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Abstract: Special features in real marine environments such as cloud clutter, sea glint and weather
conditions always result in various kinds of interference in optical images, which make it very
difficult for unmanned surface vehicles (USVs) to detect the sea-sky line (SSL) accurately. To solve
this problem a saliency-based SSL detection method is proposed. Through the computation of
gradient saliency the line features of SSL are enhanced effectively, while other interference factors are
relatively suppressed, and line support regions are obtained by a region growing method on gradient
orientation. The SSL identification is achieved according to region contrast, line segment length and
orientation features, and optimal state estimation of SSL detection is implemented by introducing
a cubature Kalman filter (CKF). In the end, the proposed method is tested on a benchmark dataset
from the “XL” USV in a real marine environment, and the experimental results demonstrate that the
proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate
and real-time performance, and its accuracy and stability are effectively improved by the CKF.

Keywords: unmanned surface vehicle; sea-sky line; gradient saliency; region growing; line
support region

1. Introduction

In recent years, with their rapid development USVs are playing more and more important roles in
various areas such as meteorological monitoring, maritime search and rescue, enemy reconnaissance
and precision military strikes. To navigate autonomously and accomplish a variety of missions without
human interventions, USVs need to be equipped with different sensors like radars, cameras and
thermal infrared imagers to perceive and comprehend the marine environment and all kinds of targets
around them, and intelligent behaviors including target detection, identification and tracking are
implemented autonomously. As a result, cameras have become an indispensable important sensor for
USVs due to their high resolution, abundant information, similarity to the human visual system and
low cost.

In the optical images obtained by cameras in the marine environment, the sea-sky line (SSL) is
one of the most important cues. Firstly, in optical images where the SSL represents a dividing line, the
sky region above and the sea region below have different pixel value distributions [1], so the accurate
detection of SSL is of great benefit to target detection. Secondly, while a distant target enters into
the field of view (FOV) of a camera, in optical images it always appears around the SSL, and then
moves into the sky region or the sea region during the approaching process, therefore the detection of
SSL is an effective measure to improve the target detection, identification and tracking performance
through narrowing the target searching range and suppressing false detections. Thirdly, according to
the position and motion pattern of the detected SSL, the motion status of USVs can be estimated and
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motion compensation of images can be implemented, which is quite applicable to USV target detection
and tracking.

In optical images the SSL presents itself a dividing line composed of a gradient of maximum
pixels between the sky region and the sea region, which is a straight line without consideration of sea
surface curvature and optical distortion. However, in optical images from real marine environments
there often exist strong interferences, including cloud clutter and sea glint, besides, changeable weather
conditions like fog, snow or rain can seriously decrease the image contrast and sharpness and brings
about noise in images, causing great difficulties for accurate SSL detection.

Kim, et al. extracted horizon pixels based on calculation of a column directional gradient, then a
random sample consensus (RANSAC) algorithm was applied to select inlier horizon pixels and the
final horizon was detected stably by least squares optimization [2]. However, the RANSAC line fitting
method is quite sensitive to widely distributed noise and strong edges and the authors claimed sensor
pose information was exploited to predict the horizon location.

Zou, et al. proposed a shearlet-based edge identification method for SSL detection in infrared
images [3]. Shearlets are capable of direction information analysis and can provide edge geometric
features, but the computational complexity is rather high and such a method is not suitable for real-time
applications at all.

Rahman, et al. accomplished horizon detection with the Canny edge detection and Hough
transform methods [4–8], but the Hough transform needs a compromise between detection accuracy
and computational complexity, moreover, it suffers from interference of strong edges and noise like
cloud clutter and wave glint, and the Hough transform often fabricates false line segments.

Tang, et al. proposed a SSL detection method based on Radon transform [9], but this method
faces the same problems as the Hough transform, besides, the Radon transform cannot determine the
endpoints of line segments.

Rahul, et al. proposed a theoretical framework for generating pseudospectral images from
spectrum analysis of color images, and then an ellipse fitting method derived from calculation of inertia
moments of connected components in binary edge images was introduced for horizon detection [10].
However, when the image contrast or sharpness is weak, or strong interference edges exist, the
probability of false detection increases significantly.

Ahmad, et al. designed a maximally stable external edge detection method on the basis of Canny
edges, then a support vector machine classifier was trained to classify edge points using local scale
invariant features, and finally, a dynamic programming method was applied to extract the horizon
lines [11]. However, machine learning methods always need a large amount of samples to train
the classifier, and the great variations of illumination, reflection, scattering and clutter in marine
environments brings great challenges for these methods.

Nasim, et al. presented an approach employing the segmentation of sea surface scenes into several
clusters with a K-means algorithm, then analyzed image clusters to extract the sky region and find a
horizon path between the sky region and the other clusters [12], but for these region segmentation
methods, special features in the sea-sky scene such as low contrast, weak sharpness, cloud clutter and
sea glint may lead to large misalignment or false horizon line detections.

