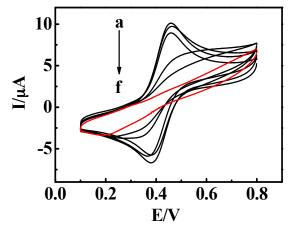
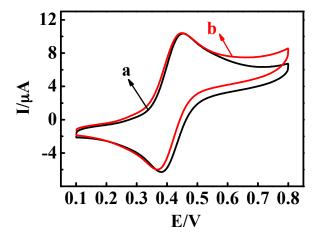
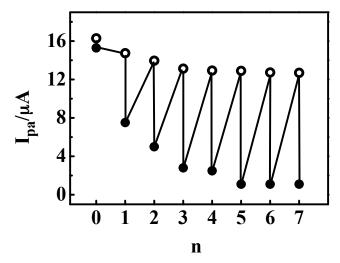

Supplementary Materials: Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

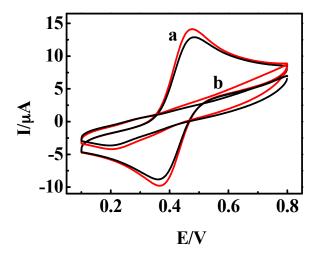
Huiqin Yao, Qianqian Gan, Juan Peng, Shan Huang, Meilin Zhu and Keren Shi

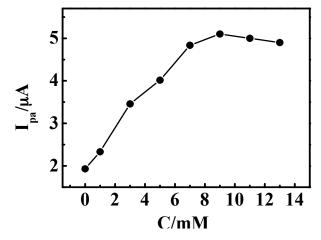

Table S1. The surface concentration of GOD (Γ^* , mol·cm⁻²) for {Con A/GOD}_n with different number of bilayers (n).

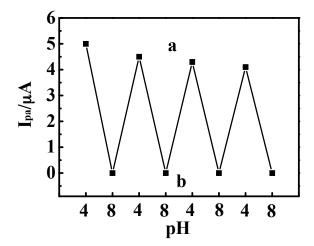
{Con A/GOD} _n	Q (C) $\times 10^{7}$	Γ*, (mol·cm ⁻²) × 10 ¹¹
<i>n</i> = 1	1.559	1.010
n = 3	3.685	2.387
n = 5	5.555	3.598
n = 7	6.468	4.190


According to the equation of $Q = NAF\Gamma^*$ based on the Faraday's law, where N is the number of electrons transferred (1), A is the geometric area of PG electrode (0.16 cm²) and F is the Faraday constant (96487 C·mol⁻¹).


Figure S1. (**A**) CVs of 0.5 mM Fc(COOH)₂ in pH 4.0 buffers for {Con A/GOD}₅ films at different scan rates (V·s⁻¹): (**a**) 0.01, (**b**) 0.02, (**c**) 0.03, (**d**) 0.04, (**e**) 0.05, (**f**) 0.06, (**g**) 0.07, (**h**) 0.08, (**i**) 0.09 and (**j**) 1.0; (**B**) Effect of scan rate (*v*) on the I_{pa} of Fc(COOH)₂ for {Con A/GOD}₅ films.


Figure S2. CVs of 0.5 mM Fc(COOH)₂ for {Con A/GOD}₅ films at 0.1 V·s⁻¹ in buffers at pH (**a**) 4.0, (**b**) 4.5, (**c**) 5.0, (**d**) 6.0, (**e**) 7.0, and (**f**) 8.0.


Figure S3. CVs of 0.5 mM $Fc(COOH)_2$ at 0.1 V·s⁻¹ for bare PG electrode in buffers at pH (**a**) 4.0 and (**b**) 8.0.


Figure S4. Influence of the number of bilayers (*n*) for $\{\text{Con A/GOD}\}_n$ films on CV reduction peak current (I_{pa}) of 0.5 mM Fc(COOH)₂ in buffers at pH 4.0 (\circ) and 8.0 (\bullet) at 0.1 V·s⁻¹.

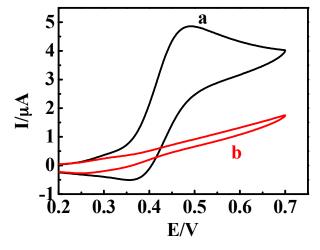

Figure S5. CVs of 0.5 mM Fc(COOH)₂ at 0.1 V·s⁻¹ for {Con A/GOD}₄/Con A (red) and {Con A/GOD}₅ (black) films in buffers at pH (a) 4.0 and (b) 8.0, respectively.

Figure S6. Dependence of CV electrocatalytic oxidation peak current (I_{pa}) at 0.005 V·s⁻¹ on concentration of glucose at {Con A/GOD}₅ film electrodes in pH 4.0 solutions containing 0.5 mM Fc(COOH)₂ and glucose.

Figure S7. Dependence of CV catalytic oxidation peak current (I_{pa}) at 0.005 V·s⁻¹ on solution pH switched between pH 4.0 and 8.0 for the same {Con A/GOD}₅ films. The solution contained 0.5 mM Fc(COOH)₂ and 7.0 mM glucose.

Figure S8. CVs of {Con A/GOD} $_5$ films at 0.005 V·s $^{-1}$ in solutions containing 0.5 mM Fc(COOH) $_2$, 7.0 mM glucose at pH (a) 4.0 and (b) 8.0, which tuned by alternate addition of 10 mM ethyl butyrate and 6 mM urea into unbuffered solutions containing 5 units·mL $^{-1}$ esterase and 15 units·mL $^{-1}$ urease.