their given ones, which possessed an amplitude error of ~0.3%, and had over
1100 times the TCC-based efficiency in the case of data number N > 4800.

The proposed evaluation method works without any circular indexing plate, and its DSC does
not require any multiplication or division operations. At the same time, this method is insensitive
to the radial fluctuation, axial shift, eccentricity and parallel movement of the measured object that
has assembly or mismatch errors. The rotational velocity calculated with Equation (12) is only
determined by pure rotation, which has many fewer error sources. Comparing to the SF method, this
evaluation method does not require calculating central frequencies, center position and extra direction,
and it can simultaneously determine the amplitude and direction of a measured rotational velocity.
In general, the proposed method is simple, fast, accurate and effective for remotely evaluating transient
rotational velocities.
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