In this paper a novel saliency-based SSL detection method is proposed. Through the computation
of gradient saliency the line features of SSL are enhanced effectively, while other interference factors
are relatively suppressed, and line support regions (LSR) are obtained by a region growing method
based on gradient orientation. The SSL identification is achieved according to region contrast, line
segment length and orientation features of LSRs, and an optimal state estimation of SSL detection is
implemented by introducing CKF.

The structure of this paper is as follows: firstly, the hardware architechture and the principle of the
optoelectronic imaging unit mounted on the “XL” USV are introduced. Then the key algorithms, such
as gradient saliency calculation, region growing algorithm based on gradient orientation, improvement
of detected line features, identification of SSL, and improvement of accuracy and stability based on
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CKF, are detailed in the following sections. Finally, our proposed method is tested on a benchmark
dataset from the “XL” USV in a real marine environment to demonstrate its effectiveness.

2. Hardware Architecture

An optoelectronic imaging unit capable of 2-axis image stabilization is developed in our research
work, and it is mounted on the “XL” USV to acquire optical images in real marine environments.
The hardware architecture is presented in Figure 1, where the optoelectronic imaging unit consists
of three main parts: horizontal bearing stabilization servo, vertical pitch stabilization servo and
stabilization control. Horizontal bearing stabilization servo, the principle of which is the same as
vertical pitch stabilization servo, uses a MEMS gyroscope to measurethe horizontal angular velocity
caused by USV motion disturbances on the camera, and uses an angle encoder to measure the
horizontal angular position of the camera. The sensor data is transmitted to the stabilization control,
which generates control signals for the torque motor according to PID control law, and the torque
motor drives the slip ring on which the camera is mounted to rotate to compensate the horizontal
angular velocity caused by disturbances.
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Figure 1. Hardware architecture of the optoelectronic imaging unit. 

The digital video signal of the camera is grabbed and compressed into a video stream by 
stabilization control system, which executes some intelligent actions such as SSL detection, target 
detection, target identification and target tracking at the same time. The video stream can be saved 
on local hard disks or transmitted to a real-time monitoring terminal far away through a  
suitable datalink. 

3. Detection of Line Features 

The diagram of the proposed SSL detection method is presented in Figure 2. Firstly, the 
gradient saliency is calculated based on RGB color space of optical images. Secondly, the saliency 
list is constructed and a region growing algorithm is applied to produce LSRs. Thirdly, the line 
features are extracted and improved on the basis of detected LSRs. Finally, the real SSL needs to be 
identified from candidate line features, and the accuracy is further improved by CKF according to 
previous state estimation and current detection. 

Figure 1. Hardware architecture of the optoelectronic imaging unit.

The digital video signal of the camera is grabbed and compressed into a video stream by
stabilization control system, which executes some intelligent actions such as SSL detection, target
detection, target identification and target tracking at the same time. The video stream can be saved on
local hard disks or transmitted to a real-time monitoring terminal far away through a suitable datalink.

3. Detection of Line Features

The diagram of the proposed SSL detection method is presented in Figure 2. Firstly, the gradient
saliency is calculated based on RGB color space of optical images. Secondly, the saliency list is
constructed and a region growing algorithm is applied to produce LSRs. Thirdly, the line features
are extracted and improved on the basis of detected LSRs. Finally, the real SSL needs to be identified
from candidate line features, and the accuracy is further improved by CKF according to previous state
estimation and current detection.
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Figure 2. Block diagram of the proposed SSL detection method. 

3.1. Gradient Saliency 

Saliency originates from visual uniqueness, unpredictability, rarity or surprise, and it is tightly 
related to human perception and processing of visual stimuli. The human visual system always pays 
more attention to variations in images like color, gradient and edges, and high gradient edges arouse 
intense stimuli in the visual system, in other words, high gradient edges obtain high saliency [13]. In 
this paper global gradient saliency based on the RGB color space is introduced. The reason for 
choosing RGB color space instead of gray space in the calculation of gradient saliency is that 
gradient information is lost in the transformation from a RGB color image to a gray image, for 
instance, different color values could be projected into the same gray value [14], which will have a 
negative influence on SSL detection as a result. 

Given an optical image I, the gradient submatrix for each color can be calculated through 
convolution of the color value submatrix with Sobel operators, thus the gradient saliency of a pixel i 
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3.1. Gradient Saliency

Saliency originates from visual uniqueness, unpredictability, rarity or surprise, and it is tightly
related to human perception and processing of visual stimuli. The human visual system always pays
more attention to variations in images like color, gradient and edges, and high gradient edges arouse
intense stimuli in the visual system, in other words, high gradient edges obtain high saliency [13].
In this paper global gradient saliency based on the RGB color space is introduced. The reason for
choosing RGB color space instead of gray space in the calculation of gradient saliency is that gradient
information is lost in the transformation from a RGB color image to a gray image, for instance, different
color values could be projected into the same gray value [14], which will have a negative influence on
SSL detection as a result.

