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Abstract: Appearance representation and the observation model are the most important
components in designing a robust visual tracking algorithm for video-based sensors. Additionally,
the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in
object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional
neural network (CNN) features and adaptive model update. Deep CNN features have been
successfully used in various computer vision tasks. Extracting CNN features on all of the candidate
windows is time consuming. To address this problem, a two-step CNN feature extraction method is
proposed by separately computing convolutional layers and fully-connected layers. Due to the
strong discriminative ability of CNN features and the exemplar-based model, we update both object
and background models to improve their adaptivity and to deal with the tradeoff between
discriminative ability and adaptivity. An object updating method is proposed to select the “good”
models (detectors), which are quite discriminative and uncorrelated to other selected models.
Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to
complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on
a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall
performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and
robustness of our tracking algorithm.

Keywords: visual tracking; exemplar-based detection; convolutional neural network (CNN) features;
Gaussian mixture model

1. Introduction

Visual tracking is a critical technique to many applications [1–3], such as surveillance [4,5], robot
vision [6], etc. Recently, tracking-by-detection has become an attractive tracking approach [7], which
treats tracking as a category detection problem and trains a detector to separate the object from
the background. In this class of tracking methods, appearance representation and the observation
model (classifier) play important roles, as in detection. Tracking-by-detection methods can be roughly
classified into two categories, the generative model and the discriminative model. The latter builds
an observation model by online collecting positive and negative examples from the initial or tracked
objects. Positive examples are usually sampled near the object location, which may be slightly different
from the true object example. These slight differences will be amplified during tracking, leading to
further drifting [8].

To address the tracking drift problem with discriminative models, in our previous work, we
proposed an exemplar-based model, referred to as exemplar-based linear discriminant analysis
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(ELDA) [9], which considers tracking as a specific object instance detection task, rather than a general
object category detection task as in object detection. Noticing that the trade-off between discriminative
ability and adaptivity is crucial to the training of a model-free tracker, we mainly considered the
following two aspects in the ELDA framework:

• The exemplar-based model is quite discriminative and specific, because it trains a linear
discriminant analysis (LDA) classifier using one positive example and massive negative examples.
Besides, to improve its discriminative ability, the ELDA tracker applies histograms of oriented
gradient (HoG) features [10] as the appearance representation of the object [9].

• On the other hand, the adaptivity of the exemplar-based model is improved by combining an
ensemble of detectors. Each detector (object model) is built based on a positive example; thus,
the exemplar-based model can be considered as a template-based method. Model (or template)
updating is very important to build a robust tracker.

While ELDA has demonstrated good performance in tracking, we observed that it could still be
improved in both discriminative ability and adaptivity.

(1) Discriminative ability

HoG is a quite discriminative representation, which is widely used in object detection tasks [10].
It is well known that HoG is an artificial feature, while learned features have dominated in computer
vision recently, especially convolutional neural network (CNN) features. CNN features achieve the best
performance in most tasks of object recognition [11–13], object detection [14,15], scene labeling [16],
action recognition [17], image super-resolution [18], etc. It has been shown that the CNN features have
even stronger discriminative ability than HoG.

Therefore, a natural question is: Can we use CNN features in visual tracking? To the best of our
knowledge, few works have considered that so far. There are two reasons in our opinion. First, very
large-scale training data are required to train a deep CNN. However, a small quantity of examples,
especially positive examples, can be acquired in the tracking procedure. In recent years, some works
proved that CNN features can be considered as a general representation [13]. If the features are
extracted by a deep network, they could be exploited for various tasks. That means CNN features with
a pre-trained deep network using a large-scale dataset can be used as appearance representation in
visual tracking. The second reason is that computing CNN features on each sliding window is quite
time consuming for tracking. Girshick et al. proposed an R-CNN method for object detection by first
selecting a small number of region proposals [14]. However, this strategy is not a good solution to
tracking-by-detection methods; because the candidate region is just around the object, and the error of
selected proposals will be amplified during tracking, resulting in drifting. Thus, CNN features can be
used to improve the discriminative ability, while a fast computation method is required for tracking.

