Next Article in Journal
Antenna Deployment for the Localization of Partial Discharges in Open-Air Substations
Previous Article in Journal
Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer
Article Menu

Export Article

Open AccessArticle
Sensors 2016, 16(4), 538; doi:10.3390/s16040538

Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
*
Author to whom correspondence should be addressed.
Academic Editor: Vittorio M. N. Passaro
Received: 29 February 2016 / Revised: 4 April 2016 / Accepted: 11 April 2016 / Published: 14 April 2016
(This article belongs to the Section Physical Sensors)

Abstract

A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. View Full-Text
Keywords: projection lithography; linear scale; linear displacement sensor; multi-repeated method; average homogenization effect projection lithography; linear scale; linear displacement sensor; multi-repeated method; average homogenization effect
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ren, D.; Zhao, H.; Zhang, C.; Yuan, D.; Xi, J.; Zhu, X.; Ban, X.; Dong, L.; Gu, Y.; Jiang, C. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect. Sensors 2016, 16, 538.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top