Given an optical image I, the gradient submatrix for each color can be calculated through
convolution of the color value submatrix with Sobel operators, thus the gradient saliency of a pixel i in
image I is formulated as a distance measure between the gradient of pixel i and the other pixels:

Spiq “
ÿ

jPI

Dpgi, gjq (1)

where Dpgi, gjq denotes the distance measured between gradient vectors gi and gj of pixels i and j
in image I. Let the pixel number in image I be N the computational complexity of gradient saliency
calculation for all pixels is O(N2). Actually, the definition of gradient saliency ignores spatial relations
among pixels, therefore pixels with the same gradient will have the same gradient saliency, and
gradient saliency can be rewritten as follows [13]:

Spiq “
n
ÿ

k“1

hpgkqDpgi, gkq (2)

where n is the number of distinct gradient vectors in image I, gk and hpgkq denote the gradient vector
and its probability, respectively. Then the computational complexity of gradient saliency calculation is
reduced to O(N + n2). The distance measure Dpgi, gkq is described as follows:

Dpgi, gkq “ ||gi ´ gk||1

gi “
”

BRi BGi BBi

ıT (3)



Sensors 2016, 16, 543 5 of 18

where ||gi ´ gk||1 denotes the `1 norm of vector gi ´ gk. If the gradient level of each color is
normalized to l, then the number of distinct gradients is n = l3 and there will be 3l kinds of gradient
saliency. The accurate quantization of gradient saliency is beneficial to SSL detection accuracy, but the
computational cost is high and there will be more SSL gaps. Subsequently, in this paper the gradient
amplitude and orientation are used for gradient saliency calculation as follows [15]:

gi “
!

1
2

“

pϕxx `ϕyyq ` pϕxx ´ϕyyq ¨ cos2θi ` 2ϕxy ¨ sin2θi
‰

)
1
2

θi “
1
2 arctan

´

2ϕxy
ϕxx´ϕyy

¯ (4)

where θi is gradient orientation of pixel i, and quantities ϕxx, ϕxy and ϕyy are defined as follows:

ϕxx “
BRi
Bx
BRi
Bx `

BGi
Bx
BGi
Bx `

BBi
Bx
BBi
Bx

ϕxy “
BRi
Bx
BRi
By `

BGi
Bx
BGi
By `

BBi
Bx
BBi
By

ϕyy “
BRi
By
BRi
By `

BGi
By
BGi
By `

BBi
By
BBi
By

(5)

Then the distance measure Dpgi, gkq is simplified as follows:

Dpgi, gkq “ |gi ´ gk| (6)

If the gradient level is normalized to l, then the number of distinct gradients is n = l and there will
be l kinds of gradient saliency. The computational cost is effectively reduced, and experiments show
that the continuity and accuracy of detected SSL are satisfactory.

The gradient maps and gradient saliency maps of optical images acquired by the “XL” USV in
typical adverse weather are presented in Figure 3. Figure 3a–c shows the typical original images
obtained in rainy weather, sunny weather with strong illumination and foggy weather, respectively.
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The gradient maps shown in Figure 3d–f are obtained through convolution of the original images
with Sobel operators; note that there exist high gradient edges formed by certain elements such as the
USV hull, mountains, sunlight illumination and wave glint, which make it very difficult to distinguish
and accurately detect SSLs with relatively weak gradient. In gradient saliency maps, as shown in
Figure 3g–i, the line features of SSL are effectively enhanced, although strong edges formed by various
interference still exist and part of the SSL is missing, the SSL can already be detected accurately in
all probability.

3.2. Region Growing Based on Gradient Orientation

The basic idea of region growing methods is that spatially neighboring pixels with similar
properties should be clustered together to constitute connected regions. The SSL in optical images
shows typical line features, which are actually rectangular regions with a width of several pixels
formed by neighboring pixel sets with high gradient and similar orientation, therefore we can consider
the use of region growing methods to detect line features in gradient saliency maps [16]. In this
paper the seed points of region growing are selected according to gradient saliency, the criterion for
growth is defined as similarity of gradient orientation, and the proximate rectangle regions with similar
gradient orientation, known as LSR, are obtained as a result. Observing gradient saliency maps, we
can conclude that pixels with high gradient saliency and geometric property actually account for a very
small proportion, thus we can select a specific proportion of pixels with the highest gradient saliency
to participate in region growing, and that will effectively decrease the computational complexity of the
region growing method. The region growing process based on gradient orientation can be described
as follows:

Step 1. Calculate the histogram of gradient saliency, select 10% of pixels with the highest gradient
saliency in the histogram and sort them in the order of gradient saliency to construct a saliency list L,
set all the pixels in L as “unlabeled”;

Step 2. Pick up an “unlabeled” pixel i from saliency list L in sequence, initialize a LSR Ck as a
null set, add pixel i into Ck and set it as “labeled” in L, and initialize the region orientation θk of Ck as
gradient orientation of pixel i;

Step 3. For each pixel j in Ck, if its 8-connected pixel l is “unlabeled” in saliency list L, and satisfies
the condition as follows [16]:

|θk ´ θl| ă τ (7)

where θl is gradient orientation of pixel l, τ is tolerance of region growing and τ “ π{8, then add pixel
l into Ck and set it as “labeled”. Update the region orientation as follows:

θk “ arctan

ř

jPCk

sinθj

ř

jPCk

cosθj
(8)

If there is a new pixel added into Ck, then repeat this step;
Step 4. Repeat Steps 2 and 3 until all the pixels in saliency list L are “labeled”.