(2) Adaptivity

There are two limitations of the ELDA tracker in the terms of adaptivity: (1) ELDA builds a
short-term object model using the object models within a fixed time window TM. To ensure robustness,
TM is typically set to a large value, e.g., TM = 500 in [9]. However, such a large number of examples
is redundant, because the object instances within a short time window are similar. Thus, selecting
a small set of “good” object models is a good solution to this problem. (2) The ELDA tracker models
the background as a Gaussian model; however, in fact, the background is quite complex in many cases.
A single Gaussian distribution is too simple to describe the complex background. A more powerful
model is required.

To this end, this paper presents an exemplar-based tracker based on CNN features and adaptive
model update for visual tracking (ECT), as shown in Figure 1. CNN features are introduced into the
exemplar-based tracking method for appearance representation and sped up by separately computing
convolutional layers and fully-connected layers. The VGG-F CNN architecture [19] is used in this
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paper, which contains five convolutional layers (conv1–5) and three fully-connected layers (fc6–8).
Generally, the feature of the seventh fully-connected layer (fc7) is used as a representation for many
tasks in computer vision. To speed up CNN feature extraction in this architecture, we first compute the
fifth convolutional feature maps (conv5) on the whole detection region and then compute the seventh
fully-connected layer (fc7) on each sliding window. To improve the adaptivity, we propose a method
to update object models by selecting the detectors with strong discriminative ability and uncorrelated
to other selected detectors; and build the background as a Gaussian mixture model (GMM) to cover
the complex variations of the scenes.

Normalized detection regionFrame #27
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Figure 1. An overview of the ECT tracking algorithm. The convolutional layers and fully-connected
layers of convolutional neural network (CNN) features are computed separately. We first compute
the Convolutional Layer 5 (conv5) feature maps on the whole detection region, and then compute
fully-connected layers (fc7) on each sliding window. The long-term object model is based on the object
instance in the first frame; the short-term object model is a more compact set of the previous object
models. The background model is a Gaussian mixture model (GMM), which is initialized offline and
updated online. Finally, CNN features are fed to an ensemble of exemplar-based LDA detectors for
tracking. The figure is best viewed in color.

There are four main contributions: (1) we introduce CNN features into the visual tracking tasks,
without training a deep network; (2) we proposed a two-step CNN feature extraction method to speed
up the algorithm; (3) a new strategy is proposed to update object models according to discriminative
ability and correlation; (4) GMM is used to build the background model, to improve the adaptivity in
the complex scene.

The rest of this paper is organized as follows. Related work is reviewed in Section 2. The
proposed ECT tracker is introduced in detail in Section 3. In Section 4, experimental results are
presented. Additionally, we conclude this paper in Section 5.

2. Related Work

2.1. Exemplar-Based Tracker

Unlike most tracking-by-detection approaches, ELDA considers visual tracking from a
different view, i.e., an object instance detection, rather than an object category detection. It alleviates
the drifting problem caused by the error of the samples used to train a classifier. The proposed tracker
follows the framework of the ELDA tracker [9]; thus, we first briefly introduce the ELDA tracker.
As a tracking-by-detection algorithm, the ELDA tracker uses an ensemble of exemplar-based
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detectors to distinguish a target object from its local background. Each exemplar-based detector is
trained using only one positive sample and massive negative samples, which can be considered as a
template-based method. This method is motivated by the work of exemplar-based SVM (ESVM).
The HoG feature is used as the appearance representation. That is to say, this work follows the
“HoG + ESVM” framework [20], which is quite popular in object detection or mid-level part detection.
The LDA classifier can be considered as a fast alternative to the SVM classifier [21].

2.2. Appearance Representations in Tracking-By-Detection Methods

Recently, tracking-by-detection has become an attractive tracking technique, which treats tracking
as a category detection problem and trains a detector to separate the object from the background.
We first refer the readers to some surveys [7,22–24]. The reason for the good performance of existing
tracking-by-detection methods is that many of them borrow some ideas from the the successful
detection methods, both in appearance representations and classifiers. Tracking-by-detection methods
can be classified into two categories, the discriminative model and the generative model. We will
first review some works along both lines, followed by some classifier techniques.