As shown in Figure 4a–c, the gradient saliency histograms are calculated by the gradient saliency
maps shown in Figure 3g–i, where the red dot dashed lines denote the thresholds of 10% of pixels with
the highest gradient saliency. Figure 4d–f are saliency lists displayed in graphical format showing that
the saliency lists essentially contain all the effective edges in the corresponding gradient saliency maps.
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The region growing process based on gradient orientation is illustrated by the example of a
20 ˆ 20 local region around SSL, as shown in Figure 5.
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Figure 5. Region growing process based on gradient orientation. (a) is the original image of the local
region; (b–d) show the LSR in growing; (e) is the final LSR in the end of region growing; (f) is minimum
enclosing rectangle of the LSR.

Figure 5a presents the original image of the local region, and the gradient orientation of each
pixel is indicated by an arrow, as depicted in Figure 5b, where the red one denotes a seed point with
maximum gradient saliency. In Figure 5c a LSR is obtained by region growing from the seed point,
through appending to the seed point neighboring pixels that have high gradient saliency and similar
gradient orientation, the LSR continues growing along the SSL, as shown in Figure 5c, until the final
LSR depicted in Figure 5e is formed. The blue rectangle in Figure 5f is the minimum enclosing rectangle
of the obtained LSR.
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3.3. Line Feature Extraction and Improvement

LSRs obtained by the region growing method indicate line features that exist in optical images,
the mathematical description of line features can be generated by calculating statistical parameters of
the LSR. The saliency centroid pxk, ykq of LSR Ck can be calculated as follows:

xk “

ř

iPCk

Spiqxi

ř

iPCk

Spiq
, yk “

ř

iPCk

Spiqyi

ř

iPCk

Spiq
(9)

where pxi, yiq is pixel coordinates of pixel i, Spiq is gradient saliency of pixel i. The correlation matrix
Φk of LSR Ck is formulated as follows [16]:

Φk “

«

φxx φxy
φxy φyy

ff

(10)

where φxx, φxy and φyy are second order saliency central moments defined as follows:

φxx “

ř

iPCk

Spiqpxi´xkq
2

ř

iPCk

Spiq ,φyy “

ř

iPCk

Spiqpyi´ykq
2

ř

iPCk

Spiq

φxy “

ř

iPCk

Spiqpxi´xkqpyi´ykq

ř

iPCk

Spiq

(11)

The main orientation θk of LSR Ck should be the angle denoted by eigenvector associated with
the smaller eigenvalue of correlation matrix Φk. The line feature represented by Ck corresponds to
a geometric object that is a minimum enclosing rectangle Rk of Ck with the main orientation θk. To
calculate the length lk and width wk of Rk for LSR Ck, which are also the size of the line feature
represented by Ck, all the pixels in Ck are rotated by θk around centroid pxk, ykq, and the length lk and
width wk are set to the smallest values that make the rectangle cover the complete LSR Ck.

The region growing method exploits similarity of gradient orientation as the predefined criterion
for growth, the neighboring pixels, the gradient orientation of which is within the tolerance to main
orientation of LSR, are appended to the LSR, thus some curve edges with small curvature or polyline
edges with small orientation change may grow into LSR. In two local regions of the gradient saliency
maps shown in Figure 6, due to the small variation of gradient orientation, the polyline edge in
Figure 6a and the arc edge in Figure 6b, which are marked by red rectangles, form two false LSRs
after the region growing process. If statistical parameters are computed on the basis of a false LSR,
the line feature error will be huge, thus the curve edges and polyline edges should be approximately
interpreted as several line features.
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where ( )kn C  and ( )kn R  denote the pixel number of LSR kC  and its minimum enclosing rectangle 
kR , kd  is the aligned point density of LSR kC . If the aligned point density kd  exceeds the 

threshold dt , the LSR represents an effective line feature, otherwise the LSR should be interpreted 
as several line features, that means it needs to be cut into several LSRs by the following methods: 

Method 1. Reduce the tolerance of the region growing method to /16   , mark all the pixels 
included in the LSR as “unlabeled” and repeat region growing on this pixel set, compute the aligned 
point density of the new LSR, if it still does not exceed threshold the dt , try Method 2; 

Method 2. Define the radius kr  of LSR kC  as the maximum distance between the seed point 
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A LSR is improved according to its aligned point density, which is defined as follows:

dk “
npCkq

npRkq
“

npCkq

lk ¨wk
(12)

where npCkq and npRkq denote the pixel number of LSR Ck and its minimum enclosing rectangle Rk, dk
is the aligned point density of LSR Ck. If the aligned point density dk exceeds the threshold td, the LSR
represents an effective line feature, otherwise the LSR should be interpreted as several line features,
that means it needs to be cut into several LSRs by the following methods:

Method 1. Reduce the tolerance of the region growing method to τ “ π{16, mark all the pixels
included in the LSR as “unlabeled” and repeat region growing on this pixel set, compute the aligned
point density of the new LSR, if it still does not exceed threshold the td, try Method 2;

Method 2. Define the radius rk of LSR Ck as the maximum distance between the seed point and
all the other pixels in Ck, reduce rk to 80% of current value and remove all the outlier pixels from Ck,
then repeat this procedure until the aligned point density dk exceeds threshold td. The threshold td
needs to be set by experience, if td is set too large, the edges will be overcut, else if td is set too small,
the aforementioned curve and polyline problem cannot be solved; generally td is set to 0.7.

The computed line features of LSRs are shown in original optical images, as depicted in Figure 7.
Note that the curve edges in images are approximately interpreted as several line segments due to
improvement of line features. Consequently, the negative influence of various edges on SSL detection
is effectively suppressed by improvement of line features, otherwise there will be huge error in
computation of line features for SSL detection, when other edges accidentally intersect SSL with
small angles.
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where   is the line feature orientation tolerance and / 32   ,   is the line feature offset 
tolerance and 2  . When this condition is met, line features ψ j  and ψk  are merged into a new 
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Figure 7. Line feature detection results of optical images in typical adverse weather conditions. (a–c) are
optical images with extracted line features.

4. Identification of SSL

If we observe the line feature detection results of optical images acquired under typical adverse
weather condtions, it is easy to discover that there are gaps in the SSL, or even part of the SSL is missing
due to the adverse effect of factors such as target position, illumination, rain, snow and fog. To achieve
accurate identification of SSL, the line features of SSL need to be merged into an integral line feature
first. Suppose that the line feature set detected from an optical image is denoted by tψkuwhere ψk is
the unique parameter vector of a line feature:

ψk “
“

x1k, y1k, x2k, y2k, θk
‰T (13)

where px1k, y1kq and px2k, y2kq are coordinates of the start point and the end point of the line feature,
θk is the orientation of the line feature. Then the necessary and sufficient condition that two line
features ψj and ψk belong to the same line segment is formulated as follows:



Sensors 2016, 16, 543 10 of 18

ˇ

ˇθj ´ θk
ˇ

ˇ ă δ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1j y1j 1
x2j y2j 1
x1k y1k 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă λ||px1j, y1jq ´ px2j, y2jq||2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1j y1j 1
x2j y2j 1
x2k y2k 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă λ||px1j, y1jq ´ px2j, y2jq||2

(14)

where δ is the line feature orientation tolerance and δ “ π{32, λ is the line feature offset tolerance
and λ “ 2. When this condition is met, line features ψj and ψk are merged into a new line feature.
To reduce the computational complexity of line feature merging, the line feature set tψku is arranged
by the order of orientation θk, so each time we only need to examine if two neighboring line features
ψk and ψk`1 satisfy the condition above. If there are nψ line features in tψku, then the computational
complexity is reduced from Opn2

ψq to Opnψlognψq. The experimental results of line feature merging
are shown in Figure 8, where the blue line segments denote new line features, which are obtained by
merging several line features that satisfy the condition above.Sensors 2016, 16, 543 10 of 18 

 

  
(a) (b) (c) 

Figure 8. Line feature merging results of optical images in typical adverse weather conditions.  
(a–c) are optical images with improved line features. 

Note that besides the line feature denoted by SSL, there are other line features produced by 
wave glint, the USV hull, the target, mountains, etc. Therefore the SSL needs to be identified from 
among the line feature set according to region contrast, line segment length and orientation features. 
The region contrast k  of line feature ψk  is formulated as follows: 

2

2
2

( , ) ( , )
exp ( ) ( ) ( )

k k j j

k j k j
j k

x y x y
n C S C S C

 

     
 
 

  (15) 
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0

exp 1 cosk k
k k

j
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l

  
    

 
 (16) 
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feature with the maximum likelihood k  will be selected as the SSL detection result. 

5. Detection Accuracy Improvement 

The Kalman filtering theory considers a processed signal as the system output under the effect 
of Gaussian white noise, and the relationship between input and output can be described by state 
space equations, thus the optimal state estimation can be recursively calculated by previous system 
state estimation and current measurement [17,18]. To solve the high dimensional nonlinear filtering 
problems, Haykin, et al. proposed a spherical-radial cubature rule to numerically compute 
multivariate moment integrals encountered in the nonlinear Bayesian filter, and this nonlinear filter, 
known as CKF, achieves higher accuracy and stability for state estimation of nonlinear system over 
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Figure 8. Line feature merging results of optical images in typical adverse weather conditions. (a–c) are
optical images with improved line features.