2.2.1. Discriminative Models

Haar-like features are among the most commonly-used representations in tracking [8,25–29],
especially in discriminative models. That is motivated by a popular detection method [30], which
combines Haar features and a boosting classifier together for detection. The most successful application
of this method is face detection. The binary pattern is another common representation method in
detection, which has also been introduced into tracking [31,32]. Ma and Liu used compact binary code
to represent object appearance with hashing techniques [33].

The Haar-like feature and binary pattern are very simple and fast; however, the discriminative
ability is not good enough for some variations of the objects. Some more powerful features are used
in tracking, for example the HoG feature [9,34–37] and the scale-invariant feature transform (SIFT)
feature [38].

Part-based models are also widely used in detection, due to their robustness to deformations,
occlusions, etc., which, naturally, have been borrowed to design a tracker [39].

2.2.2. Generative Model

The generative model-based methods are another branch of detection methods. This is also widely
used in tracking [40], by modeling the generative process of object/background and detecting the most
similar candidate in video sequences. The representation methods in this category, such as PCA [41],
sparse coding [42–47] and sparse PCA [48,49], are incorporated into tracking-by-detection algorithms.

Besides, some works combine tracking (-by-detection) and segmentation together for highly
non-rigid object tracking [50–52]. These methods perform well, especially with some challenging
attributes, such as deformations, occlusions, rotation and scale changes, by using the results of
segmentation to refine the tracking (-by-detection) model.

2.3. LDA

As a fundamental data analysis method that can be widely used for classification, dimensionality
reduction, interpretation of the importance of the given features, etc., LDA has been widely used in
computer vision, as well as other fields. However, LDA has several limitations in practice, and many
studies focus on these problems. For example, LDA can only be used in the linear case, which however
can be possibly extended to nonlinear LDA using the kernel trick [53]; the variance matrix may be
singular, called the singularity problem, which can be solved by using PCA as a pre-processing step
and then performing LDA [54] or using a representation model that represents a sample as a matrix
rather than a vector and the collection of data as a collection of matrices than a single large matrix
accordingly [55]; the original version of LDA is for two classes, and Rao extended LDA to multi-class
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cases [56], to find a subspace that appears to contain all of the class variability. In our paper, the
exemplar LDA model [21] is used to train a detector of each object exemplar. Exemplar LDA can be
regarded as a variant of LDA in the particular case of exemplar-based settings. Therefore, theoretically
speaking, it is likely that ELDA will be subject to the general limitations encountered in using LDA.
That is the reason we model the background as a GMM to adapt to the complex scenes, which is quite
similar to multiple class LDA.

2.4. Deep Networks in Tracking

While deep networks have been successfully used in many computer vision tasks, such as image
classification, object recognition, object detection, action recognition, segmentation, etc., they are not
so popular in object tracking, probably due to two reasons, that is the lack of training data and the
high computational complexity. However, some attempts have been made in this filed in recent years.
To address the problem of the lack of labeled samples, the authors in [57] and [58] trained a specific
feature extractor offline using a large number of auxiliary data, with convolutional neural networks and
stacked denoising autoencoder networks, respectively. Zhang et al. attempted to resolve this problem
in a different way, by extracting CNN features feed-forward for object tracking without learning, which
means no auxiliary data are required. To simultaneously deal with the two aforementioned problems,
Li et al. proposed the DeepTrack method, which learns feature representation online using a single
CNN. In this paper, we use CNN features as a representation, for which the network is trained offline.
However, CNN in our work is general, which means, unlike [57] and [58], we do not need to train
a specific network for our tracking algorithm. Although these deep learning-based tracking methods
have been proposed, we believe that more natural and effective ways to use deep networks in tracking
remain to be further explored.

2.5. Differences with ELDA

As mentioned above, our work follows the framework of ELDA proposed in [9], which uses
an ensemble of ELDA detectors for tracking. Our method has four main differences with ELDA in
terms of three modules (as presented in [7]) in tracking:

(1) Representation scheme. The proposed method uses CNN features for object representation, while
ELDA uses HoG features. Many recent works have proven to have better performance of CNN
features in object detection and many other computer vision tasks;

(2) Search mechanism. Both methods adopt the dense sampling search mechanism. However, our
method samples the candidate windows on the conv5 feature maps; while ELDA samples the
windows on the original image. The step length of the sliding window of the proposed method,
corresponding to the ordinal image, is not a fixed value, as seen in Section 3.2;

(3) Object model update. ELDA selects all of the models in a fixed time window to build the
short-term object models; while our method selects a small number of models by considering their
discriminative abilities and correlation among them. The models in our method are more compact.