Note that besides the line feature denoted by SSL, there are other line features produced by wave
glint, the USV hull, the target, mountains, etc. Therefore the SSL needs to be identified from among the
line feature set according to region contrast, line segment length and orientation features. The region
contrast ηk of line feature ψk is formulated as follows:

ηk “
ÿ

j‰k

exp

¨

˝´
||pxk, ykq ´ pxj, yjq||2

2
σ2
η

˛

‚npCjq
ˇ

ˇSpCkq ´ SpCjq
ˇ

ˇ (15)

where SpCjq and SpCkq denote the mean gradient saliency of LSRs Cj and Ck corresponding to line
features ψj and ψk, respectively. pxj, yjq and pxk, ykq are the saliency centroids of Cj and Ck, variance
ση controls the weighting strength of spatial distance between saliency centroids and in this paper
σ2
η “ 0.64 is used.

The likelihood µk of each line feature belonging to SSL can be calculated as follows:

µk “ exp
ˆ

lk
l0
´ 1

˙

ηk
ř

ηj
cosθk (16)

where lk and l0 denote length of the line feature and the image diagonal, respectively. The line feature
with the maximum likelihood µk will be selected as the SSL detection result.
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5. Detection Accuracy Improvement

The Kalman filtering theory considers a processed signal as the system output under the effect
of Gaussian white noise, and the relationship between input and output can be described by state
space equations, thus the optimal state estimation can be recursively calculated by previous system
state estimation and current measurement [17,18]. To solve the high dimensional nonlinear filtering
problems, Haykin, et al. proposed a spherical-radial cubature rule to numerically compute multivariate
moment integrals encountered in the nonlinear Bayesian filter, and this nonlinear filter, known as
CKF, achieves higher accuracy and stability for state estimation of nonlinear system over conventional
nonlinear filters [19,20]. There exist various interference factors like low contrast, low sharpness and
noise in optical images from real marine environment, besides there are some approximations in SSL
detection method, and those cause errors in SSL detection results.

To illustrate the noise distribution pattern in SSL detection results, we have mounted the
optoelectronic imaging unit at the same height above the sea surface as the “XL” USV so that the
camera is absolutely stationary without any impact of USV motion status. Optical images are acquired
under different weather conditions and camera poses, and the SSL detection results are compared
with the ground truth labeled by experts. The comparison verifies that the noise amplitude obeys a
Gaussian distribution and its power spectral density is uniformly distributed, approximately. Thus
we can use CKF to estimate the actual position of the SSL. The geometric model of SSL detection is
shown in Figure 9, where W and H are the image width and height, y1 and y2 are vertical coordinates
of points where the SSL intersects with the left and right image borders, y0 is the vertical coordinate of
the midpoint on the SSL, and θ0 is the orientation of the SSL.
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where 1k w  is Gaussian white noise with zero mean and covariance 1k R . The cubature point set 
and the corresponding weights are set as follows [19]: 
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The process equation for the SSL detection problem is formulated as follows:

ŷk`1 “ f
`

ŷk
˘

` vk “

»

—

—

—

—

—

—

—

–

1 ∆t 0.5 ¨ ∆t2 0 0 0
0 1 ∆t 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆t 0.5 ¨ ∆t2

0 0 0 0 1 ∆t
0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨ ŷk ` vk (17)

where ŷk is the system state at time k and ŷk “
”

y1
.
y1

..
y1 y2

.
y2

..
y2

ıT

k
, vk is Gaussian white

noise with zero mean and covariance Qk, ∆t is the period for acquiring optical images.
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The measurement equation is formulated as follows:

ẑk`1 “ hpŷk`1q `wk`1 “

« y1`y2
2

atanp y2´y1
W q

ff

k`1

`wk`1 (18)

where wk`1 is Gaussian white noise with zero mean and covariance Rk`1. The cubature point set and
the corresponding weights are set as follows [19]:

εi “
b

m
2 r1si

ωi “
1
m , i “ 1, 2, ¨ ¨ ¨ , m “ 2n

(19)

where r1si is the i-th element of a complete fully symmetric set of points, n is state dimension and
n “ 6 in this paper. The cubature Kalman filtering process is described as follows [20]:

5.1. Time Update

Factorize state covariance Pk|k with Cholesky decomposition:

Pk|k “ Sk|kST
k|k (20)

Evaluate the cubature points:

Yi,k|k “ Sk|kεi ` ŷk|k, i “ 1, 2, ¨ ¨ ¨ , m “ 2n (21)

Evaluate the propagated cubature points:

Y˚i,k`1|k “ fpYi,k|kq (22)

Estimate the predicted state and error covariance:

ŷk`1|k “
1
m

m
ř

i“1
Y˚i,k`1|k

Pk`1|k “
1
m

m
ř

i“1
Y˚i,k`1|kY˚T

i,k`1|k ´ ŷk`1|kŷT
k`1|k `Qk

(23)

5.2. Measurement Update

Factorize predicted error covariance Pk`1|k with Cholesky decomposition:

Pk`1|k “ Sk`1|kST
k`1|k (24)

Evaluate the cubature points:

Yi,k`1|k “ Sk`1|kεi ` ŷk`1|k, i “ 1, 2, ¨ ¨ ¨ , m “ 2n (25)

Evaluate the propagated cubature points:

Zi,k`1|k “ hpYi,k`1|kq (26)

Estimate the predicted measurement and error covariance:

ẑk`1|k “
1
m

m
ř

i“1
Zi,k`1|k

Pzz,k`1|k “
1
m

m
ř

i“1
Zi,k`1|kZT

i,k`1|k ´ ẑk`1|kẑT
k`1|k `Rk`1

(27)
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Estimate the cross-covariance:

Pxz,k`1|k “
1
m

m
ÿ

i“1

Yi,k`1|kZT
i,k`1|k ´ x̂k`1|kẑT

k`1|k (28)

Estimate the Kalman gain:
Wk “ Pxz,k`1|kP´1

zz,k`1|k (29)

Estimate the updated state:

ŷk`1|k`1 “ ŷk`1|k `Wkpẑk`1 ´ ẑk`1|kq (30)

Update the state covariance:

Pk`1|k`1 “ Pk`1|k ´Wk`1Pzz,k`1|kWT
k`1 (31)

5.3. Initial Conditions

The initial conditions of CKF for SSL detection are set as follows:

P0|0 “ diag
”

100.0 9.0 1.0 100.0 9.0 1.0
ı

ŷ0 “
”

180.0 0.0 0.0 180.0 0.0 0.0
ıT (32)

The covariance matrices of process noise and measurement noise are set as follows:

Qk “

«

γ 0
0 γ

ff

,γ “

»

—

–

∆t5{20 ∆t4{8 ∆t3{6
∆t4{8 ∆t3{3 ∆t2{2
∆t3{6 ∆t2{2 ∆t

fi

ffi

fl

Rk`1 “ diag
”

100.0 16.0
ı

(33)

6. Experimental Results and Discussion

To demonstrate the effectiveness and superiority of the proposed saliency based SSL detection
method, the “XL” USV was used to acquire optical images of a marine environment in typical
adverse weather like rainy weather, sunny weather with strong illumination, and foggy weather
in the Penglai Sea area, Shandong Province, China, as shown in Figure 10. The exposure and focus of
the optoelectronic imaging unit were set to auto mode, and the optical image resolution was set to
640 ˆ 480. We have evaluated the proposed method on a benchmark dataset including 400 optical
images and compared it against other state-of-the-art methods, including RANSAC line fitting [2],
Hough transform [5], Radon transform [9] and shearlet transform [3]. The experimental environment
was the C++ compiler of Microsoft Visual Studio 2012 on a Dual Core 2.5 GHz machine with 2 GB
RAM. For the Hough transform and Radon transform, we used the authors’ implementations, while
for RANSAC line fitting and shearlet transform, we implemented the algorithms in C++ since we
failed to obtain the authors’ implementations.
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The proposed method is similar to Hough transform and Radon transform in line feature detection,
therefore the performance of the three methods in line feature detection is contrasted first. Figure 11a–c
shows the line feature detection results of the Hough transform. The basic principle of the Hough
transform is to search for local peaks in Hough space to determine the line feature parameters, however,
random edges caused by wave glints, illumination, mountains and cloud clusters accumulate in Hough
space to form local peaks, and many mutually unrelated edges are connected in error to form false
line features as a result, which causes great difficulty for the identification of the SSL. Figure 11d–f
shows the line feature detection results of Radon transform. The Radon transform projects gradient
maps into sinograms by line integrals, then the local peaks are searched to determine the line feature
parameters, thus it is confronted with the same problem as the Hough transform, besides, the Radon
transform can not determine the endpoints of line features. Figure 11g–i is the results obtained by the
proposed method. The interference edges are obviously suppressed, and it is feasible to accurately
identify the SSL from the detected line features. Therefore, the line feature detection performance of
the proposed method is significantly superior to that of the Hough transform and Radon transform.
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Figure 11. Line feature detection results of optical images: (a–c) are results of the Hough transform
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However, the SSL is usually weak or maybe even partly missing, so the interference edge points
may randomly constitute lines which have many or even the most inliers, thus not only is the number
of false alarmd of RANSAC line fitting rather high, but also the computational cost is enormously huge.