(4) Background model. The ELDA tracker builds the background model as a single Gaussian model;
while the proposed method builds it as a Gaussian mixture model to improve its adaptivity in
complex scenes.

3. Our Method

3.1. ELDA Tracker

The ELDA tracker in frame k is composed of an ensemble of ELDA detectors:

Hk(X) = λ1H1(X) +
k

∑
i=2

λi Hi(X) (1)
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where X denotes a feature vector of a candidate sub-window and Hk(X) denotes an ELDA detector
obtained in frame k, which can be written as:

Hk(X) = ωT
k × X (2)

ωk = Σ−1
k (Xp

k − µk) (3)

where the value of Hk(X) is the confidence score corresponding to X, ωk denotes an object model and
(Σk, µk) is the background model.

ELDA consists of four parts: the long-term object model, the short-term object model, the offline
background model and the online background model. For more details of them, we refer the readers
to [9]. This work follows exactly the same framework as [9] in building all of the components except
for the short-term object model.

This section mainly focuses on the improved parts of our method. First, we use CNN features
(fast method) as appearance representation rather than HoG, presented in Section 3.2. CNN features
are proven to be more discriminative. Second, we update the short-term object model by a new strategy,
as seen in Section 3.3. Thus, a small number of effective object models is used for tracking. Finally, we
model the background as a GMM, and update it online, introduced in Section 3.4.

3.2. Appearance Representations

We introduce CNN features for appearance representation into the exemplar-based tracker, which
represents an image region of a searching window as a holistic descriptor. We follow the “CNN + SVM
(LDA)” framework to build the exemplar based detectors. That is to say, the 4096-dimensional CNN
feature vector of a positive sample is fed into an exemplar LDA classifier to train a detector. Since
the input to CNN is of the fixed size N × N × 3 (224× 224× 3 in the VGG-F CNN architecture [19]),
we normalize the windows of the size w× h× 3 (w and h are the width and height of the windows,
respectively) to N × N × 3 by bilinear interpolation, to fit the CNN network. The 4096-dimensional
feature vector is usually taken on the sixth or seventh fully-connected layer (fc6 or fc7).

Calculating the 4096-dimensional feature vector over each densely-sampled window directly is
quite time consuming, because some convolutional features are computed several times. We notice that
the convolutional layers can generate the feature maps of any sizes, in a sliding window manner, and
the convolutional layers need not to have a fixed image size; while the fully-connected layers require
a fixed feature (input) size. That is to say, the fixed size constraint comes only from the fully-connected
layers [12]. Hence, to speed up the computation of the CNN features of all of the candidate sliding
windows, we separately operate the convolutional layers and the fully-connected layers in two steps,
as shown in Figure 1. This is partly motivated by [12]. Specifically, the algorithm of two-step CNN
features extraction is shown in Algorithm 1.

Algorithm 1 Two-step CNN feature extraction

Input:
The image region to be detected;

Output:

The CNN features of each sub-window;
The bounding box of tracking result in the original image;

1: pre-compute the conv5 feature maps on the entire detection region;
2: slide the 13× 13 window on conv5 feature maps, and compute fc7 features on these patches;
3: compute the scores of the patches using the ECT tracker, and find the final result by the

non-maximum suppression (NMS) algorithm;
4: calculate the bounding box (tracking result) in the original image corresponding to each window

on the conv5 feature maps by Equations (4) and (5).
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It can be seen that we compute the conv5 feature maps over the entire region only once, which
avoids repeatedly computing the convolutional features. The candidate patches for detection are
densely sampled on the conv5 feature maps. In the VGG-F CNN architecture [19], the size of candidate
patches is 13× 13, which fits the input size of fc6. For each candidate patch, its representation is the
output feature of fc7. Next, we introduce the method of position transition, from conv5 feature maps
to the normalized image and from the normalized image to the original image. We denote a region
position P in an image or a feature map using the top-left position pl,t and bottom-right position pr,b.
The position of a result window in a conv5 feature map is denoted as Pconv5. Then, we present how
to obtain the final position Pori in the original image. The corresponding position in the normalized
image region Pnor can be calculated by:{

pnor
l,t = (pconv5

l,t − 1)× s + bγc − ol,t

pnor
r,b = (pconv5

r,b − 1)× s− dγe+ or,b
(4)

where γ is the radius of the receptive field in the normalized image of each pixel in conv5 feature maps,
s is the effective stride and ol,t and or,b are respectively the offsets of the top-left and bottom-right
positions, as in [12]. Additionally, the position Pori in the original image can be obtained by:{

pori
l,t = pnor

l,t × w/N
pori

r,b = pnor
r,b × h/N

(5)