Figure 12d,i,n,s,x are detection results of the shearlet transform. With the advantage of edge
geometric features provided by the shearlet transform, the edge direction information is extracted
and classified, but usually interference edges have better gradient orientation consistency than the
relatively weak SSL, thus the detection accuracy of shearlet transform are not satisfactory, while the
computational complexity is unacceptably huge.
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Figure 12. Comparison of SSL detection results. (a,f,k,p,u) are detection results of the Hough
transformation method; (b,g,l,q,v) are detection results of the Radon transformation method;
(c,h,m,r,w) are detection results of the RANSAC line fitting method; (d,i,n,s,x) are detection results of
the shearlet transformation method; (e,j,o,t,y) are detection results of the proposed method.

Figure 12e,j,o,t,y shows the detection results of the proposed method. Obviously the SSL can be
more accurately detected in the presence of various interfering factors, and the detection accuracy
performance is superior to that of the other state-of-the-art methods. A detection result is considered
to be accurate if it overlaps more than 50% of the real SSL. Based on this criterion the accuracy rates of
the Hough transform, Radon transform, RANSAC line fitting, shearlet transform and the proposed
method were statistically compared. Besides, the real-time requirement for application on USVs is
considered and the average consumed time is also contrasted. As observed in Table 1, the accuracy
rate and real-time performance of the proposed method significantly outperform other state-of-the-art
methods. RANSAC line fitting gets the worst accuracy rate, and it takes a lot of time to process a single
image due to random edge point selection and inlier verification. The shearlet transform achieves a
better accuracy rate, but its computational complexity is huge and its real-time performance is the
worst. Both the accuracy rate and the real-time performance of the Hough transform are similar
to those of the Radon transform, but the Radon transform projected gradient maps into sinograms,
while the Hough transform projects binary edge maps into Hough space, thus the accuracy rate of
the Radon transform is slightly better but its average consumed time is a bit longer than that of the
Hough transform.

Table 1. SSL detection result comparison of different methods on the benchmark dataset.

Measure Hough
Transform

Radon
Transform

Ransac Line
Fitting

Shearlet
Transform

The Proposed
Method

Accuracy rate 76.8% 79.0% 67.3% 84.3% 94.8%
Average consumed time 167 ms 185 ms 1354 ms 5629 ms 52 ms
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In a real marine environment a sequence of optical images were continuously acquired by
optoelectronic imaging unit with a sampling period ∆t “ 80 ms and processed by our proposed
method online to detect the SSL. Taking 450 frames acquired during 36 s as an example, we compare
the SSL detection results with state estimation by CKF, as depicted in Figure 13.Sensors 2016, 16, 543 16 of 18 
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Figure 13. The SSL state comparison of detection results and state estimation by CKF. (a) are detection
results and state estimation of vertical coordinate y1; (b) are detection results and state estimation of
vertical coordinate y2.

Generally, the vertical coordinates y1 and y2 should be continuously and smoothly changing with
time k, yet there exist many peaks which represent abrupt changes in the SSL state caused by USV
motion and various interference factors. Thus CKF is applied to estimate the optimal state of the SSL
according to the previous state estimation and current measurement, which denotes the SSL detection
result of the current image. As observed in Figure 13, the SSL state estimation by CKF is changing
more smoothly with time, when it is accurately tracking the SSL state.

To quantitatively evaluate the accuracy improvement by CKF, the SSL detection results and state
estimation by CKF have been contrasted with the ground truth, which is the manually labeled SSL in
the dataset by experts. The root mean square error (RMSE) at time k is defined as follows:

RMSEpkq “

g

f

f

e

1
k

k
ÿ

i“0

pŷk ´ ŷk|kq
2 (34)

where ŷk is the ground truth at time k, and ŷk|k is the detection result or state estimation by CKF at
time k. The RMSE of detection results and state estimation by CKF is shown in Figure 14. After CKF
applied to the proposed method, the RMSE of state estimation decreases by more than 50% and the
accuracy of SSL detection is obviously improved.
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Figure 14. The RMSE comparison of detection results and state estimation by CKF. (a) is RMSE of
detection results and state estimation of vertical coordinate y1; (b) is RMSE of detection results and
state estimation of vertical coordinate y2.

The proposed method has been used on the “XL” USV to accelerate target searching by reducing
the search area and computational complexity. The sea trial results show that the search time for a
single target decreases by more than 82% with knowledge of the SSL location. Future research work
will be concentrated on accurate noise modeling with compensation of USV motion status so that
nonlinear Bayesian filtering method could separate the noise to further improve the accuracy and
stability of SSL detection method. The proposed method could also be used for horizon detection of
monochromatic images such as infrared images or spectrum images.

7. Conclusions

Through the computation of gradient saliency, the line features of the SSL in optical images
acquired in typical adverse weather can be effectively enhanced, while other interference factors are
relatively suppressed. The region growing method on gradient orientation can accurately extract
line features which have good gradient orientation consistency, meanwhile avoiding the problems in
other line feature detection methods like the Hough transform and Radon transform where mutually
unrelated edges often get connected by mistake to form false line features. Experimental results
from the “XL” USV in typical adverse weather demonstrate that the proposed method is significantly
superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its
accuracy and stability has been further improved by CKF.
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