We present an example to illustrate how to calculate the final position in the original image in
Figure 2. Note that, in our work, the step length of the sliding window may vary with the size of the
object window for different video sequences, which can be approximated by:{

Shor = round(16× w/N)

Sver = round(16× h/N)
(6)

where Shor and Sver are the horizontal and vertical step lengths, respectively.

Figure 2. Corresponding relations of positions in: (a) conv5 feature maps; (b) the normalized image
region; and (c) the original image. The red rectangles denote the corresponding regions in these
three images. The positions of the windows (with top-left coordinates and sizes) in different images are
listed below these images.
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3.3. Object Model Update

The exemplar-based model with CNN features is quite discriminative. To build a robust tracker,
we should improve its adaptivity by updating short-term object models (note that, the way to build the
long-term object model is the same with [9]). In this paper, the short-term object model is updated by
selecting the detectors with strong discriminative ability and uncorrelated to other selected detectors.
Gao et al. employed a sliding time window to select the object models [9]. Some other methods can be
used, as well, like cluster methods, the random selection method, and so forth. For the precision and
running speed of our tracker, we propose a greedy method to select “good” object models, as shown in
Algorithm 2. We first rank all of the short-term object models by their discriminative ability, resulting
in a candidate set of object models. We then take an object model from the candidate set in order and
add it into the final short-term object model set, if it is uncorrelated to other selected detectors. In our
method, the discriminative ability of a model ωi is measured by the confidence score Hi(Xk) to the
current positive example Xk, while the correlation between a candidate model ωu and a selected model
ωz is measured by the distance of their confidence scores to all tracking results. More precisely, the
distance disz from ωu to ωz can be computed as:

disz =
k

∑
i=1

(Hu(Xi)− Hz(Xi))
2 (7)

Note that, the model size Z < L is possible, in which case we can change the threshold τ to repeat
our algorithm. However, considering the efficiency of our method, we will not do this more than once.

Algorithm 2 Object model updating algorithm

Input:
The set of all the short-term object models {ωi}, (i = 2, 3, ..., k);
The set of the representations {Xk} of tracking results; k is the index of current frame;
The predefined threshold τ;
The maximum size of final object models L;

Output:
The final object modelsR;

1: rank all the models {ωi} using the scores of Hi(Xk) = ωT
i × Xk;

2: take the top M models as candidates C = {ωm}, m = 1, 2, ..., M;
3: take the first model ωu (u = 1) from C, and put it intoR; its size is Z = 1;
4: while Z ≤ L&u ≤ M do
5: take a model from C in order (from two to M), denote as ωu;
6: f lag = 1;
7: for z = 1 to Z do
8: compute the distance disz from ωu to ωz by Equation (7);
9: if disz < τ then

10: f lag = 0;
11: break;
12: end if
13: end for
14: if f lag == 1 then
15: put ωu intoR;
16: Z = Z + 1;
17: end if
18: end while
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3.4. Background Model Update

We model the background as a GMM with C components, denoted by:

MB = {(pc, µc, Σc)}, c = 1, 2, ..., C (8)

where pc, µc, Σc respectively represent the prior probability, mean and covariance of the c-th component.
Let us denote by MB

k = {(pk,c, µk,c, Σk,c)}C
c=1 the background model maintained at the time instance k.

The initial model MB
0 is built offline, by using a large amount of negative samples on some natural

images. We use the expectation maximum (EM) algorithm to calculate MB
0 .

We update the background model online to improve the adaptivity by some negative samples
quite relevant to the tracking task. At the time instance k, we calculate the model MB

k using the previous
model MB

k−1 and new negative samples. Let us denote by Xk,c the collection of the nc negative samples
that match the c-th component and by Nk,c the number of samples used in calculating MB

k , and let
Sk,c = Xk,c · XT

k,c. The iteration step of the online background model update can then be given by:

pk,c = pk−1,c + α(1− pk−1,c) (9)

Nk,c = Nk−1,c + nc (10)

Sk,c = Sk−1,c + Xk,c · XT
k,c (11)

µk,c = µk−1,c ∗ Nk−1,c/Nk,c + µk,c (12)

Σk,c = (Sk,c − Nk,cµk,c · µT
k,c)/(Nk,c − 1) (13)

where α is the learning rate.

4. Experimental Results

In this section, we evaluate the proposed tracking method (denoted as ECT), in comparison with
other state-of-the-art trackers, on the CVPR2013 benchmark dataset [7] consisting of 50 sequences.
This dataset covers 11 challenging scenarios for visual tracking, i.e., illumination variation, scale
variation, occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation,
out-of-view, background clutters and low resolution. This dataset is an up-to-date comprehensive
benchmark specifically designed for evaluation of tracking performance.

4.1. Implementation Details

For the object representation, we extract CNN features for appearance representation in this
work, using the public MATLAB code MatConvNet (the code of MatConvNet can be found at:
http://www.vlfeat.org/matconvnet/). We apply imagenet-vgg-f [19] as the pre-trained CNN model,
which was trained to perform object classification on ILSVRC13 [59]. The input image of this CNN
architecture is 224× 224× 3 in dimension; the conv5 feature maps are 13× 13× 256 in dimension; and
the feature vector on fc7 is 4096 in dimension. In our two-step CNN extraction process, the size of
input image is no smaller than 224× 224; the size of conv5 feature maps is related to the input image;
and the size of sliding windows on conv5 is 13× 13, each window products of an fc7 feature vector of
4096 in dimension. Here are other parameters of this network in Equation (4): the radius of the
receptive field r = 139/2, the stride s = 16, the top-left offset ol,t = 63 and the bottom-right offset
or,b = 75 [12]. For the object model updating, the size of candidate models is M = 100; the maximum
size of the final models is L = 20; and the threshold is τ = 0.3. For the background model updating,
the number of Gaussian distributions in GMM is C = 7; the learning rate is α = 0.7.

To build the offline background model, we collected more than 1,000,000 patches (64× 64 pixels) by
randomly sampling on the 5096 images of the PASCAL VOC 2008 dataset [60]. Then, the CNN feature
is extracted to build the initial background model by normalizing them to 224× 224 using bilinear
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interpolation; and the online negatives are sampled in the ring area with 5 < d ≤ 30. The detecting
area Rd is also set to 30. Note that the step of the sliding window relates to the size of object. This
sample scheme is coarser than the dense sample scheme in general.

The tracker was implemented using MATLAB and C/C++. The average time cost for all testing
sequences is about 2 fps on a workstation with Intel Xeon E5-2650 CPU (2.6 GHz) and an Nvidia Tesla
K20C GPU. In our implementation, CNN features and the exemplar LDA classifier are computed using
GPU. We also test the average time cost with the CPU only, which is about 0.6 fps. Note that our code
is implemented without intensive program optimizations, such as parallel programming, which can
be used to reduce the time cost of our tracker.

4.2. Overall Performance

We run the one-pass evaluation (OPE) [7] on the CVPR2013 benchmark using the proposed ECT
tracker. Many trackers are compared in our experiment. The work [7] compares 29 popular trackers on
this benchmark dataset. Besides the 29 trackers, we also compare our tracker to some other trackers,
whose results on the benchmark are reported in recent past, i.e., SCEBT [61], ELDA [9], KCF [36],
TGPR [62] and DLT [58]. Thus, 35 trackers in total are compared in our experiment.

Two common evaluation criteria are used for quantitative comparison, namely the precision plot
and the success plot, proposed by [7]. First, we define these two criteria briefly. Both of them measure
the percentage of successfully-tracked frames over an entire video against the densely-sampled
threshold. In the precision plot, the threshold is the central location error (CLE), while in the success
plot, the threshold is the bounding box overlap ratio (OR). For each frame, the result is denoted as
the tracked bounding box BT and the central location CT , which for the ground truth are BG and CG,
respectively. CLE is defined as the average Euclidean distance (in pixels) between CT and CG. OR
is defined by the intersection over union (IOU) metric area(BT

⋂
BG)

area(BT
⋃

BG)
. To rank the trackers, we use the

threshold metric (at 20) for the precision plot, while the area under the curve (AUC) metric for the
success plot. The evaluation plots are computed using the tool provided by [7].

The precision and success plots for OPE are shown in Figure 3. All 35 trackers mentioned above
are compared in this experiment, but only the top ten trackers with respect to the ranking scores are
reported in each plot. The trackers appearing in these two plots and not mentioned above are as
follows: Struck [29], SCM [44], TLD [31], VTD [49], ASLA [43]. The ranks are set with the score
at threshold 20 and the AUC score for precision and success plots, respectively. The scores are also
presented in the square brackets with the name of the trackers. Figure 3 shows that the proposed
ECT achieves overall the best performance using both metrics. The remarkable performance gain
obtained on such a large dataset demonstrates that our proposed method is very robust to the general
challenges in tracking (the detailed results of the proposed method can be found on the project web
page: https://sites.google.com/site/changxingao/ecnn).
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Figure 3. The precision plot and success plot for one-pass evaluation (OPE) on the CVPR2013
benchmark. The top ten trackers with respect to the ranking scores are shown in each plot. The
figure is best viewed in color.
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Then, we discuss the performance of ECT with the 11 challenging attributes, the precision and
success plots are shown in Figure 4. The ranks are set with the score at threshold 20 and the AUC
score for the precision and success plots respectively. It can be seen that ECT achieves the best
performance in all 11 attributes using both metrics, expect in scale variation using the success plot.
That demonstrates the robustness of our tracker to various challenges, especially to deformations, fast
motions, background clutters and low resolution challenges. As mentioned above, ECT dose not rank
first with scale variation challenge using the success plot. We believe the reason is that the detectors in
ECT are designed for a fixed scale.
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Figure 4. Average precision plot and success plot for OPE on the tracking benchmark dataset
with 11 challenging attributions. The top ten trackers with respect to the ranking scores are shown in
each plot. The figure is best viewed in color.
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4.3. Quantitative Comparison

To further evaluate the robustness of our method in detail, we compare it against the other
seven trackers, the top two of the 29 trackers reported in [7] (Struck [29], SCM [44]) and five trackers
mentioned above (SCEBT [61], KCF [36], TGPR [62], DLT [58], ELDA [9]). For better analysis of the
effectiveness of the ECT tracker, we first report the tracking performance at several different thresholds
based on both the precision metric and the success rate metric in Tables 1 and 2, respectively. The
ECT tracker consistently outperforms other trackers at different thresholds. These comparison results
demonstrate the superiority of the ECT tracker.

Table 1. Tracking performance at different thresholds based on the precision metric for 8 trackers
on the benchmark dataset (p@x means the precision metric at the central location error x). Bold and
underlined values indicate best and second best performance.

Methods p@5 p@10 p@15 p@20 p@25

Struck [29] 0.355 0.519 0.605 0.656 0.690
SCM [44] 0.416 0.557 0.617 0.649 0.670
ELDA [9] 0.416 0.589 0.667 0.717 0.744

SCEBT [61] 0.433 0.591 0.673 0.714 0.740
KCF [36] 0.365 0.592 0.697 0.740 0.767

TGPR [62] 0.384 0.607 0.713 0.766 0.791
DLT [58] 0.349 0.461 0.540 0.587 0.613

ECT 0.457 0.679 0.788 0.847 0.876

Table 2. Tracking performance at the different thresholds based on the success rate metric for 8 trackers
on the benchmark dataset (p@x means the success rate metric at the bounding box overlap ratio x).
Bold and underlined values indicate best and second best performance.

Methods p@0.3 p@0.4 p@0.5 p@0.6 p@0.7

Struck [29] 0.669 0.614 0.559 0.476 0.354
SCM [44] 0.681 0.656 0.616 0.548 0.440
ELDA [9] 0.727 0.685 0.637 0.555 0.431

SCEBT [61] 0.738 0.690 0.642 0.581 0.482
KCF [36] 0.730 0.683 0.623 0.524 0.393

TGPR [62] 0.769 0.716 0.646 0.539 0.377
DLT [58] 0.591 0.558 0.507 0.442 0.358

ECT 0.852 0.810 0.755 0.656 0.488

For intuitive demonstration, Figure 5 presents a qualitative comparison of the tracked bounding
box with the eight trackers using both metrics on twelve challenging sequences. The challenging
attributes of these sequences have been annotated in the benchmark [7]. The comparison results
demonstrate the good performance of the ECT tracker in both accuracy and adaptivity.

Although ECT does not need to train a deep network during tracking, the CNN features are
used to represent objects. Thus, we also compare our method to some deep learning-based tracking
algorithms, i.e., DLT [58], DeepTrack [63], CNT [64], SO-DLT [65], in terms of the score at threshold 20
for the precision plot and the AUC score for the success rate plot; because the detailed results of the
bounding box at each frame of DeepTrack, CNT and SO-DLT are not public. The comparison results
are reported in Table 3, which shows that ECT performs comparably to DeepTrack and significantly
better than the others.
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Struck SCM ELDA SCEBT KCF TGPR DLT ECT

Figure 5. Tracked bounding box results comparisons of eight trackers in 12 videos. The figure is best
viewed in color.

Table 3. Comparison of the deep learning-based trackers and our approach in terms of score at
threshold 20 for the precision plot (TP) and the AUC score for the success rate plot (ASR), on the
CVPR2013 benchmark. Bold and underlined values indicate best and second best performance.

Methods DLT DeepTrack CNT SO-DLT ECT

TP 0.587 0.83 0.612 0.819 0.847
ASR 0.436 0.63 0.471 0.602 0.605

4.4. Evaluation of Components

To verify the contributions of each of the three proposed components, including the appearance
representation using CNN features, the object model and the background model, we build
three variants of the ECT tracker for comparative study, which are detailed as below:

• ELDA_CNN: replacing the HoG representation in ELDA with CNN features;
• ECT-OM: removing the proposed object model from ECT;
• ECT-BM: removing the proposed background model from ECT;

Note that, in building these variant trackers, we keep unchanged everything except for the
highlighted modifications above. Furthermore, note that we include the ELDA tracker in our
comparison, as well, since the current work basically follows the ELDA framework.

The comparison results are reported in Figure 6. It can be seen that ELDA_CNN obviously
outperforms ELDA; this proves that CNN features play the most important role in the ECT tracker.
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That is because appearance representation is most critical (as pointed out in [66]), and CNN features
are quite discriminative. ECT-OM performs better than ECT-BM, which means that the object model is
less important than the background model. The reason is that, modeling the background as a GMM
allows our tracker to adapt to the complex scenes, while selecting a subset of object instances to build
an object model designed in consideration of tracking speed. Surprisingly, ECT slightly outperforms
ECT-OM, which means the selected compact object model is more effective, by dropping out some
bad models.
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Figure 6. The precision plot and success plot of different versions of our method for OPE on the
CVPR2013 benchmark. The top ten trackers with respect to the ranking scores are shown in each plot.
The ranks are set with the score at threshold 20 and the AUC score for precision and success plots,
respectively. The figure is best viewed in color.

5. Conclusions

This paper has proposed to enhance the ELDA tracking algorithm by CNN features and adaptive
model update. CNN features are used as the object representation; and a two-step CNN feature
extraction method has been proposed for fast computation; an object model update method is
employed to build a compact object model; and the background model is described using a GMM.
Promising results on video sequences of the CVPR2013 benchmark with various challenges showed
that our method outperforms the state-of-the-art tracking algorithms, which demonstrated the
robustness of our method. We are considering the following for the future work. We are searching for
a method to refine the network during the tracking procedure, with low time cost. In this paper, the
CNN architecture is pre-trained, which is not sufficiently specific to track an object instance.
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Abbreviations

AUC area under the curve
CNN convolutional neural networks
ELDA exemplar-based linear discriminant analysis
HoG histograms of oriented gradients
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GMM Gaussian mixture model
IOU intersection over union
LDA linear discriminant analysis
NMS non-maximum suppression
OPE one-pass evaluation
SIFT scale-invariant feature transform
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